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 Phase changes of Lennard-Jones clusters containing 4N3 (N = 1-20) identical atoms in terms of solid and liquid phase-like 
forms have been studied by performing molecular dynamics (MD) simulation  at sharply-bounded range of temperatures between 
freezing temperature (Tf) and melting temperature (Tm) and at constant pressure. The small differences between the free energies 
of clusters in different phase-like forms and also the non-rigidity of the cluster (0 ≤ γ ≤ 1) as an order-parameter, which 
characterizes the phase transition, have been calculated. Plots of the free energy of phase change versus the non-rigidity indicate 
that the free energy is a continuous function of the non-rigidity and also different crystalline-like cores with different free energies 
correspond to the same non-rigidity factor at any given temperature. 
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INTRODUCTION 
 
 Clusters constitute nanosystems made of a limited number 
of atoms or molecules which occupy an intermediate space 
size between atoms and bulk matters. Clusters, in addition to 
displaying similarities to bulk systems, possess also some 
unique properties. Clusters are different from bulk material 
since a large fraction of the particles comprising a cluster are 
on its surface. Their finite size also causes "rounding" of 
thermodynamic properties, so that extensive thermodynamic 
properties of clusters are non-extensive and their intensive 
thermodynamic properties are non-intensive [1].   
 An understanding of clusters and how their properties 
evolve with size will provide new insight into nanosystems. 
For example, the first-order phase transition in the bulk matter 
exhibits a melting transition at a single well-defined 
temperature. At this melting point, the free energies of the 
solid and the liquid phases  are  equal  and  coexistence  of  the 
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two phases takes place. Above the transition temperature the 
superheated solid would be metastable and is not generally 
observed and below it, the liquid would be metastable and can 
be sometimes observed as a supper-cooled liquid. An 
important distinction between the phases of bulk matter and 
the phase-like forms of small clusters is that there are many 
varieties of the latter which do not exist in the limit of very 
large systems [1-3]. 
 It has been indicated that small, finite, clusters exhibit both 
solid-like and liquid-like forms which are assumed to be 
thermodynamically stable in certain range of temperature and 
some kind of phase change occur between them [4]. Clusters 
may exhibit a sharp lower limit of temperature for the 
thermodynamic stability of the liquid form and a higher sharp 
upper limit for the thermodynamic stability of the solid form. 
The lower temperature is called the freezing point, Tf, and 
below Tf, the upper limit of thermodynamic stability of the 
solid is called the melting point, Tm [5,6].   
 The phase-like properties of clusters and nanoscale 
particles    lend   themselves   to  study  by  simulation  and  by  
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analytic theory [2]. A few experimental studies have 
demonstrated specific phase-like forms of these species [7-9], 
but very little has come from the laboratory to elucidate the 
nature of the equilibrium or the transition between these forms 
[10]. 
 The structures and properties of small clusters of Lennard-
Jones atoms have been extensively studied by using a variety 
of both theoretical and experimental techniques over the past 
years [11,12]. It has been shown that clusters containing 
certain "magic numbers" such as 13, 55, 147 and 309 of 
identical atoms form icosahedra structures [13]. An extensive 
molecular dynamics study of melting and freezing of the 
Lennard-Jones clusters containing up to 5083 atoms have also 
been reported [5]. Theoretical studies have shown that phase 
change takes place in small Lennard-Jones clusters, but its 
nature is still in doubt due, in part, to the conflicting results 
that have been reported [13].  
 Although it has been reported [13,14] that the small 
clusters containing magic numbers of argon have icosahedra 
symmetry, bulk solid argon is known to have the face-
centered-cubic (fcc) crystal structure [13].  A crossover from 
icosahedral to fcc ordering at a cluster size of about 750 atoms 
has also been reported [13]. Prediction of the fluid/solid phase 
boundary using Monte Carlo simulations and perturbation 
theory with the Yukawa potential have also indicated that the 
solid phase has a fcc microstructure [15]. It may also be 
emphasized that although the small solid phase clusters may 
have icosahedra symmetry, the structure deformation can be 
achieved by the molecular dynamics simulation process and 
icosahedra symmetry would not exist any more during the 
process. Also, the disordered phase appears at high 
temperatures and often has a simple structure, such as a face-
centered cubic (fcc) or body-centered cubic structure. 
Therefore, the clusters which have been studied in this work 
have the fcc crystal structure by which the structure 
deformation does not occur by the molecular dynamics 
simulation, MDS, process. In this article, we report an MDS 
study of small Lennard-Jones clusters to examine the 
conditions for the validity of the assumption of coexistence for 
a number of clusters containing 4N3 (N = 1-20) identical 
particles (hereafter, non-magic numbers) which form fcc 
structures and do not form icosahedra structures as magic 
numbers do) and have  not  been  previously  investigated.  We 

 
 
present a systematic study of finite-size effects and the 
approach to the transition points for a class of Lennard-Jones 
potentials in three dimentions. All thermodynamic properties 
of solid clusters are determined by heating cluster from T = 5 
to 50 K. The thermodynamic properties have been calculated 
while the clusters were equilibrated at a given temperature. 
MDS runs have been long enough for the cluster to 
equilibrate. We attempt to answer the two questions implicitly 
posed in the theory and method section, previously. The model 
supposes that the energy levels Ej(γ) of the cluster are 
continuous functions of an order-parameter, γ, measuring the 
non-rigidity of the cluster [13,14]. This study has also 
undertaken to help resolve the following issues: 
-What is the nature of the phase transition for small clusters 
containing non-magic numbers and possessing fcc ordering 
crystal structure?  
-What is the effect of the crystal ordering on the structural 
change accompanying this phase change?   
-How is the change of the free energy as a function of 
temperature and what is the equilibrium behavior in the phase 
transition region?  
-Do the properties of the phase transition depend on the size of 
the cluster?                                                                                                    
 
Theory and Method 
 Two useful questions have been put forwarded by Berry 
[15]: one about the nature of bulk melting and its relation to 
the theory or more precisely, why the melting point of bulk 
matter is so sharp and the same as the freezing temperature, 
and the other about the predictions of the theory regarding the 
stability of finite liquids and solids and how they are related to 
the behavior of bulk matter. The answer to the first question 
has emerged from the theory given by Berry et al. [6,14]. The 
answer to the second question emerges from the prediction 
that the freezing and melting temperatures Tf and Tm, 
interpreted as the limits of stability of the liquid and solid 
forms, respectively, are sharp but unequal, giving rise to two 
discontinuities in the equilibrium constant, one at Tf and one at 
Tm  
 
 ]/[][)/exp( solidliquidkTGK =Δ−=                                   (1) 
 
where  ΔG  and  k  are the change in Gibbs free energy and the  
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Boltzmann constant, respectively. Now more precise questions 
are: What happens to the discontinuities in equilibrium 
constant, K, as N increases, and at what value of N does ΔT = 
Tm - Tf  remain finite and non-zero?     
These questions have been answered by using: 
 
 ( ) ( )][][/][][)1/()1( solidliquidsolidliquidKKD +−=+−=    (2) 
 
which ranges from -1 at very low temperature to +1 at high 
temperatures instead of K which changes from zero to infinity 
[5,16].  
 There is an equilibrium temperature, Teq, between Tm and Tf 
at which the chemical potentials,

iμ , of the two phases are 
equal ( 0=Δ=Δ GN μ ) for clusters of a given N. Below this 
equilibrium temperature μΔ  is negative and above that is 
positive. This means that μΔ  changes from negative to 
positive and D changes from a number less than 1 to a number 
greater than 1, around Teq [5]. This behavior has been 
illustrated for two values of N, one small enough to show a 
gradual change in D and the other, a steeper, more confined 
increase with N around Teq [5].  
 Berry [15] has interpreted the behavior of Teq(N) and also 
has answered the questions of what happens to Tf and Tm as 

∞→N  and what is the N-dependence of the condition that the 
canonical partition function ZN (γ,T) has an interior minimum 
in the range 0 ≤ γ  ≤ 1. The order parameter γ is defined in a 
manner analogous to the quantity that characterizes the 
nonrigidity of a diatomic molecule, the ratio of the rotational 
constant Be to the vibrational frequency ωe. For a cluster it has 
been given as [17-19]: 
 
 

vr EE /2=γ                                                                         (3) 
 
where Er is the interval between the ground state and the 
excited state which becomes the first rigid-rotor excited state 
in the rigid limit and Ev is the excitation energy to that state 
which becomes the first vibrationally excited state in the rigid 
limit. In the most extreme rigid limit, Ev would become 
infinite, so 0→γ at that limit. As the system approaches the 
non-rigid limit, Er approaches the energy of the first excited 
state of the U(3N-3) harmonic ladder, and Ev approaches the 
energy of the second excited state of the same ladder, so 

1→γ at the nonrigid  limit [6].  This means  that the energy of 

 
 
states Ej(γ) are continuous and smooth function of γ.    
 Molecular dynamic simulations can, in principle, provide 
accurate numerical results for a system but are never exact. 
Among the many possible pitfalls for simulators, especially 
those interested in phase transitions, are the effects of the 
finite extent of simulated systems on the observed results [20].  
 The much studied Lennard-Jones intermolecular potential 
model is the obvious choice for the present study. The 
potential, ULJ, is of the form, 
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where ε [J mol-1 K-1] is the potential-well depth parameter, σ 
[m] is the hard core parameter, and r [m] is the distance 
between particles. In MD simulation it is often convenient to 
express quantities such as mass, distance, temperature, 
density, pressure in reduced (dimensionless) units that are 
indicated by a superscript asterisk “*”. This means that we 
choose convenient units for energy, length and mass and then 
express all quantities in terms of these basic units. Reduced 
quantities are defined so that distances are scaled by σ and 
temperature by ε/k, where k is the Boltzmann constant. In the 
example of a Lennard-Jones system, a pair potential that is 
used is of the form  
 
 u (r) = ε f (r/σ)                                                                  (5)  
 
 A natural choice for our basic units is the following: unit 
of length; σ, unit of energy; ε, unit of mass; m (the mass of the 
atoms in the system) and from these basic units, all other units 
follow. For instance, our units of temperature is ε/k and the 
unit of time is σ√m/ε. The reduced distance, energy, pressure, 
density and temperature can be defined as: 
 
The reduced distance:  r* = r/σ                                              (6) 
 
The potential energy:  U* = U/ε                                             (7) 
 
The pressure:  P* = P σ 3ε -1                                                  (8) 
 
The density: ρ* = ρ σ 3                                                           (9) 
   
The temperature: T* = k  T ε -1                                              (10) 
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The experimental data ε/k = 119.8 [K], σ = 0.3405 × 10-9 [m], 
M = 0.03994 [kg mol-1] which are available for argon were 
used in our calculations.   
 The velocity-Verlet algorithm was used with a time step of 
0.05τ, where τ  = σ (m/ε)1/2. The potential  
 
 U(r) = ULJ(r) - ULJ (rc)    r < rc                                      (11) 
              = 0                          r > rc 

 
is truncated at a cutoff distance, rc, of 2.8 σ  for clusters 
containing of N ≥ 4 atom. The following types of calculations 
on the Lennard-Jones clusters containing 4N3 (N = 1-20) 
atoms were then performed: 
a) Slow cooling runs using the constant temperature MDS to 
study the phase transition. 
b) Slow heating runs to examine the state of equilibrium at 
different temperatures in the transition region. The range of 
temperature between Tf and Tm is called transition region. To 
find whether the equilibrium exists at all temperatures, 
appropriate runs were also carried out in the same region and 
the same equilibrium diagrams were reproduced. 
c) Constant temperature calculations in the transition region to 
study coexistence of phases. 
It should be noted that in contrast to Berry’s work (-20-20 °C, 
[5]) the MD simulations were performed at temperatures low 
enough, T = 5 to 50 K, where evaporation of atoms from the 
clusters generally does not occur. 
 The Helmholtz free energy was calculated by using Eq. 
(12) 
 
 ),(ln),( TZTTF γγ −=                                                      (12) 
 
where Z is the partition function of the canonical ensemble and 
is, of course, 
 
 ∑ −=

j

TE
j

jegTZ /)(),( γγ                                                      (13) 
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The information contained in F(γ,T) has been given in detail 
[6]. The Helmholtz free energy  has  at  least  two  minima as a  

 
 
function of the order parameter that indicate two-phase like 
forms occur for the solid structures in the transition region. 
 The disordered phase appears at high temperatures and 
often has a simple structure, such as a face-centered or body-
centered cubic structure. As the temperature of an 
orientationally disordered crystal is lowered, a phase transition 
to a more ordered phase takes place, and is characterized by a 
lower-symmetry crystal structure and the onset of long-range 
orientational order-structure. The transition may be continuous 
or weakly discontinuous. The fact that the crystalline 
structures are the only form observed of these molecular 
clusters indicates that they undergo a structural transformation 
during their growth to a final size of 1000 to 10000 particles. 
The performed experiments [21,22]  have shown that argon 
clusters exhibit an amorphous, polytetrahedral, or 
polyicosahedral form when they are small, and only begin to 
adopt their bulk structures when they reach a size of at least 
1000 atoms.   
 
RESULTS AND DISCUSSION 

 
To predict the freezing, Tf, and melting, Tm, temperatures, 

the internal energies (= kinetic energy + potential energy) 
were calculated at different temperatures ranging from 5 to 50 
K.  The values of energies are plotted versus temperature to 
find a loop-shaped part connecting two distinct branches of the 
curve, solid like branch of low energies extending to liquid 
like branch of higher energies. The results show that the 
similar s-bend shape plots would be obtained for all small 
clusters of different identical particles (N = 32-32000). 
However, as the N increases both Tf and Tm shift to higher 
values. In order to have a complete range of temperatures, we 
have taken Tf from simulating a small cluster with N = 32 and 
a small cluster with N = 32000. The melting and freezing 
temperatures were also found to be substantially below the 
bulk ones. 
 The values of free energies which were obtained by 
simulating a small cluster with 32 particles are plotted versus 
the values of non-rigidity parameter, γ, are shown in Fig. 1. 
This figure illustrates that the results of a long simulation can 
be separated into the solid-like, liquid-like and the 
intermediate regions at any given temperature. It should be 
mentioned that the performed simulations of all small  clusters 
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Fig. 1. The variation of free energy of a small cluster with 
    32  identical   particles  with   the   values  of  non- 

        rigidity parameter, γ, at  given temperatures. 
 

 
with 4N3 particles gave the same results, except for N = 1 for 
which the values of free energies and γ remain constant during 
the MDS run. Dynamic coexistence of phase like forms, solid, 
surface melted and a homogeneously  melted  phase  could  be  

 
 
found in isothermal MDS. Different plots of Fig. 1a-f can be 
interpreted as follows: 
a) The free energy has only one minimum in the solid like end 
of the scale, i.e. near γ = 0. 
b)The free energy develops a point of zero slope near the non-
rigid limit, i.e. near γ =1. 
c) The free energy has two minima, one for lower γ 
corresponding to locally stable solid like form and another for 
the higher γ corresponding to a locally stable liquid. The 
maximum shows the transition state. 
d) Here the behavior is similar to c. 
e) The free energy has one minimum and one other point of 
zero slope and zero second derivative, as a function of γ. 
f) The free energy has only one minimum in the liquid-like 
end of the scale, i.e. near γ = 1. 
 It was mentioned above in the introduction that this study 
was undertaken to resolve four issues. Now the results show 
that: 
1. MDS reveals that small clusters undergo equilibrium 
structures from the low-energy solid-like to a set of higher 
energy liquid-like structures, much like a melting transition of 
bulk material at the transition temperatures. 
2. The transition is not a sharp one in that the solid-like and 
liquid-like structures and typically one or more intermediate 
structures coexist over a range of temperatures.  
3. The energy as a function of temperature rises from a lower 
value characteristic of the solid-like structure to a higher value 
characteristic of the liquid-like structures over the range of 
temperature.  
4. The properties of the transition depend on the size of the 
cluster. The s-bend shape of the plot of the internal energy 
versus temperature depends on the size of the cluster. Thus, as 
the number of particles increases the value of ΔT decreases. 
 
CONCLUSIONS 
 
 MDS showed that small Lennad-Jones clusters of non-
magic number of identical particles (Ar) undergo equilibrium 
structures from the low-energy solid-like to a set of higher 
energy liquid-like structures at any temperature ranging from 
T*

f to T*
m. Our results do not accord with what has been 

reported previously by Berry et al. [2]. We have found 
different plots of  the  free energy  versus  non-rigidity for  any  

γ

γ

γ

γ

γ

γ
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Lennard-Jones cluster containing 4N3 (N = 2-20, non-
magnetic numbers and fcc structure) identical particles at any 
temperature between its Tf and Tm (Tf and Tm are included), 
whereas Berry et al. have reported them for six temperatures 
increasing from T1 < Tf through T6 > Tm. 
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