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On-line high performance liquid chromatography (&€ was used to monitor steady state reactionbrieetreactorsk( = 3)
over 48.0 h. Different numbers of chromatogramshwi= 1981 retention time points, were recorded fatheaf the three
reactors. Peaks for each chromatogram were basslmected and aligned using correlation optimizeaping (COW). To make
a complete three-way data setlof 266 chromatograms/a cubic Hermite interpolaiias performed. The applied bilinear
multivariate statistical process control (MSPC) Ineet included the unfolding PCA and the trilineachieique was PARAFAC.

Unfolding in reactor ) mode was the most informative. D-charts and Qtshaere applied to the data to determine samples

which were out of control. Confidence limits weten applied to the D and Q-charts and variablek different behaviours
from that encapsulated within the reference dataveee located. Both bilinear and trilinear methedse found to be useful for

process analysis.

Keywords: Multiway on-line continuous:process monitoring, &kl factor analysis, Unfolding multivariate stical process
control, Fault detection, High performance liquid@matography

INTRODUCTION

Continuous processes are.of considerable impartéorc
manufacturing of valuable. products in many sectofs
industry. These include pharmaceuticals, fine chafg]
polymers, crystallization. and food. With increasigtpbal
competition it is of critical importance to ensutfeat the
product of a continuous process is of consisteatityuand at
maximum yield. Thus, a highly desirable aspect mfcpss
operation is process performance monitoring. Tha af
process monitoring is to achieve early warning ldinges in
process operation that may result in off-speciftraproduct
properties and low quality production. It may besgible to
take corrective action to recover the continuguscess and
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prevent non-conforming product to be manufactured.
Manufacturing must proceed in a reliable and rolmahner
with an acceptable false alarm rate.

Optical techniques, such as Near-Infrared, Middrdd,
Ultraviolet-Visible and Raman spectroscopy are camrfor
on-line and/or off-line monitoring of chemical r¢ans and
processes. In off-line process monitoring the datalysis is
carried out after the completion of the process.esgh
techniques are robust and easy to interface wiite foptic
probes that could be inserted into reaction mixdure
Composition of the reaction mixtures can be moeioonline
and regularly with time, using a variety of chemarice
methods for the resolution of the spectral profilesncipal
components analysis (PCA) [1-3], partial least sgsidPLS)
[2,3], kinetic modelling [4], iterative target trsformation
factor analysis (ITTFA) [5], mixed kinetic anmgultivariate
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methods [6] and multivariate statistical processtia [7-10]
are among the chemometric methods employed.
Spectroscopic techniques are useful for measubing
changes in a system, but are not suitable for gtection of
trace components, such as impurities, during treetien.
Impurities may often be chemically and structuralignilar,
and as a result, be spectroscopically similar ttnmeactants,
especially if they are isomers. Usually, impuritiean be
detected by off-line methods such as liquid chragatphy

mass spectrometry (LCMS) and high performance diqui

chromatography, sometimes a few days after the tmiiop
of the process.
High sensitivity, specificity and fast chromatognéc

procedures are the advantages of HPLC. The method c

provide a proper monitoring complementary to thésting
spectroscopic techniques. It is particularly powkerin
impurity detection. On-line HPLC instrumentatioraigilable
commercially [11] and is finding applications ineetronics
[12], nuclear power [13], pharmaceutical [14] arttemical
[15] industries including fermentations, semicorduc
manufacturing and chemical synthesis. The presesgarch
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Fig. 1. ReactorK)-unfolding-column-augmented and reactor
(K)-unfolding-row-augmented data for MPCA.

compared PARAFAC, Tucker3 and MPCA on a simulation
and an industrial polymerization process. MPCA udels an
unfolding step in which the three way cube of d&tdxK, is
unfolded into a two-wayJxK (or IxJK, or JxKI) data as
illustrated in Fig. 1. PCA are then applied to tve-way data.
In three-way approaches unfolding is not required the

makes use of on-line HPLC together with ‘multiv&@iat o he of data is decomposed to three loading mattiedes).

statistical process control to monitor reactions.

In a number of research reports, the bilinear faraf

On-line HPLC generates a large_amount of data. Thgschniques were shown to be more appropriate fachba

results from efficient analysis of data reflect thmte of

process at the time of analysis. Before applyingPkdSo the

chromatographic data, several’ pretreatment steps tmabe

followed. Pretreatments include. alignment and hasel
correction. MSPC approaches can be applied to rteeated

data. The approach<allows the data to be usecefugrgtion of
an MSPC model to monitor and detect the changes
processes in real-time.

The data set in this work is obtained from a s$age
steady state process and involves three out oftaiyes over
the period of 48 h, using rapid on-line HPLC. Muatiiate
statistical process control tools for monitoring mbcesses
include bilinear techniques of multi-way princiggmponent
analysis (MPCA), multi-way partial least squaresP(\®)
[7,16-18] and Hierarchical PCA [19] and, more reben
trilinear family of methodologies including direttilinear
decomposition (TLD) [20], parallel factor
(PARAFAC) [20-25] and Tucker3 [26]. Westerheisal.[27]
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monitoring, since a greater percentage of varighiii the data
was explained with fewer latent variables. It migbtargued,
however, that the level of variability explained &ymodel is
not the sole criterion for defining the most apprate model
for performance monitoring. Other issues to be ered
include the time to detect a process change anduhdber of

iqurious alarms. In an application to semiconduetoh [20],

it was shown that application of PARAFAC was slighhore
sensitive to the detection of faults compared toQAPTLD
and PCA. Based on the works and discussions intwloe
previously mentioned papers, and other similar work
PARAFAC and some bilinear techniques are investiyiere
for on-line process performance monitoring.

Westerhuiset al [27] compared PARAFAC, Tubcker3,
observation unfolding MPLS, and batch unfolding M¥Pén
two data sets and concluded that batch unfoldin@CM®vas

analysis the preferred method. Wiset al [20] concluded that

PARAFAC functions slightly better than unfolding IR for
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online fault detection of semiconductor productimmcess.
Louwerse and Smilde [28] and Smilde [23] outlindte t
theoretical aspects and comparative results of @ndck
PARAFAC and batch unfolding MPCA and concluded tiat
clear conclusions could be drawn about the mosicetfe

method for process analysis.

Other multivariate analytical methods have als@nbe
proposed recently. They include moving window PCR][
time varying state space modelling [30], multiwayrel PCA
[31], independent component analysis [32], andestagsed
PCA [33]. It is clear that researchers have not &dm an
agreement as to which approach is most effectiveb&ich
analysis. The purpose of this study is to subsatamtthe
appropriacy of both bilinear and trilinear basegrapches to
shed light on the controversial issue of monitoriag
continuous process in the pharmaceutical industry.

The philosophy of on-line MSPC is similar to that
univariate SPC. A model is firstly developed basedhe data
collected during the manufacture of an acceptalptelyrct.
This model then forms the basis for the on-line twrimg
scheme, and the appropriate matrices are calcuilatigting
the action and warning limits. For a PARAFAC
representation, the issues of robustness and itéjiatf an
on-line monitoring scheme are investigated by dawmrice
limits.

Traditionally, the location of variables (retemtidgimes)
indicative of causing a change' in the.operatiomaiditions
has been investigated through contribution plotd,33].
Application of these plots ‘has also been reportedrilinear
approaches [36]. Inuthis study, both bilinear antnear

245 nm was recorded for each reaction sample.imnwhy,

the number of data points from each chromatogramwas
2040. Three raw data matricg(51x2040), X,(177%2040)
and X3(186x2040), whose rows and columns corresponded to
reaction times and HPLC elution times, respectivelgre the
available data. It should be noted that sampling waven in
the reaction time.

Data Pre-Processing

A number of steps were followed before the applicaof
multivariate methods to process monitoring.

HPLC Baseline correction. Baseline correction was the
first step. It'involved the following stages:

() The background estimatiohlere the moving windows
of lengths'were defined for each chromatogram at sampling
pointi in reaction timex;. Each window started data points
later than the previous window. So, the first wiwdeas from
point 1 tos, the second frond to d+s, the third from @ to
2d+sand so on. To ensure that there are regions &bbaignd
within each window, value f must be larger than the largest
peak width detected. However, a too large windae sésults
in less logical character of estimated backgroumihtp.
Sufficiently large vector of background points watstained
using small value ofd. The value of background in the
window centred on point b, was estimated by selecting a
10% quantile value of the numbers in the windowr Bo
chromatogram od data points,J - s)/d +1 background points
were obtained. In this study, values £ 50 andd = 10
resulted in 200 background points for each chrograio.

(ii) Interpolation of background points to the blase.

approaches are tried on the data sets of an industr Elements of background vector for the chromatogiatm,

continuous  process.
methodology is investigated by its application tw tdata
collected from three parts of a six-part reactor.

EXPERIMENTAL AND METHODS

Data Arrangement and Pre-processing

The reactions were monitored for 48.0 h. The dangp
was irregular in time ranging from 5 to 50 min beém each
reaction sampling time. The outcome was 57, 177 8@l
samples from three reactors. Over the period oféirg with
sampling interval of 0.0012 min, an HPLC chroogmam at

The proposed on-line monitoringvere interpolated to provide an estimate of theelaes for

each data point in the chromatograin, A shape preserving
piecewise cubic Hermite interpolation was utilif8d,38].

(iii) Subtracting the background. Thih background
corrected chromatogram was obtained by subtraatfothe
background from the signal in the final stgps X; - f;.

Peak alignment. The next step was to align
chromatograms in each of the three data matricésgus
correlation optimized warping (COW) [39,40]. Thissthod
involves breaking each chromatogram into segmeais
then, warpping the data to obtain maximum correfati
between each individual chromatogram and a taiidet.steps
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are as follows:

submatrices from the original data set, in an ev@hary

(i) The first chromatogram was defined as the d¢arg manner. The method gives better resolved informagibout
chromatogram for the second one. The aligned secorldcal regions.l-w sets of eigenvalues were obtained, which

chromatogram was the target for the third one. dia@ate the
method, using a shuffle test, the sequence of chtagnams
was changed. COW alignment was repeated for thegetha
data, and the same results were obtained. It shokadthe
choice of target chromatogram was not criticahiis tase.

when ordered according to sampling time, allowed tas
explore how the process was changing with timevas the
window size and was selected as 10 in this workA\WEFA
could only distinguish between the non-steady statesteady
state normal operating condition (NOC) regions. The

(i) The chromatogram to be aligned and the target werghromatograms from NOC regions, then, were empldyged

divided into similar number of segments. Dividimg thumber
of points in the target chromatograd by the length of each

modeling using statistical control charts combiméth other
quality criteria.

segmentJ;, the number of segments could be obtained. The

length of each segment was allowed to be withinrimge of
J, + 0 (Odwas the slack parameter). In this work, the vahfes
J, anddwere 100 and 50 point, respectively. If the nuntdfer
data points in a segment of the chromatogram taligmed
was not equal to the number of data points in eifipe
segment of the target chromatogram, linear intetpol of the
sample was utilized to make the number of datatpaual
to the number of data points in the correspondeggrent of
the target.

(iii). Initially, the length of each segment in eth
chromatogram to be aligned was equalltoln an.iterative
manner, by changing the lengths of the segmentshén
chromatogram to be aligned, the segments wereegh#hd
rescaled to optimal lengths. So, correlation coifit
between each segmemtwas as/close as possible to omg.

and s, were the corresponding segments in the target and

chromatogram to be aligned, respectively [39,40].

Fixed Size Moving Window: Evolving Factor Analysis
(FSMWEFA)

One of the most valuable techniques to be used
chemometricians is principal component analysisAPC-3].
It decomposes the data into scores and loadingshvare the
principal factors. Local information in process ritoring may
include the number of reactants changing withiniraet
window, periods where faults occur in the proc@sgurities
appearing at different times and the region whbeeeprocess
is in steady state. In the case of two-way datégiobd from
unfolding a three-way data, fixed size moving winwdo
evolving factor analysis [3,41-46] extracts the doc
information through application of a ssriof PCA on
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Parallel Factor Analysis
The “trilinear methodology of parallel factor arsdy
(PARAFAC) is based on the principle of proportiopabfiles
[47]. It is one of the simplest three-way genegtians of the
traditional multivariate statistical technique atfor analysis.
The PARAFAC model was independently proposed bydllar
and Chang [48], who named the model CANDECOMP
(canonical decomposition), and Harshman [49], wioppsed
the acronym PARAFAC. The PARAFAC model of a three-
way array can be described as the sum of the pubelucts of
a set of loading vectors [50]. Each set compribeset vectors
according to the three modes of the original data.example,
in a continuous process the modes are time, variabd
location (reactor number).
For the mathematical interpretation of a PARAFAGd®I,
let X(IxJxK) denote a data matrix comprisidgtimes, J
variables and time points. The PARAFAC decomposition is
given by
L
Xk =|Zi g by G + 6k (1)
by
whereL is the number of factors included in the modgl.is
the error between the original data and the datjegted
down onto the model arg (i = 1, ...,1) is the element of the
Ith factor for one of the three dimensions. Likewige( = 1,
..., J) andcy (k= 1, ...,K) define the elements of the factors
for the other two dimensions. The objective of thedel is to
minimize the sum of squared errors:

min[ lJZ:K quk] @)
i,jk=1
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A schematic diagram of a PARAFAC model (Eg. 1)hiswsn
in Fig. 2. Each block on the right side of FigsZelated to the
execution of an outer product between three loadegjors X
for one factor.L factors are considered in total. For a
continuous process,represents the mode of sampling tife,
represents the mode of process variable (chromegbgy
retention time) anct the mode of location of measurement
(reactor number).

a; ar

Fig. 2. Schematic form of the PARAFAC model.

state region. When trying to fit the new samplegh® model
which is obtained from the NOC samples, Q-statistin be
used to estimate the residuals. The control lirfotsthese
statistics.can be computed as described below, Wwhénare
assumed to follow the normal distribution. Valudéselevant
statistic.in different sampling time poiniss 1 tol, produces
the MSPC_chart. 95% of samples that are under a@oate
expected to fall within the 95% control limit, whicis
widespread. If a number of sequential samples argde the
limit, presence of a problem in the process undasitieration
is highly probable. Graphical indication of the lisy which is
popular, allows the user to distinguish the problemre
conventionally and rapidly. In this study, 99% (an) and
95% (warning) control limits are considered.

The objective of the proposed D-statistic algartis to
approximate a score vector at each sampling timet po=
1,...l, using the matrix of observations in each timenpai
The first step is to calculate scores based onréfference
(control) set of samples. The length of score wedb
sampling point, t;, is equal to the number of selected factors,
i.e.Lx1. For all the samples, reference and others (aache
newly measured samples) the score vector is theinaal by
projecting the monitored observations from the reample

MSPC Charts

Q and D charts. Determining whether a reaction is
deviating from a set of conditions that are defitede NOC
conditions is the aim of MSPC charts [6-8]. In aystem, a
region of process including chromatogramsn(< I) was
selected and defined as NOC. NOC region must nifest t
quality requirements. For instance, certain prosluntist be
more than a level and some impurities must be tleas a
level, in this region. The FSMWFA results, also,stnhahow
that they are within the steady state region. Thatrol
(reference) regiotX; consisting ofN rows,J columns anK
layers, corresponding to the steady state, wasnuieased by
PARAFAC.

Xr axaky= Ar (C,OB)+E 3

where (J) is the Kronecker product sign [24,, C,, andB,
model the systematic variatioris.describes the residuals not
explained by the model. No. scaling, mean centeramgl/or
standardization were applied on the data in thigkwq which

is much less tham. or.J in most cases, is the number of
significant components in.the'model. In the conte#xprocess onto the reduced space. Hence, at sampling timet pdi is
control, no overall accepted criterion exists févoasing a given by

proper value fot.. However, a good approach is to select it so

that most of the samples in the NOC region are iwith
predefined control limits. In this study, the propalue ofL
was set to 3. On the other hand, the data are fioee
reactors that ideally, and when in the steady stasult in
three significant factors. Based on this appro#uod selection
of three significant factors seems proper.

Two common statistical indicators in MSPC are Btistic
and Q-statistic [6-9]. D-statistic shows the dis&of a part of
process to the center of NOC samples. It determiether a
specific sample has a systematic deviatiomfitie steady P.()=cOby,1=1, ...,L (5)

ti = (PrT * Pr)_l * PrT * X = PrJr * X (4)

whereP; is the loading matrix from reference samples, with
JxK rows andL columns. Reference data in this study was
obtained from sampling time point 69 to 9% represents the
vectorized observations froig, sample, withJxK rows and
one columnP,” is pseudo-inverse d?, andfor a PARAFAC
model,P, is calculated as a Kronecker produtt, as follows:
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b, andc,, are the loading vectors for factbin the retention
time (or variable J) and reactor number K] modes,
respectively.

In the next step, the process measurements atpidinei,
Xi, can be estimated from score vector at time gotntThis is
obtained by calculating the product of scaresd the loading
matrix corresponding to the reference set:

Xi =P *1 (6)
whereP; is calculated as Eq. (5). Finally, the score vetdo
any new sampling time can be estimated in a sinfésinion,
using the background corrected and aligned datan filoat
time, and theP, (JKxL) which is the loading matrix of the
reference data set. The above procedure can beéealdaipeach
sampling time pointi

combined to give a matrix which represents the tiragctory
of the on-line scores. For each time pointhere is an
associated value for the Q-statistic and HotelBnf. An
estimate of Q-statistic at time poiktcan be made from the
following equations:
eri=x-P.*t

(@)

Q=S en(? (8)

s=1

The control limits for the Q=statistic are calcel@tfrom thex*
distribution and are given by:

Q ~9Xna® , 9=V/29, h=2¢Iv 9)

of the process to obtain the
corresponding scord;. The score vectors can then .be

D-statistic follows the F-distribution withandn-L degrees of

freedom. For example, it = 0.99, L = 3, and n = 27, the

obtained F is 3.73. Multiplying by-(">=1) (= 3.37) in the
n(n—L)

next step, the control limit was obtained as 12.B6e D-

statistic indicates how close the chromatograptodile of the

sample is to that of NOC region.

Contribution plots. It is possible to consider the
contribution of each variable to the Q- and D-stats, to
distinguish the most responsible variables in tbeiation of
the process from NOC. The contributions fromjthevariable
in sample. for Q- and D-statistics can be obtained as foltows

wiy=(ern ) (11)

-1
‘ql,)jk:fi(%j (%, jkPxj) 12)

Plotting these values along the sample numbeedch of
the three reactors, the contribution of each véeidbr each
reactor and each sampling time point can be obdelVeve
plot the values for one sample, the contribution esich
variable for that sample to Q- and D-statistics lbarseen.

Unfolding MPCA
In reactor numberK)-unfolding-row-augmented MPCA
(Fig. 1), the rows of the unfolded matrix represent the
sampling times. The model is expressed as:
Xk =TP" +E (13)
where T is the score matrix ofxL, L is the rank,P is the

loading matrix of JKxL), andE is the residual matrix dxJK
[16]. For the reactor numberK)-unfolding-col-augmented

where g and v are the estimated mean and varianceypca the matrixXyx, was obtained. Unfolding can also be

respectively, of the Q-statistic from the referetioees. The
Q-statistic determines the error between the ptedivalues

performed in other directions, which result liixK and/or
JxKI unfolded matrices. As before, the next step is

using the NOC samples and the data arising fromh €ayecomposition of the two-way data into score anading

chromatogram in the data series.
Hotelling’s T can be calculated as follows [12-14]:

D=t *St*t ~ MF(L,n—L,a)
n(n-L)

(10)

whereS is the variance-covariance matrix of the scorBse
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matrices, using PCA.

Theoretically, compared to a bilinear model such a
multiway principal component analysis (MPCA), ditear
model such as PARAFAC, characterizes the relatipnsh
between the modes of variable and time, as oppdsed
simultaneously modelling all combinations ofrigales and
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times,i.e. it convolves the time and variable effects. Thus gMathworks, Natick, MA, USA) for further analysiill
trilinear model is comparatively simpler and morasiy  software was written in MATLAB.

interpreted than a bilinear representation. In @aidi for a

trilinear model, fewer parameters are requiredae@stimated RESULTSAND DISCUSSION

(L x(I+ J+ K) as opposed th x(I1+ Jx K)). Conversely, the

trilinear approach runs the risk of oversimplifyittge model Overlaid plot of raw chromatograms of all 51 saespin
by assuming that an approximate trilinear structists,i.e.  the first reactor, all 177 samples in the secordta and all
a similar relationship exists between variableoudlgh the 186 samples in the third reactor are shown in F3ggo 3c.
entire batch. In contrast, for MPCA, correlationtvibeen  As it is illustrated in Fig. 3d, the baseline drékists and
arbitrary time-variable pairs can be modelledhitidd also be should be corrected before further data analysigure 3e
noted that for PARAFAC the factors are not unique, includes the plots of chromatograms of the secarattor
calculating a different number of factors will réisin a  after pre-processing the data, including baselareection and
different set of loadings. This is in contrast tw tbilinear peak alignment. The only remaining point aboutdhta was
techniqgues where the loadings are unique to a fépeci the different number of samples for each reacttrfds the

principal component,e. the models are nested. first, 177 for the second, and 186 samples fothive one. To
make the same number of samples in all three regctbape-
Procedure preserving piecewise cubic Hermite interpolatiorsvapplied

Sampling and dilution were the two steps utilizedfore.  on the data and three 26881 chromatographic data were
high performance liquid chromatography (HPLC) forestimated for the three reactors. In this wayreetway tensor
performing online analysis. To control samplindution and  of dataX(266x1981x3) was obtained, with | = 266 samples in
HPLC parameters, a personal computer was usedyisgph  rows, J = 1981 retention times in columns, and &reactors
proper sampling, a representative sample from ti@mécal in layers (depth).
process was drawn. The volume of sample pumpedtirgo To study the reactors simultaneously, a fixed simving
dilution device was 36fl. The system diluted the sample into window factor analysis (FSMWFA) (using window widtt
approximately 16.3 ml of ethyl acetate (Fisher Bifi, 10 columns) was applied on the k-unfolded-row aijjulata,
Loughborough, UK), to be injected into HPLC. Ondlitéd, Xk to find the steady state region in the process.réties
the sample was pumped into an Agilent. 1100 HPLGesys of the first evolutionary eigenvalues to the secamks at
controlled by Agilent ChemStation, v10.02 (Agilent different windows are shown in Fig. 4Samples with
Technologies, Stockport, ‘Cheshire, UK). A micro-a&ger, eigenvalue ratios higher than 500 show the regigdh ane
binary pump, column._heater. component and a variablsignificant principal component and could be coesid to be
wavelength UV detector (fitted with a standard dl3flow in the steady state. The values of this ratio &y gmall for
cell) were the components of the Agilent 1100 wstent. A the initial samples and some other regions whicplies that
2.5 min reversed phase gradient method was progesimmthe samples in these regions deviate more thasaimples in
using acid-modified eluent pumped at 2 ml thirough a the other regions from the steady state (Normalraijigy
Zorbax-SB-C18 HPLC column (Agilent Technilogies)asv condition (NOC)). In this study, sample numbers®&95 (27
controlled at 40C. The volume of sample injected into HPLC samples) were selected as the NOC and the trasendor
was 0.5pl and chromatograms were recorded at 245 nnMSPC.

(single wavelength). To prevent carry-over from voas

samples, the dilution device was programmed tohflitself PARAFAC and MSPC Charts

with fresh solvent (diluent) between successivdyaea. Over The next step was applying PARAFAC to the selected
a period of 48.0 h 51, 177 and 186 samples wererded reference region, that is, samples 69 to 95. PARBFR#as
from three reactors. The collected chromatograghta from  applied using three significant factors. Vectorizedtrix of
Agilent ChemStation was exported toAMAB v7.0 loading values for the three significant factansone of the

215



Kompany-Zareh

. T =
5_ T ' ‘\T ;
10- 20F = -= ==
== - = _—cu
15F 40t I
5 20r 60
E 5
= ke i) -
i E 8ot
= =
30F L
E £ 100f
35+ @ - .,
= -
120 |
40+ ‘
140+
45+ ’
1601
50¢ 1 1 1 1 1 L al 5
200 400 600 800 1000 1200 1400 1600 1800 2000 | L i i i [
Retention time 200 400 600 800 1000 1200 1400 1600 1800
Retention time
.
l i J
| ¥ i
20 ' i :
I % 250k |
40+ - Ry
‘. 3
60r = 200t 1
g ! ¥ i o
E sof i § S
E =
B e % 1500 ' ,
= 100+ i ]
g { b=
“ 1204 - Z
I 2 100} 4
140+ gl -
]. Bk
L ! s0r I R f ‘ B
160 gl I
1807 . . ‘ if L 38 0 R
200 400 600 800 1000 1200 1 1600 1800 2000 ! .

| | I I I | I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
retention time

Retention time

©

400

300

Absorbance *1000

200

100

PR

I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800

Retention time
Fig. 3. Contour plots of overall chromatographic profitdgaw data from all 51 samples of the first rea¢t), 177 samples of
the second reactor (b) and 186 samples ofhiletieactor (c). Plots of raw data (d) and basetiorrected and peak
aligned data of 177 chromatograms obsd reactor.

216



On-Line Monitoring of a Continuous Pharmaceuticaldess

T T T T T
2000+ B
1800+ B
1600+ B

1400+ B

,_
2
S
=1
T
I

,_.
<
>
P=1
T
L

EigenV1/EigenV2

800+ b

600

~ kel
Lol WAL

I
200 250

40

=1

20

=1

5
Sample number

Fig. 4. Ratio of the first eigenvalues to the second eigkres
obtained from application of FSMWEFA de
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three modes shown in Fig. 5. The figure shows amame for
the shape of chromatograms in each reactor, inujudae
main peak, but not the peaks due to impuritieshBrcresults
for all 266 samples, based on 27 training set regare
illustrated in Fig. 6a. All samples in the'NOC m@giare below
99% and 95% control limits. A number of initial sples are
completely out of control, as they are from thertstd the
reaction before the products are formed. Samptes fnost of
the regions are within the control limits. The aghin Fig.
6b shows a number of samples between number 13GGo
that are out of 95% limit:and within 99% limit. Thiest 35
samples appear completely out of control, as theyram the
start of the reaction before the products are fdrnaad thus
are quite typical of the reaction. The other samples within
the limits. There is a region between samples H01®0 that
is out of the limits in D chart and within the caténce limits
in Q chart. This indicates that impurities are s@tious in this
region. However, the change in experimental coodgi
resulted in a higher values of D. For the regio88 fo 145
and 200 to 210, the reverse is true. The D valuedalow the
limits and the Q statistic values are above the 86 which
reveal the presence of impurities in this regicemgles from
100 to 120 are close to the NOC condition, congideboth Q
and D statistical parameters.

0151 |

0.1r .

0.05- 1

o4 T

I I
3000 4000 5000

3(1981)

! I
0 1000 2000 6000

Fig. 5. VectorizedB, loadings from application of PARAFAC
on the reference NOC data.

Figure 6c¢is the contribution plot for the D chart of all 266
samples from the three reactors. Peaks in thisgpéothe same
as those in Fig. 5, which are due to the main corepts in
the reaction. The fluctuation in the conditions tbe first
reactor is low, as shown by the small error peabual600.
Large peaks at about 2150 and 2950 show high fhtictos in
experimental conditions for the second reactor. tahis
experimental conditions are mostly due to the ahitimes of
reaction in which the reactor is not in the stesidje. For the
third reactor the condition is something betweenthand 2¢
reactors. Figure 6¢c shows the separate contribaticach of
266 samples in D-chart. For the regions with loDevalues,
such as samples 65 to 110 and 195 to 210 the dewttsbare
narrow, which show the lower contribution of thengdes in
D plot.

Contribution plot of Q-chart (Fig. 6d) includes ns®
additional peaks, compared to Fig. 5. The additipeaks are
about 2600, 3200 and 5000 and are due to the pesshn
impurities in the ¥ and 3 reactors. The impurity peaks are
due to samples with high values of Q-statistichsag samples
240 to 250 and a number of initial samples. Reslitsv that
the Q contribution plot is sensitive to impuritiéhus, both
the Q and D contribution plots are needed to dethet
possible changes in the process, and provideplernentary
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Fig. 6. D-chart (a) and Q-chart (b) for all 266 samplewi5% and 99% confidence limits. D contributiontilz)

and Q‘contribution plot (d) for all 266 samples.

information. Figure 6dshows the individual contribution of fluctuations are minmum among the reactors. Theifipe
each sample in the Q-chart. The figure well sholmat the
impurities which are about 2600, and 3200 are dus&amples
170, 190 and a number of initial samples in reagtor

Unfolding MPCA

The score and loading plots from reacti)-(nfolding-
column-augmented MPCA are shown in Figs. 7a andl'iib.
first three principal components capture more tB8fo of
variations in the data. Scores and loadings ttetasigned to

a continuous line are due to th& deactor and show that the scores (squares) in th&’2eactor (about abscissa value of 440
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peak for the first reactor in the loading plot &ated to the
retention time 600. As it is shown in both score émading
plots, variations in the second and third reactmes linear
combinations of the second (squares) and thirdclésy
factors, and two peaks, one about 1000 and the b#teeen
1100 to 1200, contain the information about theoedcand
third reactors, not selectively. The most intengluetuations
belong to the second reactor, and specially tdrtiial times
of the sampling. A sudden decrease in the mostifgignt
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Fig. 7. Results from MPCA on reactdK)-unfolded data. (a) and (b) are scores and loaddhats from decomposition of
column-augmented data after unfolding. (c) andad scores and loadings plots from decompositf row-

augmented data after unfolding.

in score plot, which means sample 445-266 = 17%Is®
indicated with high values of D-statistic (Fig. 6a)

The scores and loading plots from reacty-nfolding-
row-augmented MPCA are shown in Figs. 7c and 7dhis
case, too, more than 90% of variations is descrilyetthe first
three principal components. Variations in all threactors are
described as a linear combination of the three cjpai
components. Score plot shows that the first PCgsq) is
more significant than the other two PCs, which shdwat the
considered process is a continuous one with thalidsteady
state condition. Score plot also illustrates fhetuations of

the experimental conditions in the initial stagéthe reaction
as well as a sudden change in the experimentalitommsl for
samples around 180 which accord with the D chart.

Scores and loading plots from sampleunfolding-row-
augmented MPCA on data are shown in Fig. 8. The
information content of the plots are similar to caand
loading plots fromK-unfolding-column-augmented MPCA of
the previous part. Three first PCs contain moran t8@% of
variations in the data. As can be understood frieenldading
plot (Fig. 8b) PC1 (square), PC2 (cross), and R@8I¢) are
due tothe ¥ 2% and ¥ reactors, respectively. Scores plot
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Fig. 8. Scores (a-c) and loadings (b) plots from
decompositions of samplgunfolded-row-
augmented data.

shows that most fluctuations are related to tHeéactor and
to the early stages of reactions. There is a sudtiange in
the scores in x = 360000 for reactors 2 and 3, lwh&
probably due to the sample number 360000/1981 = TB3

sudden change is also illustrated in D-plote Thost stable
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reactor, from the starting times, is reactor 1.
CONCLUSIONS

This work is among a few studies which are based o
using on-line HPLC for real-time monitoring of réians
associated with chemometrics technique. An intti@atment
of data obtained-from HPLC is necessary. The treatm
includes baseline correction and alignment of pe@ke next
step is applying - MSPC on the treated data. The iegpl
techniques are multivariate unfolding PCA and PARAEF
PARAFAC method is combined with a Q-statistic and T
Hotelling’sstatistic. Techniques in addition tatsstical tests
show the deviation of the process from NOC in soegtons.
D-charts are more sensitive to fluctuations indgkperimental
conditions, whereas the Q-charts appear to be smmsitive
to.impurities or by-products.

Similar to D- and Q-charts, reactor-unfolding-row-
augmented MPCA is more sensitive to overall vasiadi
during the investigation of the process, while teac
unfolding-column-augmented MPCA and sample-unfadin
row-augmented MPCA are sensitive to variations @the
reactor. PARAFAC method maintains an equal balaince
terms of detecting both variations. Reactor 1 shibthe least
fluctuations in the conditions and was the bestragrtbe three
reactors. This fact is illustrated in the scoretplivom MPA-
based methods in addition to D- and Q-contributpots,
which are from PARAFAC.

Methods described in this report represent poweofls
for monitoring the reactions, and have potentidieextended
to real-time applications. There is no clear agre®nas to the
most effective approach for the analysis of proakds. The
applied methods are complementary to each otheaamell-
trained chemometrician/practitioner should find oot
approaches to be useful for the continuous procksds
analysis. In many conditions, the observations and
interpretations of the loading plots obtained frBWARAFAC
and the scores and loading plots from MPCA mettidsctly
lead to similar findings.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the suppootnf the



On-Line Monitoring of a Continuous Pharmaceuticaldess

Institute for Advanced Studies in Basic SciencesSBS), [24]
Zanjan, Iran, and the Center for ChemometricsUhizersity
of Bristol, UK.
[25]
REFERENCES
[26]
[1] S. Wold, K. Esbensen, P. Gela@hemom. Intell. Lab. [27]
Syst. 2 (1987) 37.
[2] R.G. Brereton, Analyst 11 (2000) 2125. [28]
[3] R.G. Brereton, Chemometrics Data Analysis for the
Laboratory and Chemical Plant, Wiley, Chichester,[29]
2003.
[4] T.J. Thurston, R.G. Brereton, Analyst 5 (2002) 659. [30]
[5] P.J. Gemperline, J. Chem. Inf. Comput. Sci. 24 4)98

206. [31]
[6] A.R. Carvalho, J. Wattoom, L. Zhu, R.G. Brereton,
Analyst 1 (2006) 90. [32]
[71 P. Nomikos, J.F. MacGregor, Technometrics 37 (1995)
41, [33]
[8] T. Kourti, J.F. MacGregorchemom. Intell. Lab. Syst.
28 (1995) 3.
[9] J.A. Westerhuis, S.P. Gurden, A.K. Smilde, Chemom.
Intell. Lab. Syst. 51 (2000) 95. [34]

[10] H. Hotelling, J. Educ. Psychol. 24 (1933) 417.

[11] M.J. Doyle, B.J. NewtonCAST  Dionex Corporation,
2002.

[12] B. Newton, K. Somerville, Water Tech. Conf., 1999. [35]

[13] T.O. Passell, J. Chromatogr. A 671 (1994) 331.

[14] T.M. Larson, Proc. IFPAC/PAC Conf., 2001. [36]

[15] J.C. Thompsen;Proc. Cont. Qu2l(1992) 55.

[16] P. Nomikos, J.F. MacGregor, AIChE J. 40 (1994) 1361 [37]

[17] N. Gallangher, B:M. Wise, C.W. Stewart, Comput.
Chem. Eng. 20 (1996) S739. [38]

[18] S. Wold, N. Kettaneh, H. Friden, A. Holmberg,
Chemom. Intell. Lab. Syst. 44 (1998) 331. [39]

[19] H. Rannar, J.F. MacGregor, S. Wold, Chemom. Intell.
Lab. Syst. 41 (1998) 73. [40]

[20] B.M. Wise, N.B. Gallagher, S.W. Butler, J.E.D.D.
White, G.G. Barna, J. Chemometr. 13 (1999) 379. [41]

[21] D.J. Louwerse, A.K. Smilde, Chem. Eng. Sci. 55 @99 [42]
1225.

[22] R. Bro, Chemometr. Intell. Lab. Syst. 38 (1997).149  [43]

[23] A.K. Smilde, J. Chemometr. 15 (2001) 19.

A.K. Smilde, R. Bro, P. Geladi, Multi-Way Analysis:
Applications in the Chemical Sciences, John Wiley &
Sons, 2004.

R. Leardi, C. Armanino, S. Lanteri, L. Alberotanda,
Chemometr. 14 (2000) 187.

A.K. Smilde, Chemom. Intell. Lab. Sydt5 (1992) 143.
A.J. Westerhuis, T. Kourti, J.F. MacGregor, J.
Chemometr..23(1999) 397.

D.J. Louwerse, A.K. Smilde, Chem. Eng. Sci. 55 (00
1225.

B. Lennox, G.A. Montague, H. Hiden, G. KornfeldRP.
Goulding, Biotechnol. Bioeng. 74 (2001) 125.

A. Simoglou, E.B. Martin, A.J. Morris, Comp. Chem.
Eng. 26 (2002) 909.

J. Lee, C. Yoo, |. Lee, Comp. Chem. Eng. 28 (2004)
1837.

C.K. Yoo, J. Lee, P.A. Vanrolleghema, |. Lee,
Chemometr. Intell. Lab. Syst. 71 (2004) 151.

N. Lu, Y. Yang, F. Gao, F. Wang, in: F. Allgower, F
Gao (Eds.), Proceedings df Thternational Symposium
on Advanced Control of Chemical Processes, 2004, pp
471-476.

B.M. Wise, N.L. Ricker, Recent Advances in
Multivariate Statistical Process Control: Improving
Robustness and Sensitivity. IFAC Symp. on Advanced
Control of Chemical Processes, Toulouse, 199125. 1

P. Miller, S.E. Swanson, C.F. Heckler, Int. J. Appl
Math. Comput. Sci. 8 (1998) 775.

B.M. Wise, N. Gallagher, E.B. Martin, J. Chemometr.
15 (2001) 285.

F.N. Fritsch, R.E. Carlson, SIAM J. Numer. Anal. 17
(1980) 238.

D. Kahaner, C. Moler, S. Nash, Numerical Methodd an
Software, Prentice Hall, Englewood Cliffs, NJ, 1988
N.V. Nielsen, J.M. Carstensen, J. Smedsgaard, J.
Chromatogr. A 805 (1998) 17.

G. Tomasi, F. van den Berg, C. Andersson, J.
Chemometr. 18 (2004) 231.

S.K. Setarehdan, J. Chemometr. 18 (2004) 414.

Z.-D. Zeng, C.-J. Xu, Y.-Z. Liang, B.-Y. Li, Chemom
Intell. Lab. Syst. 69 (2003) 89.

A.K. Elbergali, R.G. BreretonChemom. Intell. Lab.
Syst. 23 (1994) 97.

221



Kompany-Zareh

[44] F. Cuesta Sanchez, B.G.M. Vandeginste, T.MJ48] J.D. Carroll, J.J. Chang, Psychometrika 35 (1983) 2
Hancewicz, D.L. Massarnal. Chem. 69 (1997) 1477. [49] R.A. Harshman, UCLA Working Papers Phonet. 16

[45] H.R. Keller, D.L. Massart, Anal. Chim. Acta 246 @19 (1970) 1.
379. [50] R. Bro, Multi-Way Analysis in the Food Industry:
[46] H.R. Keller, D.L. Massart, Y.Z. Liang, O.M. Kvallmaj Models, Algorithms, and Applications. PhD Thesis,
Anal. Chim. Acta 263 (1992) 29. Royal Veternary and Agricultural  University,
[47] R.B. Cattell, Psychometrika 9 (1944) 267. Fredericksberg, 1998.

222



