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 On-line high performance liquid chromatography (HPLC) was used to monitor steady state reactions in three reactors (K = 3) 

over 48.0 h. Different numbers of chromatograms, with J = 1981 retention time points, were recorded for each of the three 

reactors. Peaks for each chromatogram were baseline corrected and aligned using correlation optimized warping (COW). To make 

a complete three-way data set of I = 266 chromatograms a cubic Hermite interpolation was performed. The applied bilinear 
multivariate statistical process control (MSPC) method included the unfolding PCA and the trilinear technique was PARAFAC. 

Unfolding in reactor (K) mode was the most informative. D-charts and Q-charts were applied to the data to determine samples 

which were out of control. Confidence limits were then applied to the D and Q-charts and variables with different behaviours 

from that encapsulated within the reference data set were located. Both bilinear and trilinear methods were found to be useful for 

process analysis.   

 

Keywords: Multiway on-line continuous process monitoring, Parallel factor analysis, Unfolding multivariate statistical process 

control, Fault detection, High performance liquid chromatography 

 
INTRODUCTION 
 

 Continuous processes are of considerable importance for 

manufacturing of valuable products in many sectors of 

industry. These include pharmaceuticals, fine chemicals, 

polymers, crystallization and food. With increasing global 

competition it is of critical importance to ensure that the 

product of a continuous process is of consistent quality and at 

maximum yield. Thus, a highly desirable aspect of process 

operation is process performance monitoring. The aim of 

process monitoring is to achieve early warning of changes in 

process operation that may result in off-specification product 

properties and low quality production. It may be possible to 

take corrective action to recover the  continuous  process  and 
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prevent non-conforming product to be manufactured. 

Manufacturing must proceed in a reliable and robust manner 

with an acceptable false alarm rate. 

 Optical techniques, such as Near-Infrared, Mid-Infrared, 

Ultraviolet-Visible and Raman spectroscopy are common for 

on-line and/or off-line monitoring of chemical reactions and 

processes. In off-line process monitoring the data analysis is 

carried out after the completion of the process. These 

techniques are robust and easy to interface with fibre optic 

probes that could be inserted into reaction mixtures. 

Composition of the reaction mixtures can be monitored online 

and regularly with time, using a variety of chemometric 

methods for the resolution of the spectral profiles. Principal 

components analysis (PCA) [1-3], partial least squares (PLS) 

[2,3], kinetic modelling [4], iterative target transformation 

factor  analysis  (ITTFA) [5],  mixed  kinetic  and  multivariate  
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methods [6] and multivariate statistical process control [7-10] 

are among the chemometric methods employed. 

 Spectroscopic techniques are useful for measuring bulk 

changes in a system, but are not suitable for the detection of 

trace components, such as impurities, during the reaction.  

Impurities may often be chemically and structurally similar, 

and as a result, be spectroscopically similar to main reactants, 

especially if they are isomers. Usually, impurities can be 

detected by off-line methods such as liquid chromatography 

mass spectrometry (LCMS) and high performance liquid 

chromatography, sometimes a few days after the completion 

of the process. 

 High sensitivity, specificity and fast chromatographic 

procedures are the advantages of HPLC. The method can 

provide a proper monitoring complementary to the existing 

spectroscopic techniques. It is particularly powerful in 

impurity detection. On-line HPLC instrumentation is available 

commercially [11] and is finding applications in electronics 

[12], nuclear power [13], pharmaceutical [14] and chemical 

[15] industries including fermentations, semiconductor 

manufacturing and chemical synthesis. The present research 

makes use of on-line HPLC together with multivariate 

statistical process control to monitor reactions. 

 On-line HPLC generates a large amount of data. The 

results from efficient analysis of data reflect the state of 

process at the time of analysis. Before applying MSPC to the 

chromatographic data, several pretreatment steps have to be 

followed. Pretreatments include alignment and baseline 

correction. MSPC approaches can be applied to the pretreated 

data. The approach allows the data to be used for generation of 

an MSPC model to monitor and detect the changes in 

processes in real-time. 

 The data set in this work is obtained from a six-stage 

steady state process and involves three out of six stages over 

the period of 48 h, using rapid on-line HPLC. Multivariate 

statistical process control tools for monitoring of processes 

include bilinear techniques of multi-way principal component 

analysis (MPCA), multi-way partial least squares (MPLS) 

[7,16-18] and Hierarchical PCA [19] and, more recently, 

trilinear family of methodologies including direct trilinear 

decomposition (TLD) [20], parallel factor analysis 

(PARAFAC)  [20-25] and Tucker3 [26]. Westerhuis et al. [27]  

 

 

 
Fig. 1. Reactor(K)-unfolding-column-augmented and reactor 

(K)-unfolding-row-augmented data for MPCA. 
 

 

compared PARAFAC, Tucker3 and MPCA on a simulation 

and an industrial polymerization process. MPCA includes an 

unfolding step in which the three way cube of data, I×J×K, is 

unfolded into a two-way IJ×K (or I×JK, or J×KI) data as 

illustrated in Fig. 1. PCA are then applied to the two-way data.  

In three-way approaches unfolding is not required and the 

cube of data is decomposed to three loading matrices (modes).   

 In a number of research reports, the bilinear family of 

techniques were shown to be more appropriate for batch 

monitoring, since a greater percentage of variability in the data 

was explained with fewer latent variables. It might be argued, 

however, that the level of variability explained by a model is 

not the sole criterion for defining the most appropriate model 

for performance monitoring. Other issues to be considered 

include the time to detect a process change and the number of 

spurious alarms. In an application to semiconductor etch [20], 

it was shown that application of PARAFAC was slightly more 

sensitive to the detection of faults compared to MPCA, TLD 

and PCA. Based on the works and discussions in the two 

previously mentioned papers, and other similar works, 

PARAFAC and some bilinear techniques are investigated here 

for on-line process performance monitoring.  

 Westerhuis et al. [27] compared PARAFAC, Tubcker3, 

observation unfolding MPLS, and batch unfolding MPCA on 

two data sets and concluded that batch unfolding MPCA was 

the preferred method. Wise et al. [20] concluded that 

PARAFAC functions slightly better than unfolding MPCA  for  

 

www.SID.ir



Arc
hi

ve
 o

f S
ID

 

 

 

On-Line Monitoring of a Continuous Pharmaceutical Process 

 211 

 

 

online fault detection of semiconductor production process. 

Louwerse and Smilde [28] and Smilde [23] outlined the 

theoretical aspects and comparative results of Tucker3, 

PARAFAC and batch unfolding MPCA and concluded that no 

clear conclusions could be drawn about the most effective 

method for process analysis. 

 Other multivariate analytical methods have also been 

proposed recently. They include moving window PCA [29], 

time varying state space modelling [30], multiway kernel PCA 

[31], independent component analysis [32], and stage based 

PCA [33]. It is clear that researchers have not come to an 

agreement as to which approach is most effective for batch 

analysis. The purpose of this study is to substantiate the 

appropriacy of both bilinear and trilinear based approaches to 

shed light on the controversial issue of monitoring a 

continuous process in the pharmaceutical industry.   

 The philosophy of on-line MSPC is similar to that of 

univariate SPC. A model is firstly developed based on the data 

collected during the manufacture of an acceptable product.  

This model then forms the basis for the on-line monitoring 

scheme, and the appropriate matrices are calculated including 

the action and warning limits. For a PARAFAC 

representation, the issues of robustness and reliability of an 

on-line monitoring scheme are investigated by confidence 

limits.  

 Traditionally, the location of variables (retention times) 

indicative of causing a change in the operational conditions 

has been investigated through contribution plots [34,35]. 

Application of these plots has also been reported for trilinear 

approaches [36]. In this study, both bilinear and trilinear 

approaches are tried on the data sets of an industrial 

continuous process. The proposed on-line monitoring 

methodology is investigated by its application to the data 

collected from three parts of a six-part reactor.   

 

EXPERIMENTAL AND METHODS 
 
Data Arrangement and Pre-processing  
 The reactions were monitored for 48.0 h.  The sampling 

was irregular in time ranging from 5 to 50 min between each 

reaction sampling time. The outcome was 57, 177 and 186 

samples from three reactors. Over the period of 2.5 min, with 

sampling interval of 0.0012 min,  an  HPLC  chromatogram  at 

 

 

245 nm was recorded for each reaction sample. In this way, 

the number of data points from each chromatogram run was 

2040. Three raw data matrices X1(51×2040), X2(177×2040) 

and X3(186×2040), whose rows and columns corresponded to 

reaction times and HPLC elution times, respectively, were the 

available data. It should be noted that sampling was uneven in 

the reaction time. 

 
Data Pre-Processing 
 A number of steps were followed before the application of 

multivariate methods to process monitoring.  

 HPLC Baseline correction. Baseline correction was the 

first step. It involved the following stages: 

 (i) The background estimation. Here the moving windows 

of length s were defined for each chromatogram at sampling 

point i in reaction time, xi. Each window started d data points 

later than the previous window. So, the first window was from 

point 1 to s, the second from d to d+s, the third from 2d to 

2d+s and so on. To ensure that there are regions of background 

within each window, value of s must be larger than the largest 

peak width detected. However, a too large window size results 

in less logical character of estimated background points. 

Sufficiently large vector of background points was obtained 

using small value of d. The value of background in the 

window centred on point j, bij, was estimated by selecting a 

10% quantile value of the numbers in the window. For a 

chromatogram of J data points, (J - s)/d +1 background points 

were obtained. In this study, values of s = 50 and d = 10 

resulted in 200 background points for each chromatogram. 

 (ii) Interpolation of background points to the baseline. 

Elements of background vector for the chromatogram i, bi, 

were interpolated to provide an estimate of the baseline for 

each data point in the chromatogram, fi. A shape preserving 

piecewise cubic Hermite interpolation was utilized [37,38].  

 (iii) Subtracting the background. The ith background 

corrected chromatogram was obtained by subtraction of the 

background from the signal in the final step, gi = xi - fi.  

 Peak alignment. The next step was to align 

chromatograms in each of the three data matrices using 

correlation optimized warping (COW) [39,40]. This method 

involves breaking each chromatogram into segments, and 

then, warpping the data to obtain maximum correlation 

between each individual chromatogram and a target. The steps 
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are as follows: 

 (i) The first chromatogram was defined as the target 

chromatogram for the second one. The aligned second 

chromatogram was the target for the third one. To validate the 

method, using a shuffle test, the sequence of chromatograms 

was changed. COW alignment was repeated for the changed 

data, and the same results were obtained. It showed that the 

choice of target chromatogram was not critical in this case. 

 (ii)  The chromatogram to be aligned and the target were 

divided into similar number of segments. Dividing the number 

of points in the target chromatogram, J, by the length of each 

segment, Jr, the number of segments could be obtained. The 

length of each segment was allowed to be within the range of 

Jr + δ  (δ was the slack parameter). In this work, the values of 

Jr and δ were 100 and 50 point, respectively. If the number of 

data points in a segment of the chromatogram to be aligned 

was not equal to the number of data points in a specific 

segment of the target chromatogram, linear interpolaton of the 

sample was utilized to make the number of data points equal 

to the number of data points in the corresponding segment of 

the target.  

 (iii). Initially, the length of each segment in the 

chromatogram to be aligned was equal to Jr. In an iterative 

manner, by changing the lengths of the segments in the 

chromatogram to be aligned, the segments were shifted and 

rescaled to optimal lengths. So, correlation coefficient 

between each segment m was as close as possible to one.  rm 

and sm were the corresponding segments in the target and 

chromatogram to be aligned, respectively [39,40].    

 

Fixed Size Moving Window Evolving Factor Analysis 
(FSMWEFA) 
 One of the most valuable techniques to be used by 

chemometricians is principal component analysis (PCA) [1-3]. 

It decomposes the data into scores and loadings which are the 

principal factors. Local information in process monitoring may 

include the number of reactants changing within a time 

window, periods where faults occur in the process, impurities 

appearing at different times and the region where the process 

is in steady state. In the case of two-way data, obtained from 

unfolding a three-way data, fixed size moving window 

evolving factor analysis [3,41-46] extracts the local 

information   through   application   of   a   series  of   PCA  on 

 

 

submatrices from the original data set, in an evolutionary 
manner. The method gives better resolved information about 
local regions. I-w sets of eigenvalues were obtained, which 
when ordered according to sampling time, allowed us to 
explore how the process was changing with time. w was the 
window size and was selected as 10 in this work. FSMWEFA 
could only distinguish between the non-steady state and steady 
state normal operating condition (NOC) regions. The 
chromatograms from NOC regions, then, were employed for 
modeling using statistical control charts combined with other 
quality criteria. 
 

Parallel Factor Analysis 
 The trilinear methodology of parallel factor analysis 
(PARAFAC) is based on the principle of proportional profiles 
[47]. It is one of the simplest three-way generalizations of the 
traditional multivariate statistical technique of factor analysis. 
The PARAFAC model was independently proposed by Carroll 
and Chang [48], who named the model CANDECOMP 
(canonical decomposition), and Harshman [49], who proposed 
the acronym PARAFAC. The PARAFAC model of a three-
way array can be described as the sum of the outer products of 
a set of loading vectors [50]. Each set comprises three vectors 
according to the three modes of the original data. For example, 
in a continuous process the modes are time, variable and 
location (reactor number).  
 For the mathematical interpretation of a PARAFAC model, 
let X(I×J×K) denote a data matrix comprising I times, J 
variables and K time points.  The PARAFAC decomposition is 
given by  
 

 
ijk

L

l
kljlilijk ecbax +=∑
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                                                         (1) 

 
where L is the number of factors included in the model, eijk is 

the error between the original data and the data projected 

down onto the model and ail (i = 1, …, I) is the element of the 

lth factor for one of the three dimensions. Likewise, bjl (j = 1, 
…, J) and ckl (k = 1, …, K) define the elements of the factors 

for the other two dimensions. The objective of the model is to 

minimize the sum of squared errors: 
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A schematic diagram of a PARAFAC model (Eq. 1) is shown 

in Fig. 2. Each block on the right side of Fig. 2 is related to the 

execution of an outer product between three loading vectors 

for one factor. L factors are considered in total. For a 

continuous process, a represents the mode of sampling time, b 

represents the mode of process variable (chromatographic 

retention time) and c the mode of location of measurement 

(reactor number).   

 

MSPC Charts 
 Q and D charts. Determining whether a reaction is 

deviating from a set of conditions that are defined to be NOC 

conditions is the aim of MSPC charts [6-8]. In our system, a 

region of process including n chromatograms (n < I) was 

selected and defined as NOC. NOC region must meet the 

quality requirements. For instance, certain products must be 

more than a level and some impurities must be less than a 

level, in this region. The FSMWFA results, also, must show 

that they are within the steady state region. The control 

(reference) region Xr consisting of N rows, J columns and K 

layers, corresponding to the steady state, was decomposed by 

PARAFAC.  

  

 Xr (I×JK) = Ar (Cr ⊗ Br) + E                                               (3)   
 

where (⊗) is the Kronecker product sign [24]. Ar, Cr, and Br  

model the systematic variations. E describes the residuals not 

explained by the model. No scaling, mean centering, and/or 

standardization were applied on the data in this work. L, which 

is much less than n or J in most cases, is the number of 

significant components in the model. In the context of process 

control, no overall accepted criterion exists for choosing a 

proper value for L. However, a good approach is to select it so 

that most of the samples in the NOC region are within 

predefined control limits. In this study, the proper value of L 

was set to 3. On the other hand, the data are from three 

reactors that ideally, and when in the steady state, result in 

three significant factors. Based on this approach, the selection 

of three significant factors seems proper.    

 Two common statistical indicators in MSPC are D-statistic 

and Q-statistic [6-9]. D-statistic shows the distance of a part of 

process to the center of NOC samples. It determines whether a 

specific sample  has  a  systematic  deviation  from  the  steady  

 

 
Fig. 2. Schematic form of the PARAFAC model. 

 

 

state region. When trying to fit the new samples to the model 

which is obtained from the NOC samples, Q-statistic can be 

used to estimate the residuals. The control limits for these 

statistics can be computed as described below, when both are 

assumed to follow the normal distribution. Values of relevant 

statistic in different sampling time points, I = 1 to I, produces 

the MSPC chart. 95% of samples that are under control are 

expected to fall within the 95% control limit, which is 

widespread. If a number of sequential samples are outside the 

limit, presence of a problem in the process under consideration 

is highly probable. Graphical indication of the limits, which is 

popular, allows the user to distinguish the problem more 

conventionally and rapidly. In this study, 99% (action) and 

95% (warning) control limits are considered. 

 The objective of the proposed D-statistic algorithm is to 

approximate a score vector at each sampling time point i = 

1,…,I, using the matrix of observations in each time point i. 

The first step is to calculate scores based on the reference 

(control) set of samples. The length of score vector at 

sampling point i, ti, is equal to the number of selected factors, 

i.e. L×1. For all the samples, reference and others (such as the 

newly measured samples) the score vector is then obtained by 

projecting the monitored observations from the new sample 

onto the reduced space. Hence, at sampling time point i, ti is 

given by  

 

 ti = (Pr
T * Pr)

-1 * Pr
T * xi = Pr

+ * xi                                  (4) 

 

where Pr is the loading matrix from reference samples, with 

J×K rows and L columns. Reference data in this study was 

obtained from sampling time point 69 to 95. xi represents the 

vectorized observations from i th sample, with J×K rows and 

one column. Pr
+ is pseudo-inverse of Pr

 and for a PARAFAC 

model, Pr is calculated as a Kronecker product , ⊗, as follows: 
 
 Pr(:,l)= crl⊗ brl , l=1, …, L                                               (5) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

 
 
 

Kompany-Zareh 

 214 

 
 
brl and crl are the loading vectors for factor l in the retention 

time (or variable J) and reactor number (K) modes, 

respectively. 

 In the next step, the process measurements at time point i, 

xi, can be estimated from score vector at time point i, ti. This is 

obtained by calculating the product of scores ti and the loading 

matrix corresponding to the reference set: 

 

 xi = Pr *  ti                                                                          (6) 

 

where Pr is calculated as Eq. (5). Finally, the score vector for 

any new sampling time can be estimated in a similar fashion, 

using the background corrected and aligned data from that 

time, and the Pr (JK×L) which is the loading matrix of the 

reference data set. The above procedure can be adopted at each 

sampling time point i of the process to obtain the 

corresponding score ti. The score vectors can then be 

combined to give a matrix which represents the time trajectory 

of the on-line scores. For each time point i there is an 

associated value for the Q-statistic and Hotelling’s T2. An 

estimate of Q-statistic at time point k can be made from the 

following equations: 

 

 erri = xi - Pr * ti                                                                (7) 

 

 
∑

=
=

JK

s
ii sQ

1

2)(err                                                                   (8) 

 
The control limits for the Q-statistic are calculated from the χ2 

distribution and are given by: 

 

 Q_~ g χh,α
2   ,  g = ν/2q,   h = 2q2/ν                                  (9) 

 

where q and ν are the estimated mean and variance, 

respectively, of the Q-statistic from the reference times. The 

Q-statistic determines the error between the predicted values 

using the NOC samples and the data arising from each 

chromatogram in the data series. 

 Hotelling’s T2 can be calculated as follows [12-14]: 
 

 Di = ti
T * S-1 * ti ~ ),,(

)(

)1( 2

αLnLF
Lnn

nL −
−
−                       (10) 

 
where S is the variance-covariance matrix  of  the  scores.  The 

 

 
D-statistic follows the F-distribution with n and n-L degrees of 
freedom. For example, if α = 0.99, L = 3, and n = 27, the 

obtained F is 3.73. Multiplying by 
)(

)1( 2

Lnn

nL

−
− (= 3.37) in the 

next step, the control limit was obtained as 12.56. The D-
statistic indicates how close the chromatographic profile of the 
sample is to that of NOC region.  
  Contribution plots. It is possible to consider the 

contribution of each variable to the Q- and D-statistics, to 

distinguish the most responsible variables in the deviation of 

the process from NOC. The contributions from the jth variable 

in sample i for Q- and D-statistics can be obtained as follows: 

 

 ωQ
i,kj=(erri,kj)

2                                                                  (11) 
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−
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 Plotting these values along the sample number for each of 

the three reactors, the contribution of each variable for each 

reactor and each sampling time point can be observed. If we 

plot the values for one sample, the contribution of each 

variable for that sample to Q- and D-statistics can be seen. 
 

Unfolding MPCA 
  In reactor number (K)-unfolding-row-augmented MPCA 

(Fig. 1), the rows of the unfolded X matrix represent the 

sampling times. The model is expressed as: 

 

 XI×JK = TPT + E                                                              (13) 

 

where T is the score matrix of I×L, L is the rank, P is the 

loading matrix of (JK×L), and E is the residual matrix of I×JK 

[16]. For the reactor number (K)-unfolding-col-augmented 

MPCA the matrix XKI×J was obtained. Unfolding can also be 

performed in other directions, which result in IJ×K and/or 

J×KI unfolded matrices. As before, the next step is 

decomposition of the two-way data into score and loading 

matrices, using PCA.   
 Theoretically, compared to a bilinear model such as 

multiway principal component analysis (MPCA), a trilinear 

model such as PARAFAC, characterizes the relationship 

between the modes of variable and time, as opposed to 

simultaneously modelling  all  combinations  of  variables  and  
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times, i.e. it convolves the time and variable effects. Thus a 

trilinear model is comparatively simpler and more easily 

interpreted than a bilinear representation. In addition, for a 

trilinear model, fewer parameters are required to be estimated 

(L ×(I+ J+ K) as opposed to L ×(I+ J× K)). Conversely, the 

trilinear approach runs the risk of oversimplifying the model 

by assuming that an approximate trilinear structure exists, i.e. 

a similar relationship exists between variables through the 

entire batch. In contrast, for MPCA, correlation between 

arbitrary time-variable pairs can be modelled. It should also be 

noted that for PARAFAC the factors are not unique, i.e. 

calculating a different number of factors will result in a 

different set of loadings. This is in contrast to the bilinear 

techniques where the loadings are unique to a specific 

principal component, i.e. the models are nested. 

    

Procedure 
 Sampling and dilution were the two steps utilized before 

high performance liquid chromatography (HPLC) for 

performing online analysis. To control sampling, dilution and 

HPLC parameters, a personal computer was used. Applying a 

proper sampling, a representative sample from the chemical 

process was drawn. The volume of sample pumped into the 

dilution device was 365 µl. The system diluted the sample into 

approximately 16.3 ml of ethyl acetate (Fisher Scientific, 

Loughborough, UK), to be injected into HPLC. Once diluted, 

the sample was pumped into an Agilent 1100 HPLC system 

controlled by Agilent ChemStation, v10.02 (Agilent 

Technologies, Stockport, Cheshire, UK). A micro-degasser, 

binary pump, column heater component and a variable 

wavelength UV detector (fitted with a standard 13 µl flow 

cell) were the components of the Agilent 1100 instrument. A 

2.5 min reversed phase gradient method was programmed 

using acid-modified eluent pumped at 2 ml min-1 through a 

Zorbax-SB-C18 HPLC column (Agilent Technilogies), was 

controlled at 40 °C. The volume of sample injected into HPLC 

was 0.5 µl and chromatograms were recorded at 245 nm 

(single wavelength). To prevent carry-over from previous 

samples, the dilution device was programmed to flush itself 

with fresh solvent (diluent) between successive analyses. Over 

a period of 48.0 h 51, 177 and 186 samples were recorded 

from three reactors. The collected chromatographic data from 

Agilent   ChemStation    was    exported    to    MATLAB v7.0  

 

 

(Mathworks, Natick, MA, USA) for further analysis. All 

software was written in MATLAB.   
 

RESULTS AND DISCUSSION 
 

 Overlaid plot of raw chromatograms of all 51 samples in 

the first reactor, all 177 samples in the second reactor and all 

186 samples in the third reactor are shown in Figs. 3a to 3c. 

As it is illustrated in Fig. 3d, the baseline drift exists and 

should be corrected before further data analysis. Figure 3e 
includes the plots of chromatograms of the second reactor 

after pre-processing the data, including baseline correction and 

peak alignment. The only remaining point about the data was 

the different number of samples for each reactor, 51 for the 

first, 177 for the second, and 186 samples for the third one. To 

make the same number of samples in all three reactors, shape-

preserving piecewise cubic Hermite interpolation was applied 

on the data and three 266×1981 chromatographic data were 

estimated for the three reactors. In this way, a three-way tensor 

of data X(266×1981×3) was obtained, with I = 266 samples in 

rows, J = 1981 retention times in columns, and K = 3 reactors 

in layers (depth). 

 To study the reactors simultaneously, a fixed size moving 

window factor analysis (FSMWFA) (using window width of 

10 columns) was applied on the k-unfolded-row aligned data, 

X(I×KJ), to find the steady state region in the process. The ratios 

of the first evolutionary eigenvalues to the second ones at 

different windows are shown in Fig. 4. Samples with 

eigenvalue ratios higher than 500 show the region with one 

significant principal component and could be considered to be 

in the steady state. The values of this ratio are very small for 

the initial samples and some other regions which implies that 

the samples in these regions deviate more than the samples in 

the other regions from the steady state (Normal operating 

condition (NOC)). In this study, sample numbers 69 to 95 (27 

samples) were selected as the NOC and the training set for 

MSPC. 

 

PARAFAC and MSPC Charts 
 The next step was applying PARAFAC to the selected 

reference region, that is, samples 69 to 95. PARAFAC was 

applied using three significant factors. Vectorized matrix of 

loading values for the three  significant  factors  in  one  of  the  
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Fig. 3. Contour plots of overall chromatographic profiles of raw data from all 51 samples of the first reactor (a), 177 samples of  

           the second  reactor (b)  and  186 samples of  the third reactor (c). Plots of raw data (d) and  baseline corrected  and  peak  

            aligned data of 177 chromatograms of second reactor. 
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Fig. 4. Ratio of the first eigenvalues to the second eigenvalues  

            obtained    from   application  of   FSMWEFA  on   the  

           unfolded data of all 266 samples, for a window size of  

            10 datapoints. 
 

 

three modes shown in Fig. 5. The figure shows an average for 

the shape of chromatograms in each reactor, including the 

main peak, but not the peaks due to impurities. D-chart results 

for all 266 samples, based on 27 training set region, are 

illustrated in Fig. 6a. All samples in the NOC region are below 

99% and 95% control limits. A number of initial samples are 

completely out of control, as they are from the start of the 

reaction before the products are formed. Samples from most of 

the regions are within the control limits. The Q-chart in Fig. 

6b shows a number of samples between number 130 to 170 

that are out of 95% limit and within 99% limit. The first 35 

samples appear completely out of control, as they are from the 

start of the reaction before the products are formed, and thus 

are quite typical of the reaction. The other samples are within 

the limits. There is a region between samples 180 and 190 that 

is out of the limits in D chart and within the confidence limits 

in Q chart. This indicates that impurities are not serious in this 

region. However, the change in experimental conditions 

resulted in a higher values of D. For the regions 130 to 145 

and 200 to 210, the reverse is true. The D values are below the 

limits and the Q statistic values are above the 95% limit which 

reveal the presence of impurities in this region. Samples from 

100 to 120 are close to the NOC condition, considering both Q 

and D statistical parameters. 

 

 

 
 

Fig. 5. Vectorized Br loadings from application of PARAFAC  

            on the reference NOC data. 

 

 
 
 Figure 6c is the contribution plot for the D chart of all 266 

samples from the three reactors. Peaks in this plot are the same 

as those in Fig. 5, which are due to the main components in 

the reaction. The fluctuation in the conditions for the first 

reactor is low, as shown by the small error peak about 600. 

Large peaks at about 2150 and 2950 show high fluctuations in 

experimental conditions for the second reactor. Unstable 

experimental conditions are mostly due to the initial times of 

reaction in which the reactor is not in the steady state. For the 

third reactor the condition is something between the 1st and 2nd 

reactors. Figure 6c shows the separate contribution of each of 

266 samples in D-chart. For the regions with lower D values, 

such as samples 65 to 110 and 195 to 210 the dark bands are 

narrow, which show the lower contribution of the samples in 

D plot.    

 Contribution plot of Q-chart (Fig. 6d) includes some 

additional peaks, compared to Fig. 5. The additional peaks are 

about 2600, 3200 and 5000 and are due to the presence of 

impurities in the 2nd and 3rd reactors. The impurity peaks are 

due to samples with high values of Q-statistic, such as samples 

240 to 250 and a number of initial samples. Results show that 

the Q contribution plot is sensitive to impurities. Thus, both 

the Q and D contribution plots are needed to detect the 

possible changes in the process,  and  provide  complementary  
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information. Figure 6d shows the individual contribution of 

each sample in the Q-chart. The figure well shows that the 

impurities which are about 2600, and 3200 are due to samples 
170, 190 and a number of initial samples in reactor 2. 

 

Unfolding MPCA 
 The score and loading plots from reactor (K)-unfolding-

column-augmented MPCA are shown in Figs. 7a and 7b. The 

first three principal components capture more than 90% of 

variations in the data. Scores and loadings that are assigned to 

a continuous line are due to the 1st  reactor  and  show  that  the 

 

 

 
 

 
 

 

 
 
 
fluctuations are minmum among the reactors. The specific 

peak for the first reactor in the loading plot is related to the 
retention time 600. As it is shown in both score and loading 

plots, variations in the second and third reactors are linear 

combinations of the second (squares) and third (circles) 

factors, and two peaks, one about 1000 and the other between 

1100 to 1200, contain the information about the second and 

third reactors, not selectively. The most intensive fluctuations 

belong to the second reactor, and specially to the initial times 

of the sampling. A sudden decrease in the most significant 

scores (squares) in the 2nd reactor (about abscissa value of  440 

Fig. 6. D-chart (a) and Q-chart (b) for all 266 samples with 95% and 99% confidence limits. D contribution plot (c)  

              and Q contribution plot (d) for all 266 samples. 
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in score plot, which means sample 445-266 = 179) is also 

indicated with high values of D-statistic (Fig. 6a).   

 The scores and loading plots from reactor (K)-unfolding-

row-augmented MPCA are shown in Figs. 7c and 7d. In this 

case, too, more than 90% of variations is described by the first 

three principal components. Variations in all three reactors are 

described as a linear combination of the three principal 

components. Score plot shows that the first PC (squares) is 

more significant than the other two PCs, which shows that the 

considered process is a continuous one with the ideally steady 

state condition. Score plot also  illustrates  the  fluctuations  of 

 

 

 
 

 
 

 

 

 

 

the experimental conditions in the initial stages of the reaction 

as well as a sudden change in the experimental conditions for 

samples around 180 which accord with the D chart.  

 Scores and loading plots from sample (I)-unfolding-row-

augmented MPCA on data are shown in Fig. 8. The 

information content of the plots are similar to score and 

loading plots from K-unfolding-column-augmented MPCA of 

the previous part. Three first PCs contain more than 90% of 

variations in the data. As can be understood from the loading 

plot (Fig. 8b) PC1 (square), PC2 (cross), and PC3 (circle) are 

due to the  1st,  2nd  and  3rd  reactors,  respectively.  Scores plot  

Fig. 7. Results from MPCA on reactor (K)-unfolded data. (a) and (b) are scores and loadings plots from decomposition of  

           column-augmented data  after unfolding.  (c) and (d) are  scores and loadings plots  from  decomposition  of  row- 

            augmented data after unfolding. 
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Fig. 8. Scores  (a-c)  and  loadings  (b)  plots   from  

           decompositions of  sample(I)-unfolded-row- 

                     augmented data. 

 

 

shows that most fluctuations are related to the 2nd reactor and 

to the early stages of reactions. There is a sudden change in 

the scores in x = 360000 for reactors 2 and 3, which is 

probably due to the sample number 360000/1981 = 182. This 

sudden change is also  illustrated  in  D-plot.  The  most  stable 

 

 

reactor, from the starting times, is reactor 1.   

   

CONCLUSIONS 
 
 This work is among a few studies which are based on 

using on-line HPLC for real-time monitoring of reactions 

associated with chemometrics technique. An initial treatment 

of data obtained from HPLC is necessary. The treatment 

includes baseline correction and alignment of peaks. The next 

step is applying MSPC on the treated data. The applied 

techniques are multivariate unfolding PCA and PARAFAC. 

PARAFAC method is combined with a Q-statistic and T2-

Hotelling’s statistic. Techniques in addition to statistical tests 

show the deviation of the process from NOC in some regions.  

D-charts are more sensitive to fluctuations in the experimental 

conditions, whereas the Q-charts appear to be more sensitive 

to impurities or by-products. 

 Similar to D- and Q-charts, reactor-unfolding-row-

augmented MPCA is more sensitive to overall variations 

during the investigation of the process, while reactor-

unfolding-column-augmented MPCA and sample-unfolding-

row-augmented MPCA are sensitive to variations in each 

reactor. PARAFAC method maintains an equal balance in 

terms of detecting both variations. Reactor 1 showed the least 

fluctuations in the conditions and was the best among the three 

reactors. This fact is illustrated in the score plots from MPA-

based methods in addition to D- and Q-contribution plots, 

which are from PARAFAC. 

 Methods described in this report represent powerful tools 

for monitoring the reactions, and have potential to be extended 

to real-time applications. There is no clear agreement as to the 

most effective approach for the analysis of process data. The 

applied methods are complementary to each other and a well-

trained chemometrician/practitioner should find both 

approaches to be useful for the continuous process data 

analysis. In many conditions, the observations and 

interpretations of the loading plots obtained from PARAFAC 

and the scores and loading plots from MPCA methods directly 

lead to similar findings.  
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