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Abstract—Weighted median (WM) filters, a nonlinear filter 
class based on a median operator and a weight vector 
associated with samples inside the filter window, take their 
popularity from the robust order-statistic theory, the noise 
attenuation capability and the degree of the freedom related 
to filter design. In order to adapt a filter behavior for 
a variety of statistics describing the desired signal and the 
noise distribution, there were developed some optimization 
algorithms based on estimation and structural approaches. 

In this paper, we focus on optimal weighted median filters 
based on the estimation approach. Besides well-known WM 
optimization algorithms that utilize linear and sigmoidal 
approximation of a sign function, we test and analyze a 
genetic approach that outperforms others optimal WM 
algorithms especially in terms of the signal-detail 
preservation. 
 

Index Terms—Nonlinear image filtering, weighted median 
filters, estimation optimization approaches, genetic 
algorithms, impulsive noise. 

I. INTRODUCTION 
N GENERAL, the success of denoising approaches 
depends on three factors such as the original signal, the 

nature of corruption and finally, the measure of the solution 
accuracy [1] as the compromise between the original and 
the nature of corruption. If the noise corruption is modeled 
as non-Gaussian or impulsive, in order to suppress the 
noise effectively, the nonlinear filter classes based on the 
robust order-statistic theory are preferred [1]-[3]. Many 
order-statistic filters pass to a filter output the sample from 
the input set and thus, it minimizes the local distortion of 
processed images. The measure of the noise suppression 
depends on the choice of order-statistics as the filter output. 
Many nonlinear filtering classes [1], [2], [4] such as 
weighted median filters [5], lower-upper-middle (LUM) 
smoothers [6], [7], L-filters [3], Ll-filters [3] incorporate 
the weight coefficients into the filter structure to express 
the influence of input samples, where relationship between 
the pixel under consideration and each sample in the filter 
window should be reflected in the decision for the weight 
coefficients. In the adaptive design, the weights provide the 
degree to which the input vector contributes to the filter 
output. This way can improve [8] the estimation capability, 
extend the design possibilities and scale the filter behavior 
for a variety of the signal and noise statistics. 

In the case of weighted median filters, there were 
developed some algorithms for their optimization. These 
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methods outcome from a stack filter framework [9]-[11], 
where the optimization approaches can be differentiated 
into two classes such as structural [9], [12] and estimation 
approaches [13]. The structural approach is based on the 
filter optimization under structural constraints reflecting 
position and orientation of small edges and image details. 
As the estimation approaches [13] are used non-adaptive 
and adaptive least mean absolute (LMA) or least mean 
square (LMS) algorithms. This paper focuses on the 
genetic optimization of weighted median filters. It will be 
demonstrated, that the genetic optimization improves the 
signal detail preservation capability of optimal weighted 
median filters. 

The rest of the paper is organized as follows. In the next 
Section, a class of weighted median filters is described. 
Section III focuses on standard estimation approaches used 
in the weighted median filter design. In Section IV, the 
proposed method taking the advantages of global solution 
provided by genetic algorithms is presented. Section V is 
devoted to the analysis of the presented filtering 
approaches in the dependence on the intensity of impulsive 
noise corruption. This section also contains a number of 
simulations, tests and filtering results, together with tables 
and graphs depicting the objective image quality measures. 
Finally, the main ideas, achieved results and future plans 
are summarized in conclusion section. 

II. WEIGHTED MEDIAN FILTERS 
The principle of weighted median (WM) filtering [1], 

[3], [4], [14] lies in the median filter generalization, where 
each input sample spawned by a filter window is associated 
with a weight coefficient.  

Let us consider discrete-time continuous-valued input set 
1 2( ) { ( ), ( ),..., ( )}Nn x n x n x n=x  associated with the 

nonnegative integer weight vector 1 2{ , ,..., }Nw w w=w . The 
output of WM filter [4] is given by 

1 1 2 2( ) { ( ), ( ),..., ( )}N Ny n med w x n w x n w x n= ◊ ◊ ◊  (1) 

where N  is the window size, n  represents the position of 
a running filter window, med  characterizes the median 
operator and ◊  is the duplication operator defined by 

( ) ( ), ( ),..., ( )
iw times

i i i i iw x n x n x n x n
−

◊ =
644474448

. (2) 

The filtering procedure defined by (1) requires following 
steps such as the ordering of samples determined by the 
filter window, the duplication of ordered samples to the 
number of the corresponding weight iw  and choice of the 
median value from the new sequence. 

Let iw , for 1, 2,...,i N= , be positive real weights. The 
WM filter of the input set 1 2( ) { ( ), ( ),..., ( )}Nn x n x n x n=x  is 
the value ( )y n  minimizing the expression 
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1

( ( )) ( ) ( )
N

i i
i

L y n w x n y n
=

= −∑  (3) 

If 0iw ≥ , for 1, 2,...,i N=  and the function ( ( ))L y n  is 
piecewise linear and convex, then ( )y n  is the sample from 
the input set [13]. In the case of positive real weights, the 
computation of WM filter output requires the ordering of 
the input samples and the successive summing up the 
weights corresponding with ordered samples until the sum 
exceeds half of the total sum of weights. The WM filter 
output is the sample corresponding with the last added 
weight. 

WM filters include the standard median filter and the 
center-weighted median filters as special cases. If 1iw = , 
for 1, 2,...,i N= , the definition of WM filters (1) is 
identical with the definition of the standard median filter 
given by 

1 2{ ( ), ( ),..., ( )}Ny med x n x n x n=  (4) 

where med  is the median operator, 1 2( ), ( ),..., ( )Nx n x n x n  
represent the input set and N  is the window size.  

If the set of weights is defined by  
* for  ( 1) / 2

1 otherwise   i
w i N

w
 = +

= 


 (5) 

where only the central weight *w  that is forced to be an 
odd positive integer whereas other weights are equal to 1, 
then definition of WM filters is identical with the definition 
of center-weighted median (CWM) filters [15]. Note that 
the CWM filters are equivalent to the LUM smoothers [7], 
[16], that can be designed to provide the best balance 
between the noise suppression and the signal-detail 
preservation. 

III. STANDARD ESTIMATION APPROACHES 
It is clear that a number of various weight vectors, i.e. 

various WM filters grows rapidly with the window size .N  
Using the most popular square window shape of nine 
samples results in 172 958 integer weight vectors. For that 
reason, it is very difficult to determine the weight vector so 
that the WM filter would be robust with respect to the 
introduced corruption and also preserve the useful 
information. 

Let us consider a running filter window of the size N  
and the WM filtering operation (i.e., (1) or (3)) resulting in 
the filter output ( ).y n  The aim of the optimal WM filtering 
is the searching for the WM filter with the window size N  
so that the error criteria such as the mean absolute error or 
the mean square error between the filter output ( )y n  and 
desired output ( )o n  were minimized. 

A. Non-Adaptive LMA WM Approach 
The non-adaptive WM optimization algorithm utilizes 

the global signal statistics based on the correlation between 
signal and noise. In practice, autocorrelation matrixes are 
estimated as follows [13]: 

( )
1

, max min
0

1 ( ) ( ) 2 ( ) ( )
L

i j i j
n

x n x n x n x n
L

−

=

= − − −∑R  (6) 

( )
1

max min
0

1 ( ) ( ) 2 ( ) ( )
L

s
j j

n

x n x n o n x n
L

−

=

= − − −∑R  (7) 

where 1, 2,...,i N= , 1,2,...,j N= , max ( )x n  is the maximum 
and min ( )x n  the minimum of the input set ( )nx , ( )o n  is the 
original (desired) sample in the time position n  and L  
represents the signal length. 

The non-adaptive algorithm includes some steps such as 
the initialization, iteration and convergence. The 
initialization requires to set the start weight vector (0)w  to 
any positive values and the iteration constant to a small 
positive value. 

The iteration performs an update of the weight vector 
according to  

( 1) [( ) ( ) ]T T sTk P kµ µ+ = − +w I R w R  (8) 

for 10 2 /( ).Nµ λ λ< < +  Projection operation (.)P  remains 
positive values unchanged, whereas negative values sets to 
zero. I  is the identity matrix, 1λ  and Nλ  are the smallest 
and the largest eigenvalues of R , µ  is the fixed step-size 
and k  describes the iteration index. 

When the condition 

2

1
( ( 1) ( ))  

N

i i t
i

w k w k α
=

+ − ≤∑  (9) 

is satisfied, then the convergence occurs and the weight 
vector ( 1)k +w  is accepted as a solution. If the condition 
(9) is not satisfied, then the algorithm performs the next 
iteration. 

If original and corrupted signals are jointly stationary, 
the non-adaptive algorithms provide good results. In 
general, the use of non-adaptive WM algorithms is 
disadvantageous for missing global statistics of corrupted 
and original signals. 

B. Adaptive LMA WM with Sigmoidal Approximation 
Adaptive LMA WM filtering is preferred when the 

global statistics of corrupted and original signals are not 
available. In general, if original and corrupted signal are 
jointly stationary, the non-adaptive algorithms provide 
good results. On the other hand, the adaptive WM 
algorithms follow the time-varying statistics, save the 
memory space and are easy to implement. 

Now, we describe simple adaptive LMA WM algorithms 
[13] based on linear and sigmoidal approximation. In the 
case of sigmoidal approximation of the sign function, the 
convergence to global optimal solution cannot be 
guaranteed, since the optimization problem based on 
sigmoidal approximation has no global minimum. 

The adaptive LMA WM filtering with the linear 
approximation updates the weight coefficients as follows: 

max min( 1) ( ) 2 ( )[ ( ) ( ) 2 ( ) ( )i i iw n w n n x n x n o n x nµ+ = + − − − −  

        ( )max min
1

( )( ( ) ( ) 2 ( ) ( ) ]
N

j i j
j

w n x n x n x n x n
=

− − − −∑  (10) 

where 1, 2,...,i N= , 1,2,...,j N= , ( )nµ  is the adaptive 
step-size, e.g. a positive constant or a time-varying 
sequence. The algorithm is restricted by  

( 1) 0     if  ( ) 0i iw n w n+ = <  (11) 

It can be easily seen that the adaptive LMA algorithm is 
significantly simpler than that of the non-adaptive WM 
filtering. Note that LMS algorithms can be derived from 
LMA  structures by a simple change of an absolute norm to  
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Fig. 1.  Principle of genetically optimized WM filter. 
 
a square [13]. 

C. Adaptive LMA WM with Linear Approximation 
Consider the input set written as 

1 2( ) { ( ), ( ),..., ( )}Nn x n x n x n=x  and the original (desired) 
sample ( )o n , all for the time position .n  In the case of 
sigmoidal approximation [13], the adaptive LMA WM 
algorithm can be simplified to the following expression 

[ ]( 1) ( ) 2 ( ( ) ( ))sgn( ( ) ( ))i i iw n P w n o n y n x n y nµ+ = + − −  (12) 

where 1, 2,..., ,i N=  (.)P  characterizes the projection 
operation and sgn (.)s  is the sign function approximated by 
sigmoidal function defined as 

2sgn ( ) 1
1S aa

e
= −

+
 (13) 

If the actual WM output is smaller than the original 
value, the weights corresponding with the samples which 
are larger than the actual output are incremented. Note that 
the sigmoidal function is a very popular choice in the field 
of neural networks. 

IV. PROPOSED METHOD 
Now, we provide the genetic optimization (Fig. 1) of the 

weight coefficients. Genetic algorithms (GA) [17], [18] 
belongs to the field of biologically-oriented computational 
techniques. The GA is useful for searching the optimal 
solution in situations, where other optimization techniques 
may fail dramatically. The reason lies in a complex 
specification of initial conditions related to mathematically 
oriented methods.  

In general, solved problems can be specified through 
a wide space of possible solutions, where it is very difficult 
to determine the optimal one. In the GA optimization 
problem [18], an individual represented by a set of 
parameters (genes in chromosomes) expresses the potential 
solution of the problem. The optimization requires the 
quality evaluating of generated solutions. The measure of 
the individual quality is known as a fitness value and it 
reflects the degree of negotiability enforcing during the 
evolution. Note that ( )o n  represents the desired signal 
used to determine the quality of solutions. Since, the GA 
utilizes the mechanism of natural selection through the 
evolution method, an optimal solution can be represented 
by the individual with the largest fitness in the last 
iteration. 

The genetic optimization [17], [18] starts with randomly 
generated solutions of the problem. The number  
of  solutions is represented  by the size of  population. The  

Parents Offspring 

Crossover point 

Parents 

Offspring 

        (d) 

Parents Offspring 

Crossover points 

Original  

Changed  

        (a) 

        (b) 

        (c) 

 
Fig. 2.  Crossover and mutation: (a) one-point crossover, (b) uniform 
crossover, (c) three-point crossover, (d) mutation. 
 
following generation is created from the chromosomes in 
the current population. However, because of the genetic 
evolution, the individual (chromosome) with larger fitness 
tends to yield a superior offspring which means better 
solution of the problem. For that reason, the significant 
emphasis is imposed on the set of parent chromosomes that 
is selected by a roulette wheel selection. After the 
selection, the genes of the parent chromosomes are mixed 
and recombined for the production of the offspring in the 
next generation. 

Besides the selection procedure, the genetic optimization 
requires the applying of two operators (Fig. 2) such as the 
crossover and the mutation operators [17], [18]. After 
a randomly selected crossover point, the right-positioned 
parts of two parent chromosomes are exchanged to form 
the offspring. A crossover operator generates the offspring 
from two individuals of a current population. After the 
crossover operation, the random information is introduced 
to the offspring by a mutation operator. 

In this paper, the parameters of the GA were set as 
follows: the population size consisted of 120 chromosomes 
and the number of training cycles was 1000. Fig. 3 shows 
the dependence of the number of iterations necessary for 
searching the minimum error on crossover probability cp  
and mutation probability mp  related to the genetically 
optimized WM filter. It can be seen that in many cases, the 
GA results in a good solution after 50th iteration. Note that 
in the rest of the paper, the considered optimal weight 
coefficients related to the genetically optimized WM filter 
were achieved with the crossover probability 95.0=cp  
and the mutation probability 05.0=mp . 
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0.pm

pc

 
Fig. 3.  Dependence of the number of iterations necessary for searching the 
minimum error on the crossover probability cp  and the mutation 
probability mp  related to the genetically optimized WM filter. 
 

V. EXPERIMENTAL RESULTS 
In this Section, the performance of presented approaches 

is tested for two well-known images such (Figs. 4(a) and 
 5(a)) as the images Lena and Bridge with a various 
complexity. We will observe the impulsive noise (bit 
errors) attenuation capability, the measure of the signal-
detail preservation and also the filter robustness. 

A. Noise Model 
In order to simulate the noise corruption (Figs. 4(b) and 

5(b)), we use the model of the random valued impulsive 
noise [1], [16] expressed as 

,
,

with probability  1
with probability  

i j
i j

o p
x

p
υ

υυ
−

= 


 (14) 

where ,i j  characterize the sample position, ,i jo  is the 
sample from the original image, ,i jx  represents the sample 
from the noisy image, pυ  is a corruption probability and υ  
is a random image intensity value. 

Although the occasions for the generation of impulsive 
noise are various, it is often introduced through bit errors 
[1], especially in modern communication technologies and 
multimedia applications. Mathematically, the bit errors are 
defined by following expression 

,

,

*
,

1

1

m
i j

m
i j

m
i j

pk

pk
k υ

υ

−
=

−





 (15) 

where ,i j  characterize the sample position, m  is a bit 
level forced to be between 1 and B  (a number of bits per 
sample), pυ  is a bit error probability and finally { }k  and 

*{ }k  characterize original and corrupted bit levels. Note 
that the original sample is expressed as 

1 1 2 2 1
, , , , ,2 2 ... 2B B B B

i j i j i j i j i jo k k k k− − −= + + + +  (16) 

whereas a sample from the noisy image is defined by 
* 1 1 * 2 2 * 1 *

, , , , ,2 2 ... 2B B B B
i j i j i j i j i jx k k k k− − −= + + + +  (17) 

It is clear that the degree of the impulsive noise 
corruption depends on the impulse probability pυ  and the 
affected bit level .m  

B. Objective Criteria 
The quality of the filtered images or in other words, the 

difference between filtered and original image is evaluated 
by two objective criteria [1], [16] such as the mean 
absolute error (MAE) and mean square error (MSE). The 

first criterion expresses the signal-detail preservation well, 
whereas the second one represents the measure of the noise 
suppression. Two-dimensional definitions of MAE and 
MSE are expressed as 

, ,
1 1

1 K L

i j i j
i j

MAE o x
KL = =

= −∑∑  (18) 

( )2

, ,
1 1

1 K L

i j i j
i j

MSE o x
KL = =

= −∑∑  (19) 

where K , L  represent image dimensions, i , j  determine 
the time position, ,i jo  and ,i jx  are samples from original 
and noisy (filtered) images, respectively. 

Note that two objective criteria are necessary, since the 
noise filtering problem is a multicriterion task, where the 
balance between the noise suppression (expressed through 
MSE) and the signal detail preservation (expressed through 
MAE) should be achieved. 

C. Achieved Results 
Now, we analyze the genetic optimization of WM filters. 

Let us consider the training set given by the test image 
Lena corrupted by 10% impulsive noise ( 0.10pυ = ). Fig. 6 
shows the error criteria of genetic optimization in the 
dependence on the crossover probability cp  and mutation 
probability .mp  Note that Fig. 6 is related to the population 
size and subpopulation size equal to 120 and 80, 
respectively. It can be seen that the GA error criteria 
increases with the increased mutation probability, because 
the new population includes a number of new individuals 
out of the relevant solutions. 

Another results of the genetic optimization are shown in 
Fig. 7 and Tables I and II. Note that Table I is related to 

0.9cp =  and 0.1,mp =  whereas Table II is related to the 
population and subpopulation size 120 and 80, 
respectively. These results confirm that in many situations 
the GA optimization is time consuming, because the GA 
reaches the optimal solution after some iterations. Fig. 7 
corresponds to MAE and MSE error criteria related to four 
various initial settings of the GA. Thus, GA1, GA2, GA3 
and GA4 characterize the settings described in Table III. 
The results presented in Fig. 7 show that the convergence 
to a good solution depends on initial conditions. To 
illustrate the used processing time necessary to perform 
1000 iterations of the GA optimization, the optimization 
procedure written in C language required 8 hours and 20 
minutes using the personal computer (PC) with processor 
AMD K6-2 500 MHz; and 4 hours and 25 minutes using 
the PC with processor AMD Duron 900 MHz, respectively.  

In general, the computational time increases with the 
increased population and subpopulation size and also with 
the increased crossover and mutation probabilities. 

In order to observe the performance of all relevant 
filtering approaches, the presented filtering algorithms 
were tested for the impulsive noise corruption pυ  ranged 
from no corruption to 0.30. Note that all the pictures from 
no corruption to 0.30. Note that all the pictures presented in 
Figs 4(c) to 4(f) and Figs. 5(c) to 5(f) are related to the 
filtering of Fig. 4(b) ( 0.1pυ = ) and Fig. 5(b) ( 0.05pυ = ), 
respectively. The evaluating of results is presented in 
Tables IV to VII. Fig. 4(c) corresponds to the output of the 
well-known median filter that provides excellent noise  
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(a)    (c)        (e)

(b)    (d)        (f)  
Fig. 4.  Achieved results using the test image Lena: (a) original image, (b) noisy image with 0.1pυ = , (c) output of the median filter, (d) output of the non-
adaptive LMA WM filter, (e) output of the adaptive sigmoidal WM filter, (f) output of the genetically optimized WM filter. 
 

(a)    (c)        (e)

(b)    (d)        (f)  
Fig. 5.  Achieved results using the test image Bridge (a) original image, (b) noisy image with 0.05pυ = , (c) output of the median filter, (d) output of WM1 
filter with ]1,1,2,3,5,3,2,1,1[=w , (e) output of the adaptive linear WM filter, (f) output of the genetically optimized WM filters. 
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Fig. 6.  Dependence of the GA error function on the crossover probability cp  and the mutation probability mp  related to the genetically optimized  
WM filter. 
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Iterations                      Iterations 

Fig. 7.  Performance of the genetically optimized WM filter in the dependence on the number of iterations. We used the test image Lena corrupted by 10% 
impulsive noise: (a) MAE, (b) MSE. 

 
TABLE I 

COMPUTATIONAL TIME [SEC.] OF GWM OPTIMIZATION USING 
 10 ITERATIONS 

Population / Subpopulation 50 40 30 20 
120 275 236 183 145 
100 266 218 174 139 
80 261 192 170 121 
60 254 181 165 114 

 
TABLE II 

COMPUTATIONAL TIME [SEC.] OF GWM OPTIMIZATION USING 
 10 ITERATIONS 

Crossover / Mutation 0.1 0.2 0.3 0.4 
0.9 399 410 419 426 
0.8 366 374 386 399 
0.7 325 337 352 375 
0.6 295 314 331 356 

 
TABLE III 

DESCRIPTION OF THE GA PARAMETERS 

Criteria / Method GA1 GA2 GA3 GA4 
Population size 120 100 80 80 

Subpopulation size 80 80 60 40 
Crossover probability 0.9 0.9 0.95 0.95 
Mutation probability 0.1 0.1 0.05 0.05 

 
attenuation capability, however, too much smoothing 
introduced to the output image results in a blurring of thin 
image details and edges. WM1 and WM2 defined by 
weight vectors ]1,1,2,3,5,3,2,1,1[=w  and 

[1,4,1,4,7,4,1,4,1]=w , respectively, achieve better detail the 
preservation in comparison with the median filter, 
however, in some situations the above-mentioned setting of 
the filter weights can lead to worse filter performance. 
Optimized WM filters can achieve the balance between the 
noise suppression and the signal-detail preservation. The 
results presented in Tables IV to VII, Figs. 4(d) to 4(f) and 
optimized on the image Lena degraded by 10% impulsive 
Figs. 5(e) and 5(f) are related to optimal WM filters noise 
( 0.1pυ = ). In general, the performance of non-adaptive 
LMA WM filter (NWM) shown in Fig. 4(d) and adaptive 
WM filter with the linear approximation (ALWM) is robust 
for the whole range of the noise corruption. In case  
of  adaptive WM filter with the  sigmoidal  approximation 

 
TABLE IV 

ACHIEVED RESULTS USING 2% IMPULSIVE NOISE 

Image Lena Bridge 
Method MAE MSE MAE MSE 
Noisy 1.456 157.4 1.583 182.9 

Median 4.373 79.8 7.481 151.6 
WM1 2.903 55.7 4.340 77.6 
WM2 3.020 47.0 4.598 76.5 
NWM 2.622 45.0 4.552 87.6 

ALWM 2.751 46.8 4.524 84.7 
ASWM 1.807 26.9 3.357 63.3 
GWM 1.331 21.8 2.218 40.4 

 
TABLE V 

ACHIEVED RESULTS USING 5% IMPULSIVE NOISE 

Image Lena Bridge 
Method MAE MSE MAE MSE 
Noisy 3.540 374.3 3.568 398.9 

Median 4.563 85.4 7.644 157.5 
WM1 3.119 63.1 4.604 86.1 
WM2 3.204 53.0 4.814 83.3 
NWM 2.801 50.0 4.786 94.6 

ALWM 2.918 51.2 4.747 91.5 
ASWM 2.033 34.3 3.667 75.7 
GWM 1.639 35.4 2.631 59.4 

 
 (ASWM) and genetically optimized WM filter (GWM), 
these filters (Figs. 4(e) and 4(f)) achieve excellent 
improvement in comparison with other presented methods, 
especially in terms of the MAE. 

Their preservation capability decreases with the 
increased degree of the noise corruption. It is possible to 
observe some impulses presented in the output images that 
result in larger value of MSE (Fig. 7(b)). Concerning the 
MAE criterion, this dependence does not change so 
dramatically (Fig. 7(a)). The same behavior can be 
observed for the second test image Bridge. The filter 
outputs shown in Figs. 5(c) to 5(e) are related to the 
filtering of the image corrupted by impulse noise with 

0.05pυ =  (Fig. 5(b)). In Fig. 8, we also provided error 
criteria in dependence on the degree of impulsive noise 
using the test image Bridge. We also provide Figs. 10 and 
11 that correspond to estimation errors of relevant filters 
related to the images different from the training set and  
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Fig. 8.  Dependence of error criteria on degree of the impulse noise corruption related to the test image Lena: (a) MAE, (b) MSE. 
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Fig. 9.  Dependence of error criteria on degree of the impulse noise corruption related to the test image Bridge: (a) MAE, (b) MSE. 

 
TABLE VI 

ACHIEVED RESULTS USING 10% IMPULSIVE NOISE 

Image Lena Bridge 
Method MAE MSE MAE MSE 
Noisy 7.018 759.1 7.221 807.6 

Median 4.888 94.3 8.042 173.7 
WM1 3.536 76.9 5.197 113.4 
WM2 3.584 65.0 5.392 107.9 
NWM 3.138 60.3 5.318 118.0 

ALWM 3.261 62.2 5.283 115.2 
ASWM 2.488 53.2 4.350 108.9 
GWM 2.254 64.3 3.561 108.4 

 
Fig. 12 that shows enlarged fragments of output images 
achieved using the training set. It can be seen again that the 
traditional filtering schemes fail on the image details and 
edges, because their excessive smoothing capability 
distorts the edges and thin details in the image. In case of 
the ASWM and the proposed GWM filter, their estimation 
errors are the result of insufficient noise attenuation 
capability. The same behavior is observed in enlarged 
fragment of output  images shown  in Fig. 12. The standard 
filtering schemes (Figs. 12(c) and 12(d)) blur the image 
details, whereas AWVM and GWM approaches provide 
excellent estimation capabilities. 

Apart from the numerical behavior of the presented 
optimization approaches, their computational complexity  

TABLE VII 
ACHIEVED RESULTS USING 20% IMPULSIVE NOISE 

Image Lena Bridge 
Method MAE MSE MAE MSE 
Noisy 13.168 1414.1 13.616 1522.3 

Median 5.640 125.4 8.909 208.6 
WM1 4.705 139.6 6.512 179.0 
WM2 4.615 119.2 6.675 174.0 
NWM 4.096 106.2 6.525 174.9 

ALWM 4.194 108.1 6.444 169.9 
ASWM 3.951 141.1 6.091 216.0 
GWM 4.276 201.2 5.919 270.8 

 
and overall evaluation are  realistic measures (Table 
VIII)of their usefulness. Excellent detail preservation 
capability and adaptability to training condition are the 
best advantages of the proposed method. Its drawback is a 
high computational complexity so that searching for global 
optimum is time consuming. The adaptive ALWM and 
ASWM need a few seconds to achieve optimal weights, 
whereas the proposed WM optimization can take some 
computational hours using the same processor. On the 
other hand, the proposed method is able to achieve the 
global solution of the filtering problem. However, too high 
specialization on the training set can lead to the decreased 
robustness against noise. 
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(a)    (c)        (e)

(b)    (d)        (f)  
Fig. 10.  Estimation errors emphasized by factor 3 related to the test image Lena degraded by 2% impulsive noise  (optimal filters were optimized using the 
image Lena and 10% impulsive noise): (a) median, (b) WM1, (c) NWM, (d) ALWM, (e) ASWM, (f) GWM. 
 

(a)    (c)        (e)

(b)    (d)        (f)  
Fig. 11.  Estimation errors emphasized by factor 3 related to the test image Bridge degraded by 15% impulsive noise (optimal filters were optimized using 
the image Lena and 10% impulsive noise): (a) median, (b) WM1, (c) NWM, (d) ALWM, (e) ASWM, (f) GWM. 

 

VI. CONCLUSION 
In this paper, the standard estimation approaches and the 

proposed genetic optimization of WM filters were analyzed 
in terms of impulsive noise attenuation, signal detail 
preservation and robustness. In order to adapt the WM 
filters to removal of impulsive noise, WM filters were 
optimized using four optimization approaches. The 
achieved weight vectors have been successfully used for a 
variety of test images and degrees of the impulse noise 
corruption. Concerning filter performance, the proposed 
genetically  optimized  WM filter can  outperform the well- 

 
TABLE VIII 

OVERALL COMPARISON OF THE WM OPTIMIZATION APPROACHES 

Criteria / Method NWM ALWM ASWM GWM 
Robustness  

against noise Excellent Excellent Good Good 
Preservation 

capability Worse Worse Good Excellent 
Complexity High Low Low High 
Adaptability Good Good Excellent Excellent 

Globally optimal Yes No No Yes 
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(a)    (c)        (e)

(b)    (d)        (f)  
Fig. 12.  Zoomed results obtained using the Lena test image: (a) original image, (b) training set (10% impulsive noise), (c) NWM output, (d) ALWM 
output, (e) ASWM output, (f) GWM output. 
 
known estimation approaches especially in terms of the 
signal detail preservation, however, its drawbacks are high 
computational complexity and decreased robustness for 
highly corrupted images. Another advantage of the 
proposed method lies in the globally optimal weight vector 
for given training set. 
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