J. Iran. Chem. Soc., Vol. 8, No. 1, March 2011, pp. 142-148.

.]OURNAL' OF THE
Iranian
Chemical Society

Ammonium Bromide as an Effective and Viable Catalyst in the Oxidation of Sulfides
Using Nitro Urea and Silica Sulfuric Acid
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A new catalytic method for the chemoselective afiwh of sulfides to the sulfoxides has been stlidtevariety of dialkyl,
alkylaryl and diaryl sulfides were subjected to theédation reaction by a mixture of nitro urea,ided from urea nitrate, silica
sulfuric acid (SiG-OSG;H) and catalytic amounts of ammonium bromide in,Cklat room temperature.
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INTRODUCTION

The selective oxidation of sulfides to<sulfoxidiss an
important transformation because of the great Bamice
sulfoxides have as intermediates in organic syighasd the
key role they play in the enzyme activation [1]/f8xides are
useful elements of stereocontroliin both. asymmetyithesis
and important targets of pharmaceutical interest5][2
Sulfoxides are usually prepareth oxidation of the sulfides
by different oxidizing systems [6-17]. Unfortunatelit is
often very difficult to stop the oxidation at thelfexide stage.
Moreover, there are several limitations on the mpfibn of
the reported procedures for the oxidation of seliduch as
low selectivity, low yields of products, tedious rkeup,
toxicity, and expensive reagents or catalysts. Asatter of
fact, the main drawback of the reported oxidiziygtems is
their unsuitability for medium to large-scale sysghbs.

EXPERIMENTAL
Chemicals were purchased from Fluka, Merck andiétd
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chemical companies. The oxidation products were
characterized by comparison of their spectral (R, NMR,
and *C NMR) and physical data with those of authentic
samples. Silica sulfuric acid was prepared emplpymm
previously reported procedure [18].

Preparation of Nitro Urea (NH,CONHNO,.xH,0)

In a 50-ml round-bottomed flask, 4 ml of HN(®5%) and
3.46 g of urea was stirred for 2 h, and a whitstaljine solid
(NH,CONHNOG,.xH,0) was obtained quantitatively. M.p.:
156-158.4 °C (Ref. [19] 157-159 °C); MS (70 eY)z = 105
(MM, 91, 69, 63, 60, 46 (base peak, NQ44.

Oxidation of Allyl Methyl Sulfide 1h to Allyl Methyl
Sulfoxide 2h Using Nitro Urea and Silica Sulfuric
Acid in the Presence of a Catalytic Amount of
Ammonium Bromide

NH4Br (0.005 g, 0.05 mmol) and nitro urea (0.32 g) ever
added to a solution of allyl methyl sulfidih (0.088 g, 1
mmol) in CHCI, (5 ml), followed by addition of silica sulfuric
acid (0.4 g). The resulting mixture was stirred rabm
temperature for 38 min (the reaction progress waasitored
by TLC) and then filtered. The residue waashed with
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CH,CI, (20 ml). Anhydrous N#&0, (1.5 g) was added to the
filtrate and filtered off after 20 min. Finally GBI, was
evaporated andllyl methyl sulfoxide2h obtained as colorless
oil (0.066 g, 64%).H NMR (200 MHz, CQSOCDy): J =
5.75-5.97 (m, 1H), 5.31-5.39 (m, 2H), 3.34-3.62 2H), 2.50
(s, 3H) ppm;**C NMR (50 MHz, CQSOCD;): J = 127.5,
123.3, 56.5, 37.4 ppm; (Ref. [20]).

Selected Representative Spectral Data
2-(Phenylsulfinyl)ethanol (2e). 'H NMR (200 MHz,

CD;SOCDy): J = 7.51-7.94 (m, 5H), 5.89 (s, 1H), 3.63-3.88

(m, 2H), 2.83-3.01 (m, 2H) ppm*C NMR (50 MHz,
CD;SOCDy): 6= 144.9, 132.1, 131.1, 123.6 ppm.

4-Thianthrene mono sulfoxide (2g). *H NMR (400 MHz,
CD;SOCDy): J= 7.80-7.84 (m, 2H), 7.65-7.68 (m, 1H), 7.55-
7.58 (m, 1H) ppm:®*C NMR (100 MHz, CRSOCD,): J =
141.2, 130.9, 129.8, 129.3,128.2, 124.7 ppm.

Benzyl methyl sulfoxide (2k). 'H NMR (200 MHz,
CD;SOCDy): 0= 7.34 (s, 5H), 5.07 (s, 2H), 3.91-4.16 (dc
24.1, 12.7 Hz, 2H) ppnt?’C NMR (50 MHz, CRSOCD;): =
131.7, 130.7, 128.9, 128.2, 59.0, 37.6 ppm.

4-Chlorophenyl methyl sulfoxide (20). *H NMR (200
MHz, CDCk): o= 7.47-7.63 (ddJ = 14.0, 8.6 Hz; 4H) 2.75
(s, 3H), ppm;®*C NMR (50 MHz, CDC)): J=.143.8, 137.1,
129.5,125.0, 43.7 ppm.

RESULTSAND DISCUSSION

Recently, we have introduced different approadbeshe
chemoselective oxidation of sulfides to the sulfi@svia in
situ generation of bromoniumion [21-28]. In continuatiof
this investigation, we decided to explore catalgid metal-
free media for thén situ generation of Bt To this end, we
synthesized urea nitrate by reaction of urea withicnacid
(Scheme 1). Urea nitrate has been reported prdyidus
Shead [29].

Urea nitrate can be readily dehydrated to nitr@aur
(NHCONHNG;.xH,0) (Scheme 2). This structure might be

0 OH*NO;"
H,N NH, + HNO; (65%) % H,N NH,
Scheme 1
OH*NOg’
—H20 o 1 NCONHNO,.XH,0
H2N NH2 2 2- 2
X=1-2.5
Scheme 2

oxidizing property in the presence of an acid. Efee, we
decided to apply nitro urea in the presence otaibulfuric
acid (SiQ-OSGH) and catalytic amounts of ammonium
bromide for the chemoselective oxidation of sulfide the
sulfoxides.

Initially, to find an appropriate solvent for this
transformation, we screened different solvents the
oxidation of dibenzyl sulfide, as a standard madtiel results
of which are summarized in Table 1. As is evideairf Table
1, oxidation reaction proceeds more rapidly andcalely in
dichloromethane and acetonitrile compared to osioévents.
However, dichloromethane has been selected asetwion
solvent in all reactions because dichloromethare lbever
toxicity than acetonitrile.

With the optimal conditions at hand, herein weorgp
chemoselective oxidation of a wide range of alighand
aromatic sulfidesl to the corresponding sulfoxide® via
treatment of nitro urea (NMEONHNO,.xH,O) I, silica
sulfuric acid (SIQ-OSQH) Il in the presence of catalytic
amounts of NEBr |[Il in dichloromethane at room
temperature with good to excellent yields (Schemang
Table 2).

As is evident from Table 2, a good range of tumero
number (TON) and turn over frequency (TOF) of th#abtyst

easily approved by its mass spectrum (Fig. 1), whosis observed. To prove the catalytic role of /J8iH dibenzyl

molecular ion peak appears at m/e = 105 and basge(p,")
appears at m/e = 46.

In continuation of our studies on the propertiésnidro
urea (NHCONHNGO,.xH,0), we found that this reagent has

sulfide (as typical example) was selected for tk&ation
reaction in the absence of this catalyst. Surpgiginno
sulfoxide was observed for 24 h (Table 2, entryW® found
that the sulfoxidation reaction for dibehzwylfid did not
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Fig. 1. Mass spectrum of nitro urea (MEIONHNG,.xH,0).

Table 1. Oxidation of Dibenzyl Sulfide Using Nitro UreaiSa Sulfuric Acid and
Catalytic Amounts of NBr in Different Solvents at Room Temperature

Entry Solvent Time (min) Yield (%)
1 Acetonitrile 28 98

2 Acetone 48 h ‘.

3 Chloroform 127 98

4 Dichloromethane 30 94

5 n-Hexane 48 h d

6 Ethanol 48 h <

7 Ethyl acetate 50 98

Substrate: Nitro urea: NBr: Silica sulfuric acid = 1 mmol: 0.32 g: 0.05 mimo
0.4%solated yield.°No reaction®Reaction was not complete and impurity of
sulfone wasetved.

complete without silica sulfuric acid (Si@SG;H) within 24  has two similar sulfide moieties, undergoes honexdle

h (Table 2, entry 5), which means that the presefitiee acid oxidation. Such a finding is in close agreementhwiur

is necessary for the sulfoxidation to realize. previously reported works on the oxidation of sid§ to the
In this investigation, we observed that thiantlerewhich  sulfoxides [17-22]. This can be clearly demomstd by*°C
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Table 2. Oxidation of Sulfided. to the Corresponding Sulfoxid@dJsing Nitro Urea (NHCONHNGO,.xH,0) I, SiO,-
OS$M |1 and Catalytic Amounts of NiBr I11 in Dichloromethane at Room Temperature

Substrate/Reagents/Catafyst

Entry Substrate  Product I il Time (min)  Yield (%} TON TOF (min%)
1 la 2a 0.32 0.4 0.05 31 95 19.0 0.61
2 1b 2b 0.48 0.6 0.1 180 99 9.9 0.05
3 1c 2c 0.32 0.4 0.05 30 94 18.8 0.63
4 1c 2c 0.32 0.4 - 24 h £ . ;

5 1c 2c 0.32 - 0.05 24 h & .

6 1d 2d 0.32 0.4 0.05 45 99 19.8 0.44
7 le 2e 0.32 0.4 0.05 270 89 817. 0.07
8 1f 2f 0.32 0.4 0.05 24 91 18.2 0.76
9 1g 2g 0.32 0.4 0.05 28 95 19.0 0.68
10 1h 2h 0.32 0.4 0.05 38 64 12.8 0.34
11 1i 2i 0.32 0.4 0.05 23 99 19.0 0.83
12 1 2] 0.32 0.4 0.05 22 99 19.0 0.86
13 1k 2k 0.32 0.4 0.05 51 99 19.0 0.37
14 1l 2l 0.32 0.4 0.1 160 84 8.4 0.05
15 Im 2m 0.32 0.4 0.05 5 99 19.0 0.38
16 1n 2n 0.32 04 0.05 53 97 19.4 0.37
17 1o 20 0.32 0.4 0.05 50 80 16.0 0.32

t andlI refer to grams of nitro urea and silica sulfuricdacespectively 1l refers to mmol of ammonium bromide.
®|solated yield®In the absence of NiBr.No reaction®ln the absence of silica sulfuric aci®eaction not complete.

(o]

NH,CONHNO,.xH50
. S, Si0,-0SO3H
NH4Br (Cat)
1 CH2C|2
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Scheme 3

Rl/ \R2

NMR of the oxidation product (thianthrene mono sxifie),
(Fig. 2). It is interesting to note that the delsed system
allowed the chemoselective oxidation of 2-(phengltthanol
to 2-(phenylsulfinyl)ethanol and that hydroxyl gpowas
intact in the course of the reaction (Scheme 4yeft

The suggested mechanism of this transformation is
outlined in Scheme 5 based on our previously regontorks
[21-28]. Initially, nitro urea (NEHCONHNGO,.xH,O) directly
generates nitronium iovia protonation by silica sulfuric acid.
Then, nitronium ion converts bromide ion (B0 bromonium
ion (Br"). Finally, the reaction of bromonium ion with Sdk
in the presence of water generates the correspgndin
sulfoxide.

In summary, we reported above a novel catalytatqmol
for the chemo- and homoselective oxidation of geli to the
sulfoxides under metal-free, mild and heterogeneous
conditions. This method offers the advantage ofrtghno
reaction times, high selectivity, non-toxic condits, cost-
effective reagents and catalyst and easy workup.
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Fig. 2. *C NMR of thianthrene mono sulfoxide in GBOCD:.

o]
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0 0
H,N NHNO, + | Si0,—O0SO;H > H,N

Scheme 5
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