
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003

1682-0053/03$10 © 2003 Jahad Daneshgahi

53

Abstract—In this paper, we have considered the problem of
maintaining connected components in quadtree
representation of binary images when a small portion of the
image undergoes change. The batch approach to recalculate
the connected components information is very expensive. Our
algorithms update the quadtree and the connected
components labeling when a homogeneous region in the
quadtree is changed. Our algorithms visit less number of
nodes as compared to the batch approach. For small changes
in the image, the proposed algorithms save time to update the
quadtree and take less time to update the labels of the
components on the average.

Index Terms—Connected components, data structures
image processing, quadtree representation,

I. INTRODUCTION
 QUADTREE is a hierarchical representation of an
image and is based on recursive decomposition of the

image in to homogeneous regions [1] where the criterion
for homogeneity depends on the application. Initially, the
whole image is treated as one region. If the region does not
satisfy the homogeneity criteria, then it is divided in to four
equal sub-regions which are termed as NW, NE, SW and
SE quadrants and is shown in Fig. 1. The process of
decomposition is repeated for each quadrant until the
quadrant satisfies the homogeneity criteria. The advantage
of using quadtree representation is that it allows focusing
on subsets of data that are of interest without going through
irrelevant data. It results in designing efficient image
processing algorithms.

Finding connected components labeling [2] is a well-
studied problem and there exist efficient algorithms to
solve this problem in literature [3]-[6]. Eppstein [7] has
given a lower bound of)(lognO to update this information
per unit change i.e. one object pixel changing to
background or vice-versa. In this paper we deal with the
problem of maintaining the connected component labeling
when only a small portion of the image is changing and
images are represented using quadtree ([1], [8]).

As input, we normally have a set of p images
},...,,{ 21 pIIII = in which any pair of consecutive images

jI and 1+jI are very similar to each other and all the
images have to undergo similar kind of processing.
Traditionally, batch algorithms that process each image as

Manuscript received February 18, 2002; revised November 27, 2002.
This work was supported in part by the Department of Space, India.

Vikrant Khanna is with Cadence India Ltd., India (e-mail:
vkhanna@cadrence.com).

Phalguni Gupta is with the Department of Computer Science and
Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016,
India (e-mail: pg@iitk.ac.in).

C. J. Hwang is with the Department of Computer Science, Southwest
Texas State University, Texas 78666 4616, USA (e-mail: ch01@swt.edu).

Publisher Item Identifier S 1682-0053(03)0139

Fig. 1. Splitting an image into four quadrants.

(a)

(b)

Fig. 2. (a) A binary image, (b) and its representation.

separate entity have been employed. In order to find the
connected components in each image, the standard batch
approach is to find the connected components on each
image separately. In contrast, dynamic approach is to
maintain the connected component information of the
previous image and update that information to represent the
connected components in the new image.

Thus, in the quadtree representation, there are three
types of nodes namely GRAY, OBJECT and BACKGROUND
([1], [9]) which are depicted as circle, shaded square and
white Square respectively. The GRAY node, the OBJECT
node and the BACKGROUND node represent a region with
both object as well as background pixels, a homogeneous
region with only object pixels and that with only
background pixels respectively. Fig. 2(a) shows a binary
image and its corresponding quadtree is shown in Fig. 2(b).
The homogeneous regions form the leaf nodes in the
quadtree.

Assume, the number of OBJECT nodes in the quadtree is
represented by Oδ while the number of BACKGROUND
nodes in the quadtree is represented by Bδ . Suppose, a
homogeneous region in the quadtree of the image 0I with

BO δδ + leaf nodes changes to yield image with 1I with
BO δδ ′+′ leaf nodes in the quadtree. Our objective is to

Maintaining Connected Components in
Quadtree-based Representation of Images

Vikrant Khanna, Phalguni Gupta, and C. J. Hwang

A

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 54

design efficient algorithms to update the connected
components labeling in the quadtree when the image
undergoes such type of changes. Traditionally, the size of a
component in a quadtree is obtained by the number of leaf
nodes in that component [10].

In the following section, some operations on the
quadtree that are used by our algorithms are discussed.
Section III deals with various possible transformations that
can be occurred in a homogeneous region. Algorithms to
maintain the connected component labeling in each
transformation are also presented in this section. In the next
section, our algorithms are analyzed and compared with the
batch algorithm. Concluding remarks are given in the last
section.

II. OPERATIONS ON QUADTREES
This section discusses some operations performed on

quadtrees. These operations will be used in our algorithms.

A. Postorder Traversal Operation
Postorder traversal of the quadtree representation in

which the leaf nodes will be visited as shown in Fig. 2, is
equivalent to the Morton scan of the homogeneous regions
in the binary image [8].

B. Neighborhood Operation
Given a node and a particular direction, this operation

finds out all OBJECT nodes that represent neighboring
regions of the node in the given direction. The algorithm
that performs this operation is discussed in [10]. It is found
to be an expensive operation and is extensively used in our
algorithms to maintain the components labeling. So for
completeness it becomes necessary to revisit the analysis of
the complexity of the operation which is given in [10],
[11].

Lemma 1: The average of the maximum number of nodes
visited to find all the neighbors in a particular direction is
at most five.

Proof: Given a node SR at level i and a direction D, there
exists a maximum of)12(2 −−− inin neighbor pairs.

022 ×−in nodes have their nearest common ancestor at
level n , 122 ×−in nodes at level 1−n , …, and

linin −−− × 22 at level 1+i . For each node at level i with a
common ancestor at level j , the maximum number of
nodes to be visited is +−−+−)1()(ijij

1
0

2)1(22 +
=

+−−=∑ ii

k
k ij . If we assume that the

occurrence of a node R is equally likely at any level i and
at any of the)12(2 −−− inin positions at level i , then the
average of the maximum number of nodes visited is

∑

∑ ∑

∑

∑ ∑

=

+
−

=

−−

=

−−−

−

=

−−

+−
−

= +=

−

−

+

=

−

+−−−

n

i

ii

i
n

i

in

j

jin

n

i

inin

ijn
n

i

n

ij

in

j

ij

0

1
1

0

1

0

122

1

0

1
1

0 1

)12.(2

)22.(2

)12.(2

]2)1(2.[2.2

. (1)

The numerator of (1) can be written as

∑ ∑∑ ∑
−

=

−−

=

−−

=

−

=

−− ×+×
1

0

1

0

1

0

1

0

2222

2
12

2
2

n

i

in

j
j

in

j

n

i

in
j

in j . (2)

But

)
2

11(2
2
1and

2
12

2

1

0

1

0
1∑ ∑

−−

=

−−

=
−−−

−×=
−+

−=
jn

i

jn

i
injinj

inj . (3)

Substituting (3) in to (2) and using

)
2
14(

3
14

2
11

0
22∑

−

=

−=
n

i
n

i
i , one can get the numerator as

3
82)23(2

3
20 12 −×+−× +nn n . (4)

The denominator of (1) can be simplified as follows:

)2232(
3
1 122 +×−× ++ nn . (5)

Substituting (4) and (5) in (1) one yields

5
large gets as5

2232
182)73(35

)2232(
3
1

3
82)23(2

3
20

122

1

122

12

≤
≈

+×−
+×+×

−=
+×−×

−×+−×

++

+

++

+

n

nn
nn

n

nn

nn

Hence the proof.
Instead of exploring all the neighbors separately, the

common approach is to explore all the neighbors adjacent
to a node in direction D simultaneously to reduce the
number of nodes visited. We will be using the technique to
find neighbors proposed in [11]. Assume that we have a
function which takes a leaf node R and a direction D as
input and finds a set of all neighboring OBJECT nodes of
node R in direction D.

We will be using this operation in our dynamic
algorithms for maintaining connected components. If we
visit the neighbors by exploring adjacencies along a
direction as is done in this function, rather than visiting
each of them separately, then the following lemma holds.

Lemma 2: For any non-leaf node in the complete quadtree
of depth n , on an average, there are at most n5 nodes in
the subquadtree rooted at that node.

Proof: The number of nodes in the quadtree at level i is at
most i4 . Hence the total number of non-leaf nodes in the
complete quadtree is

∑
−

=

−
=

1

0 3
144

n

i

i
i . (6)

At each node at level i , there are ∑ −

=

in

j
j

0
4 nodes in its

subquadtree. This means that the total number of nodes in
all the subquadtrees is given by

9
14

3
4

3
)14(444

1

1

0 0

1

0

1

+
−

×
=

−
=

+

−

=

−

=

−

=

+−

∑ ∑ ∑
nn

n

i

in

j

n

i

ini
ji

n
. (7)

Hence, from (6) and (7), the average number of nodes in
a subquadtree rooted at a non-leaf node is given by

www.SID.ir

Arc
hi

ve
 o

f S
ID

KHANNA et al: MAINTAINING CONNECTED COMPONENTS IN QUADTREE-BASED REPRESENTATION OF IMAGES 55

large gets as5
14

4
3
14

)14(3
12)14()14(12

)14(3
)14(43 1

nn

n

nnn

n

n

n

nn

n

nn

<
−

+−=

=
−×

+−−−×
=

−×
−−× +

.

The neighbor finding operation is mainly required to
define the interleaved breadth first search (IBFS)
operation which is discussed below.

C. Merging Operation
During modification in the original image, a GRAY

region in the quadtree representation may become a
homogeneous region. This operation updates the quadtree
by merging the leaves and their parent to form one node
representing a homogeneous region. Suppose the depth of
the quadtree is n . Then,

Lemma 3: The merging operation requires visiting at most
5n nodes to update the quadtree.

D. Building Subquadtree Operation
Notice that any modification in a homogeneous region

may cause the conversion of the region into a GRAY region
and hence, it needs to update the quadtree. This operation
uses the algorithm given in [12] and the number of nodes
visited by this algorithm is bounded by the number of leaf
nodes, Nδ , in the subquadtree. Hence,

Lemma 4: The building subquadtree operation visits at
most)(NO δ nodes.

E. Interleaved Breadth First Search (IBFS)
In standard breadth first search (BFS) on quadtrees, we

are given a node to begin with. Using that node as seed, we
traverse OBJECT nodes in breadth first order i.e. visit all
the immediate neighbors of that node in all directions
before visiting the neighbor's neighbors. Note that the
workset in the standard BFS is implemented as queue. In
the interleaved breadth first search (IBFS), we have a pair
of nodes which serve as seed for two separate BFS
processes respectively. The two BFS processes visit the
nodes starting from the seeds, in an interleaved fashion.
This technique is discussed in [13]. In this section we
present a modification of the technique to suit our purpose.

Suppose for region R, we get a set SR of neighboring
nodes in all directions. Out of the nodes in SR, our
objective is to find those that are connected and those that
are disconnected. For each component except the largest
one, we also desire to build a list which contains all the
nodes in that component. Note that the largest component
is the one having the largest number of nodes. We start
with a pair of nodes from SR. Let us assume that we have a
function GET_PAIR() that returns a different pair of node
from the set, every time it is called. For each node we put it
in its corresponding workset if it has not been visited and
start a separate BFS process for each node. The first BFS
process visits a node after removing it from the first
workset. It puts OBJECT neighbors of the visited node in
the corresponding workset. Then it inserts the visited node
in the list corresponding to the component to which the
node should belong and stops. Now the other BFS process

starts and visits a node after removing it from the second
workset. It puts all OBJECT neighbors of the visited node
in the corresponding workset. Then it inserts the visited
node in the list corresponding to that component to which
the node should belong and stops. Again the first BFS
process starts and does its job. This goes on and the
processes visit one node at a time.

As soon as the workset for a particular process becomes
empty, it means that the particular process has visited all
the nodes in the corresponding component and execution of
IBFS is stopped. The component whose workset has
become empty is the smaller component since it constituted
of less number of nodes. The list corresponding to that
component has all the nodes of that component.

It may so happen that during the IBFS, one BFS process
may visit a node that has been visited earlier by the other
BFS process. This means that the nodes visited by the two
BFS process belong to the same component. In such a case,
we stop the IBFS, merge the two lists and worksets.
Moreover, if we visit a node that is in the set SR, we
remove that node from the set so that it does not appear in
the next pair of nodes. When we select a pair of nodes from
the set SR before starting IBFS, it may so happen that a
node may belong to a component that has been partially
visited by an earlier IBFS. For such a node, we must be
having a corresponding list constructed earlier. In this case,
we compare the size of the lists associated with the nodes
in the pair and run a BFS process on the node with smaller
list. This process continues till the size of both the lists
become equal and all the nodes in the component are
visited. After this, if still the two components appear to be
separate and not all the nodes in each component have been
visited, then we start the IBFS with the existing worksets
and lists.

III. HOMOGENEOUS REGION TRANSFORMATIONS
In this section, we discuss various transformations that a

homogeneous region can undergo when the image changes
in that region. We also present algorithms to update the
quadtree as well as the connected component labeling for
these transformations.

Effectively, all the changes can be grouped into those
affecting a single region and then we can use our
algorithms to handle the changes in every affected region.
We assume that the changed pixels have already been
grouped and we have identified the affected regions before
we maintain the labeling of connected components in our
quadtree. The region transformations can be of four types:

• BTO Transformation: In this transformation, all the
BACKGROUND pixels in the homogeneous region change to
OBJECT pixels. This means that the BACKGROUND node
will have to change its Nodetype to OBJECT to reflect this
change, apart from updating the pixel information stored in
the node.

• OTB Transformation: This transformation is exactly the
opposite of BTO transformation. Here, all OBJECT pixels
in the homogeneous region change to BACKGROUND
pixels. This means that the corresponding node in the
quadtree will have to change its Nodetype to
BACKGROUND.

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 56

(a) (b)

(c) (d)

Fig. 3. BTO transformation: (a) original image, (b) BTO transformed image, (c) quadtree original image, (d) quadtree of BTO transformed image.

• BTG Transformation: In this transformation, some
BACKGROUND pixels in a homogeneous region change to
OBJECT pixels. This makes the region non-homogeneous
and has to be decomposed further till we get homogeneous
regions. In the quadtree, it means that the corresponding
BACKGROUND node is transformed into a gray node. Apart
from updating the BACKGROUND node to the GRAY node,
we have to build the subquadtree with the affected node as
the root. This could be easily done using the algorithm
suggested by Shaffer et al. [12] and update the quadtree by
modifying the pointers.

• OTG Transformation: In this transformation, some
OBJECT pixels in a homogeneous region change to
BACKGROUND pixels. As was the case in BTG, we have to
decompose the region further. In the quadtree, this requires
changing the OBJECT node to the GRAY node and builds
the subquadtree with the affected node as the root. The
subquadtree can be built in the same way as done in BTG
transformation.

Before we present the details of each transformation, let
us define some symbols used in our analysis. Oδ and Bδ
are the number of OBJECT and BACKGROUND nodes in
the quadtree representation of the image before
modification and let n be the quadtree's depth. Similarly,

Oδ ′ and Bδ ′ are the number of OBJECT and BACKGROUND
nodes in the quadtree representation of the image after
modification and let n′ be the quadtree's depth. Suppose a
leaf node in the quadtree of the original image is replaced
by a subquadtree because of some modification in the
original image. Then Nδ is the number of leaf nodes in
that subquadtree.

A. BACKGROUND to OBJECT Node Transformation
Fig. 3 shows the BTO transformation. Fig. 3(a) is the

original image in which the heavily marked region
undergoes the BTO transformation to give us the image in
Fig. 3(b). The quadtree representation of the original
image and the modified image is given by Figs. 3(c) and
3(d), respectively.

Let the affected region be R and the neighboring regions
(and corresponding nodes in the quadtree) lie in p different
components. This means that the neighbors are labeled
with p different labels. Once the region changes and the
node changes its Nodetype from BACKGROUND to

OBJECT, all the neighbors will become connected. If they
belong to the same component i.e. p is 1, then there is
nothing to do. But if some neighbors belong to different
components, we need to relabel nodes belonging to p-1
components to denote this change. Here we apply the
smaller component relabeling heuristic suggested by Even
et al. [13]. This heuristic says that the label of the
component having largest number of nodes is used to
relabel the nodes belonging to other components. Finding
the component with largest number of nodes is easy since
we keep the count of the nodes associated with each of the
labels. So, we relabel the nodes belonging to smaller
components with the label of the largest component. Size
of a component is the number of nodes in it. The detail of
the algorithm to handle the BTO transformation is given
below.

BTO Algorithm
1. Update the Quadtree. Let the affected region be R.
2. Find SR, OBJECT neighbors of R in all four
 directions.
3. Find LR, the set of labels assigned to nodes in SR.
4. Keep only one node per label in SR and remove all
 other nodes in SR.
5. Among the labels in LR, identify the label l of the
 largest component.
6. Remove the node in SR corresponding to that label.
7. Assign the label l to region R and update the count
8. forall ∈α SR do
9. }{αα =W

 while φα ≠W do
10. Remove a member x from αW
11. Relabel x with l and update the count
12. Find Sx, the set of OBJECT neighbors of x in all
 directions
13. forall ∈y Sx which do not have the label l do
14. Put y in αW

 done

The most expensive operation in this and following
algorithms is following pointers to visit nodes. So, we
present the analysis in terms of the nodes visited by the
algorithms.

www.SID.ir

Arc
hi

ve
 o

f S
ID

KHANNA et al: MAINTAINING CONNECTED COMPONENTS IN QUADTREE-BASED REPRESENTATION OF IMAGES 57

(a) (b)

(c) (d)

Fig. 4. OTB transformation: (a) original image, (b) OTB transformed image, (c) quadtree original image, (d) quadtree of OTB transformed image.

Lemma 5: The total number of nodes visited by the BTO
algorithm is)(nO O +δ .

Proof: When a BACKGROUND node transforms to OBJECT
node, it may cause merging of sibling nodes. Merging
nodes at a level means visiting the father node and the
sibling nodes and replacing the father node by an OBJECT
leaf node. The merging may not stop here and in worst
case, we may have to perform merging at each level. This
means that step 1 will require visiting at most 5 n nodes.
By Lemma 1, step 2 will visit at most 20 nodes on an
average. To relabel the nodes belonging to smaller
components, we have to explore the adjacency of each
node belonging to those components in for loop (steps 9-
14). Now the sum of the sizes of the smaller components is
bounded by the number of OBJECT nodes denoted by Oδ .
So the total number of nodes visited in for loop (steps 9-
14) is at most 20 Oδ on an average. Hence the number of
nodes visited is bounded by)(nO O +δ .

B. OBJECT to BACKGROUND Node Transformation
The OTB transformation is demonstrated with the help of

Fig. 4. The original image and the modified image are
shown in Figs. 4(a) and 4(b), respectively. Corresponding
quadtree representations are given in Figs. 4(c) and 4(d)
respectively. Transformation of a node from OBJECT type
to BACKGROUND type may cause merging of nodes as
shown in the figure.

The algorithm given below updates component labeling
under OTB transformation. When a region R is an OBJECT
region, all its neighboring OBJECT regions are connected
and belong to the same component. This means that all
OBJECT neighbors of an OBJECT node have the same
label as that node. Once that node becomes a
BACKGROUND node, the neighboring nodes may become
disconnected and hence form separate components. Let
OBJECT neighbors of R be grouped into set SR.

OTB Algorithm:
Let the original region be R and its label be l.
1. Find R, OBJECT neighbors of R in all four directions.
2. Update the Quadtree.
3. { 21,nn }=GET_PAIR(SR).
 while 1n and 2n are not NULL do
4. IBFS(21,nn).

5. { 21,nn }=GET_PAIR(SR).
 done
6. Identify the largest list of nodes.
 It corresponds to the largest component created out of
 the original component
 forall smaller lists do
7. Get a new label. Label all the nodes in that list with
 the new label
 done
To start with, we take a pair of neighboring node and do

an IBFS on that pair. If the pair is still connected, we will
encounter a common node and hence we do not require any
relabling for the region to which the pair belongs. If during
the course of IBFS, we encounter an OBJECT node in the
neighborhood of R, then it means that node too is in the
same region. So we remove that node from the set SR. If the
nodes in the pair are not connected anymore, then a stage
will come when we have scanned all the nodes in the
smaller component and IBFS stops. A complete list of
nodes is formed for the smaller component. A stage will
come when we have exhausted all pairs of neighbors. At
this point, the largest list corresponds to the largest
component. All other lists represent smaller components.
Here we apply the smaller component relabling heuristic to
relabel the smaller components. For each smaller list, we
get a new label and relabel all the nodes in the list by that
label.
Lemma 6: The total number of nodes visited by OTB
algorithm is)(nO O +δ .
Proof: The algorithm visits at most 20 nodes in step 1.
Merging in step 2 may cause it to visit at most 5 n nodes.
GET_PAIR() function simply returns any two nodes from
the set SR and this pair cannot be repeated again because
one of the nodes in the pair gets deleted from the set before
another call to GET PAIR() function. So finding node pairs
is a constant time operation requiring no node visits. The
number of OBJECT nodes visited by the all the IBFS
invoked in step 4 within the loop is bounded by O and we
explore the adjacencies of the visited OBJECT nodes in all
4 directions. Therefore by Lemma 1, we visit at most
20 Oδ nodes. The number of nodes visited in step 7 is
bounded by Oδ . The number of nodes visited by the
algorithm is hence bounded by (nO +δ).

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 58

(a) (b)

(c) (d)

Fig. 5. BTG transformation: (a) original image, (b) BTG transformed image, (c) quadtree original image, (d) quadtree of BTG transformed image.

C. BACKGROUND to GRAY Node Transformation
The BTG transformation is shown with the help of Fig. 5.

The original image and the modified image are given in
Figs. 5(a) and 5(b), respectively; while their quadtree
representations are in Figs. 5(c) and 5(d), respectively.
When a node changes to the GRAY node, we have to scan
the region and construct a subquadtree. Then we replace
the leaf node representing that region by the subquadtree
obtained. In order to construct the subquadtree, we can use
the algorithm by Shaffer et al. [12].

The algorithm for BTG transformation is presented
below. We first find the neighbors of the affected region
and then update the quadtree to reflect the changes in that
region. We label the newly created OBJECT nodes that are
adjacent to a node in SR and merge equivalence labels in
the equivalence table. This will make all the boundary
nodes in the modified region be labeled with the existing
labels. Once the boundary nodes in the modified region are
labeled, we label the rest of the newly created nodes by the
classical component labeling algorithm by Samet [10].
After this is done, the components that become connected
will have their labels in the same equivalence class. So, for
each equivalence class, we identify the label, say l, used for
largest number of nodes. Then we pick a node from SR
with a label in the same equivalence class as l and do a
BFS starting from that node. We replace the labels of the
nodes encountered in the BFS with the label l. This step is
repeated for each equivalence class of labels.

Algorithm: BTG
Let R be the affected region.
1. Find SR, the set of OBJECT neighbors of R in all
 directions
2. Initialize the Equivalence Table with the labels of SR
3. Update the Quadtree
 forall α in SR do
4. Find Sα, neighbors of α in the affected region.

 forall ∈x Sα do
5. if x is unlabeled then label it with α′ s label
6. if x′ s label is different then
 merge the equivalence classes of the two
 labels
7. Label the updated portion of the quadtree using

classical method

8. Update the counts of nodes associated with each label
in the Quadtree

9. For each equivalence class, identify the label used for
maximum number of nodes

10. Remove the nodes from SR with those labels
 forall ∈α SR do
11. Let l be the label of α
12. Let the label identified in Step 9 for the
 equivalence class of l be m
13. }{αα =W
 while φα ≠W do
14. Remove a member x from αW and relabel x

 with m
15. if x is in SR then remove it from SR
16. Find Sx, the set of OBJECT neighbors of x in all
 directions
 forall ∈y Sx which have the label l do
17. Put y in αW

done

Lemma 7: The total number of nodes visited by the BTG
algorithm is bounded by)(nO NO ++ δδ .

Proof: At most 20 nodes are visited in finding the set SR in
step 1. Updating the quadtree in step 3 has the time
complexity bounded by the number of nodes created which
is at most 5n on an average by Lemma 2. Suppose the
number of leaf nodes in subquadtree is Nδ . Then the
classical algorithm for labeling the regions in the
subquadtree will visit at most)(NO δ nodes [10]. For steps
11-17, the number of nodes that are relabeled is bounded
by Oδ and for each such node we explore the adjacency in
all four directions. So the number of nodes being visited in
these steps is at most 20 Oδ . Hence the lemma holds.

D. OBJECT to GRAY Node Transformation
The OTG transformation is demonstrated with the help

of Fig. 6. The original image is presented in Fig. 6(a) and
its corresponding quadtree is presented in Fig. 6(c).
Similarly, the modified image is presented in Fig. 6(b) and
its respective quadtree is presented in Fig. 6(d). Similar to
the BTG transformation, we have to construct a
subquadtree for the affected region and replace the leaf
node with the obtained subquadtree. The neighbors of the
affected node R are found out and put in set SR. Then the

www.SID.ir

Arc
hi

ve
 o

f S
ID

KHANNA et al: MAINTAINING CONNECTED COMPONENTS IN QUADTREE-BASED REPRESENTATION OF IMAGES 59

 (a) (b)

 (c) (d)

Fig. 6. OTG transformation: (a) original image, (b) OTG transformed image, (c) quadtree original image, (d) quadtree of OTG transformed image.

quadtree is updated. We label all the newly created nodes
in the neighborhood of the nodes in SR, with the label of R.
This is followed by labeling the subquadtree using the
classical method. Now, we have to identify all the
disconnected components that were previously connected.
This is done by applying the IBFS on the pair of nodes
obtained from the set SR. After this process is complete, we
are left with lists of nodes corresponding to different
components created. We identify the largest list. For all
other lists, we label all the nodes in the list with a new
label. The details of the OTG algorithm are presented
below.

OTG Algorithm:
Let R be the affected region and its label be l
1. Find SR, the set of OBJECT neighbors of R in all
 directions
2. Update the Quadtree.
3. forall α in SR do Label the neighbors of α in the
 updated portion with label l
4. Label the updated portion of the quadtree using
 classical method.
5. Update the counts of nodes associated with the labels
6. { 21,nn }=GET_PAIR(SR).
 while 1n and 2n are not NULL do
7. IBFS(21,nn).
8. { 21,nn }=GET_PAIR(SR).
9. Identify the largest list of nodes.
 It corresponds to the largest component created out of
 the original component
 forall smaller lists do
10. Get a new label. Label all the nodes in that list with
 the new label
 done

Lemma 8: The total number of nodes visited by the OTG
algorithm is bounded by)(nO NO ++ δδ .

Proof: Finding all the members of the set SR in step 1
requires visiting at most 20 nodes by Lemma 1. Updating
the quadtree will require visiting at most 5n node on an
average by Lemma 2. The number of nodes visited in step
3 is bounded by)(OO δ . Step 4 will require at most

)(NO δ nodes where the subquadtree has Nδ leaf nodes.
The number of nodes visited by all the IBFS within the

loop in step 7 are bounded by 20 Oδ . The number of nodes
visited in step 10 is bounded by Oδ . Hence the number of
nodes visited by the OTG algorithm is bounded by

)(nO NO ++ δδ .

IV. COMPARISON WITH BATCH APPROACH
Suppose we have an image set I in which consecutive

images jI and 1+jI are very similar to each other. In the
batch approach for maintaining connected components, we
first build the quadtree and then label the components. This
procedure is done for every image in the set. Let us just
concentrate on a pair of images jI and 1+jI . In order to
build the quadtree of the image jI , we have to scan the
whole image and using the algorithm suggested by Shaffer
et al. [12] in time bounded by)(mO where m is the
number of nodes in the quadtree representation of that
image. Let the quadtree has BO δδ + leaf nodes. Then the
time required to construct the quadtree is bounded by

)(BOO δδ + since the number of nodes in a quadtree is
bounded by the number of leaf nodes it has.

To find connected components in the quadtree, the time
complexity of the algorithm by Samet [10] is)(BOO δδ +
if we assume that we have a linear cost maintenance of
equivalence table as suggested in [4]. This requires
postorder traversal of the whole quadtree twice. We have to
repeat the same proceedure for the next image 1+jI .
Creation of the quadtree of the modified image 1+jI is
bounded by)(BOO δδ ′+′ if the quadtree has BO δδ ′+′ leaf
nodes. Then finding connected components in this quadtree
takes)(BOO δδ ′+′ time. Hence the time complexity of the
batch approach to update labels when a homogeneous
region undergoes change is)(BOBOO δδδδ ′+′++ .

In contrast, our approach for maintaining connected
components requires constructing the quadtree just once for
the image set I . We construct the quadtree for the first
image and for successive images; we update the quadtree
of the previous image. For this, we assume that instead of
providing the whole images, we are just given the
differences between an image and its predecessor image.
So, we just have to update those portions of the quadtree
that are undergoing changes, rather than building the whole
quadtree from the scratch. Hence if the difference between
consecutive images is not much, then only a minor portion
of the quadtree need to be updated. The updation cost per

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 60

unit change is bounded by)(NO δ where N is the number
of leaf nodes in the updated portion of the quadtree.

Theorem 1: Algorithms to maintain connected components
on quadtrees visit at most)(nO NO ++ δδ nodes.

Proof: For a unit change, a region may undergo any one of
the four transformations discussed in the previous section.
The time complexity of our algorithms for each of these
transformations is bounded by)(nO NO ++ δδ nodes, by
Lemmas 5, 6, 7 and 8. Hence the theorem holds.

Since the subquadtree with δN leaf nodes is a part of the
quadtree of the modified image,)(BON δδδ ′+′≤ .
Moreover, for large images, n is very small compared to

BO δδ + . This means that the number of nodes visited by
our algorithm has a bound lower than that of the batch
method. If the number of changes involved is very few i.e.
the consecutive images are very similar, our algorithms will
not only save time in updating the quadtree, but also update
the labels faster than the classical algorithm on an average.
Theoretically, in the worst case, the updation of labels in
our algorithms for maintaining connected components can
be as bad as the classical algorithm employed in the batch
approach.

V. CONCLUSIONS
We have presented dynamic algorithms to update the

connected components labeling in quadtree representation
of binary images, when a homogeneous region undergoes
some changes. Our algorithms save on the rebuilding cost
of the quadtree for every change. The bound on the number
of nodes visited by our algorithms can be reduced further
by maintaining more history information [14]. It is shown
that for small changes in an image represented by a
quadtree, on an average, algorithms presented in this paper
take less amount of time to update the quadtree and also to
label connected components as compared to the classical
algorithm. However, in the worst case, our algorithms are
as bad as the classical algorithm. It is worth to determine
the threshold value experimentally, for which the proposed
algorithms are found better than the classical algorithm.

ACKNOWLEDGEMENT
Authors are thankful to the anonymous referees for their

valuable comments.

REFERENCES
[1] H. Samet, "The quadtree and related hierarchical data structures,"

Computing Surveys, vol. 16, no. 2, pp. 187-260, Jun. 1984.
[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing,

Addison Wesley, 1998.
[3] G. A. Cheston, "On-line connectivity algorithms," Networks, vol. 14,

no. 1, pp. 83-94, Spring 1984.
[4] M. B. Dillencourt, H. Samet, and M. Tamminen, "A general

approach to connected components Labeling for arbitrary image
representations," J. ACM, vol. 39, no. 2, pp. 253-280, Apr. 1992.

[5] R. Lumia, "A new three dimensional connected components
algorithm," Computer Vision, Graphics and Image Processing,
vol. 23, no.2, pp. 207-217, Aug. 1983.

[6] O. Zuniga, R. Lumia, and L. Shapiro, "A new connected components
algorithm for virtual memory computers," Computer Vision,
Graphics and Image Processing, vol. 22, no. 2, pp. 287-300,
May 1983.

[7] D. Eppstein, "Dynamic connectivity in digital Images," Information
Processing Letters, vol. 62, no. 3, pp. 121-126, May 1997.

[8] H. Samet, The Design and Analysis of Spatial Data Structures,
Addison-Wesley, 1990.

[9] H. Samet, "Region representation: quadtrees from binary arrays,"
Computer Graphics and Image Processing, vol. 13, no. 1, pp. 88-93,
May 1980.

[10] H. Samet, "Connected component labeling using quadtrees," J. ACM,
vol. 28, no. 3, pp. 487-501, Jul. 1981.

[11] H. Samet, "Neighbor finding techniques for images represented by
quadtrees," Computer Graphics and Image Processing, vol. 18,
no. 1, pp. 37-57, Jan. 1982.

[12] C. A. Shaffer and H. Samet, "Optimal quadtree construction
algorithms," Computer Vision, Graphics and Image Processing,
vol. 37, no. 3, pp. 402-419, Mar. 1987.

[13] S. Even and Y. Shiloach, "An on-line edge deletion problem,"
J. ACM, vol. 28, no. 1, pp. 1-4, Jan. 1981.

[14] G. Ramalingam, Bounded Incremental Computation, Springer-
Verlag, 1996.

Vikrant Khanna recieved the B. Tech. degree in Computer Science

and Engineering from M.N.R.E.C at Allahabad, India in 1998 and
M. Tech. degree from Indian Institute of Technology Kanpur, India in
2000. His M. Tech. thesis was entitled "New Algorithms For Some Image
Processing Problems In Remote Sensing Applications" and was supported
by ISRO, India. At present he works for Cadence Design Systems at
Noida, India. His research interests include genetic algorithms, on-line
algorithms and physical design layout problems.

Phalguni Gupta received the Doctoral degree from Indian Institute of

Technology Kharagpur, India in 1986. He works in the field of data
structures, sequential algorithms, parallel algorithms, on-line algorithms.
From 1983 to 1987, he was in the Image Processing and Data Product
Group of the Space Applications Centre (ISRO), Ahmedabad, India and
was responsible for software for correcting image data received from
Indian Remote Sensing Satellite. In 1987, he joined the Department of
Computer Science and Engineering, Indian Institute of Technology
Kanpur, India. Currently he is an Associate Professor at the department.
He is responsible for several research projects in the area of image
processing, graph theory and network flow. Dr. Gupta is a member of the
Association Computing Machinery (ACM).

C. J. Hwang holds a Doctoral Degree in Mathematics from Louisiana

State University and a Masters of Science in Mathematics/Computing
Science from National Taiwan University. Dr. Hwang has also received
certificate from Harvard Executive Leadership Program seminars. He
began his teaching career over 22 years ago at Purdue University and was
an Associate Professor. Dr. Hwang has also taught at University of
Maryland as visiting faculty and currently teaches at Southwest Texas
State University as a Professor of Computer Science. Some of Dr. Hwang's
courses include object-oriented analysis and design, Research in object-
oriented systems development, database systems modeling development,
and algorithms. Dr. Hwang has also worked as a Senior Consultant at
some international IT consulting companies for over 15 years. He has
played a major role in numerous IT projects including multimedia,
e-commerce and image compression projects. His expertise and research
interest covers a wide range of topics including data modeling and design,
object oriented design modeling, e-commerce and image processing
algorithms.

www.SID.ir

