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Abstract—In this paper, we have considered the problem of 
maintaining connected components in quadtree 
representation of binary images when a small portion of the 
image undergoes change. The batch approach to recalculate 
the connected components information is very expensive. Our 
algorithms update the quadtree and the connected 
components labeling when a homogeneous region in the 
quadtree is changed. Our algorithms visit less number of 
nodes as compared to the batch approach. For small changes 
in the image, the proposed algorithms save time to update the 
quadtree and take less time to update the labels of the 
components on the average.  
 

Index Terms—Connected components, data structures 
image processing, quadtree representation, 

I. INTRODUCTION 
 QUADTREE is a hierarchical representation of an 
image and is based on recursive decomposition of the 

image in to homogeneous regions [1] where the criterion 
for homogeneity depends on the application. Initially, the 
whole image is treated as one region. If the region does not 
satisfy the homogeneity criteria, then it is divided in to four 
equal sub-regions which are termed as NW, NE, SW and 
SE quadrants and is shown in Fig. 1. The process of 
decomposition is repeated for each quadrant until the 
quadrant satisfies the homogeneity criteria. The advantage 
of using quadtree representation is that it allows focusing 
on subsets of data that are of interest without going through 
irrelevant data. It results in designing efficient image 
processing algorithms. 

Finding connected components labeling [2] is a well-
studied problem and there exist efficient algorithms to 
solve this problem in literature [3]-[6]. Eppstein [7] has 
given a lower bound of )(lognO  to update this information 
per unit change i.e. one object pixel changing to 
background or vice-versa. In this paper we deal with the 
problem of maintaining the connected component labeling 
when only a small portion of the image is changing and 
images are represented using quadtree ([1], [8]). 

As input, we normally have a set of p  images 
},...,,{ 21 pIIII =  in which any pair of consecutive images 

jI  and 1+jI  are very similar to each other and all the 
images have to undergo similar kind of processing. 
Traditionally,  batch algorithms that process each image as 
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Fig. 1.  Splitting an image into four quadrants. 
 

 
(a) 

 

 
(b) 

 

Fig. 2.  (a) A binary image, (b) and its representation. 
 
separate entity have been employed. In order to find the 
connected components in each image, the standard batch 
approach is to find the connected components on each 
image separately. In contrast, dynamic approach is to 
maintain the connected component information of the 
previous image and update that information to represent the 
connected components in the new image. 

Thus, in the quadtree representation, there are three 
types of nodes namely GRAY, OBJECT and BACKGROUND 
([1], [9]) which are depicted as circle, shaded square and 
white Square respectively. The GRAY node, the OBJECT 
node and the BACKGROUND node represent a region with 
both object as well as background pixels, a homogeneous 
region with only object pixels and that with only 
background pixels respectively. Fig. 2(a) shows a binary 
image and its corresponding quadtree is shown in Fig. 2(b). 
The homogeneous regions form the leaf nodes in the 
quadtree. 

Assume, the number of OBJECT nodes in the quadtree is 
represented by Oδ  while the number of BACKGROUND 
nodes in the quadtree is represented by Bδ . Suppose, a 
homogeneous region in the quadtree of the image 0I  with 

BO δδ +  leaf nodes changes to yield image with 1I  with 
BO δδ ′+′  leaf nodes in the quadtree. Our objective is to 
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design efficient algorithms to update the connected 
components labeling in the quadtree when the image 
undergoes such type of changes. Traditionally, the size of a 
component in a quadtree is obtained by the number of leaf 
nodes in that component [10]. 

In the following section, some operations on the 
quadtree that are used by our algorithms are discussed. 
Section III deals with various possible transformations that 
can be occurred in a homogeneous region. Algorithms to 
maintain the connected component labeling in each 
transformation are also presented in this section. In the next 
section, our algorithms are analyzed and compared with the 
batch algorithm. Concluding remarks are given in the last 
section. 

II. OPERATIONS ON QUADTREES 
This section discusses some operations performed on 

quadtrees. These operations will be used in our algorithms. 

A. Postorder Traversal Operation 
Postorder traversal of the quadtree representation in 

which the leaf nodes will be visited as shown in Fig. 2, is 
equivalent to the Morton scan of the homogeneous regions 
in the binary image [8]. 

B. Neighborhood Operation 
Given a node and a particular direction, this operation 

finds out all OBJECT nodes that represent neighboring 
regions of the node in the given direction. The algorithm 
that performs this operation is discussed in [10]. It is found 
to be an expensive operation and is extensively used in our 
algorithms to maintain the components labeling. So for 
completeness it becomes necessary to revisit the analysis of 
the complexity of the operation which is given in [10], 
[11]. 

Lemma 1: The average of the maximum number of nodes 
visited to find all the neighbors in a particular direction is 
at most five. 

Proof: Given a node SR at level i  and a direction D, there 
exists a maximum of )12(2 −−− inin  neighbor pairs. 

022 ×−in  nodes have their nearest common ancestor at 
level n , 122 ×−in  nodes at level 1−n , …, and 

linin −−− × 22  at level 1+i . For each node at level i  with a 
common ancestor at level j , the maximum number of 
nodes to be visited is +−−+− )1()( ijij  

1
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k ij . If we assume that the 

occurrence of a node R is equally likely at any level i  and 
at any of the )12(2 −−− inin  positions at level i , then the 
average of the maximum number of nodes visited is 
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Hence the proof.  
Instead of exploring all the neighbors separately, the 

common approach is to explore all the neighbors adjacent 
to a node in direction D simultaneously to reduce the 
number of nodes visited. We will be using the technique to 
find neighbors proposed in [11]. Assume that we have a 
function which takes a leaf node R and a direction D as 
input and finds a set of all neighboring OBJECT nodes of 
node R in direction D.  

We will be using this operation in our dynamic 
algorithms for maintaining connected components. If we 
visit the neighbors by exploring adjacencies along a 
direction as is done in this function, rather than visiting 
each of them separately, then the following lemma holds.  

Lemma 2: For any non-leaf node in the complete quadtree 
of depth n , on an average, there are at most n5  nodes in 
the subquadtree rooted at that node. 

Proof: The number of nodes in the quadtree at level i  is at 
most i4 . Hence the total number of non-leaf nodes in the 
complete quadtree is 
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subquadtree. This means that the total number of nodes in 
all the subquadtrees is given by 
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Hence, from (6) and (7), the average number of nodes in 
a subquadtree rooted at a non-leaf node is given by 
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The neighbor finding operation is mainly required to 
define the interleaved breadth first search (IBFS) 
operation which is discussed below.  

C. Merging Operation 
During modification in the original image, a GRAY 

region in the quadtree representation may become a 
homogeneous region. This operation updates the quadtree 
by merging the leaves and their parent to form one node 
representing a homogeneous region. Suppose the depth of 
the quadtree is n . Then, 

Lemma 3: The merging operation requires visiting at most 
5n nodes to update the quadtree. 

D. Building Subquadtree Operation 
Notice that any modification in a homogeneous region 

may cause the conversion of the region into a GRAY region 
and hence, it needs to update the quadtree. This operation 
uses the algorithm given in [12] and the number of nodes 
visited by this algorithm is bounded by the number of leaf 
nodes, Nδ , in the subquadtree. Hence, 

Lemma 4: The building subquadtree operation visits at 
most )( NO δ  nodes. 

E. Interleaved Breadth First Search (IBFS) 
In standard breadth first search (BFS) on quadtrees, we 

are given a node to begin with. Using that node as seed, we 
traverse OBJECT nodes in breadth first order i.e. visit all 
the immediate neighbors of that node in all directions 
before visiting the neighbor's neighbors. Note that the 
workset in the standard BFS is implemented as queue. In 
the interleaved breadth first search (IBFS), we have a pair 
of nodes which serve as seed for two separate BFS 
processes respectively. The two BFS processes visit the 
nodes starting from the seeds, in an interleaved fashion. 
This technique is discussed in [13]. In this section we 
present a modification of the technique to suit our purpose. 

Suppose for region R, we get a set SR of neighboring 
nodes in all directions. Out of the nodes in SR, our 
objective is to find those that are connected and those that 
are disconnected. For each component except the largest 
one, we also desire to build a list which contains all the 
nodes in that component. Note that the largest component 
is the one having the largest number of nodes. We start 
with a pair of nodes from SR. Let us assume that we have a 
function GET_PAIR() that returns a different pair of node 
from the set, every time it is called. For each node we put it 
in its corresponding workset if it has not been visited and 
start a separate BFS process for each node. The first BFS 
process visits a node after removing it from the first 
workset. It puts OBJECT neighbors of the visited node in 
the corresponding workset. Then it inserts the visited node 
in the list corresponding to the component to which the 
node should belong and stops. Now the other BFS process 

starts and visits a node after removing it from the second 
workset. It puts all OBJECT neighbors of the visited node 
in the corresponding workset. Then it inserts the visited 
node in the list corresponding to that component to which 
the node should belong and stops. Again the first BFS 
process starts and does its job. This goes on and the 
processes visit one node at a time. 

As soon as the workset for a particular process becomes 
empty, it means that the particular process has visited all 
the nodes in the corresponding component and execution of 
IBFS is stopped. The component whose workset has 
become empty is the smaller component since it constituted 
of less number of nodes. The list corresponding to that 
component has all the nodes of that component. 

It may so happen that during the IBFS, one BFS process 
may visit a node that has been visited earlier by the other 
BFS process. This means that the nodes visited by the two 
BFS process belong to the same component. In such a case, 
we stop the IBFS, merge the two lists and worksets. 
Moreover, if we visit a node that is in the set SR, we 
remove that node from the set so that it does not appear in 
the next pair of nodes. When we select a pair of nodes from 
the set SR before starting IBFS, it may so happen that a 
node may belong to a component that has been partially 
visited by an earlier IBFS. For such a node, we must be 
having a corresponding list constructed earlier. In this case, 
we compare the size of the lists associated with the nodes 
in the pair and run a BFS process on the node with smaller 
list. This process continues till the size of both the lists 
become equal and all the nodes in the component are 
visited. After this, if still the two components appear to be 
separate and not all the nodes in each component have been 
visited, then we start the IBFS with the existing worksets 
and lists. 

III. HOMOGENEOUS REGION TRANSFORMATIONS 
In this section, we discuss various transformations that a 

homogeneous region can undergo when the image changes 
in that region. We also present algorithms to update the 
quadtree as well as the connected component labeling for 
these transformations.  

Effectively, all the changes can be grouped into those 
affecting a single region and then we can use our 
algorithms to handle the changes in every affected region. 
We assume that the changed pixels have already been 
grouped and we have identified the affected regions before 
we maintain the labeling of connected components in our 
quadtree. The region transformations can be of four types: 

• BTO Transformation: In this transformation, all the 
BACKGROUND pixels in the homogeneous region change to 
OBJECT pixels. This means that the BACKGROUND node 
will have to change its Nodetype to OBJECT to reflect this 
change, apart from updating the pixel information stored in 
the node. 

• OTB Transformation: This transformation is exactly the 
opposite of BTO transformation. Here, all OBJECT pixels 
in the homogeneous region change to BACKGROUND 
pixels. This means that the corresponding node in the 
quadtree will have to change its Nodetype to 
BACKGROUND. 
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(a)                         (b) 

 

               
(c)                         (d) 

 
Fig. 3.  BTO transformation: (a) original image, (b) BTO transformed image, (c) quadtree original image, (d) quadtree of BTO transformed image. 
 
• BTG Transformation: In this transformation, some 
BACKGROUND pixels in a homogeneous region change to 
OBJECT pixels. This makes the region non-homogeneous 
and has to be decomposed further till we get homogeneous 
regions. In the quadtree, it means that the corresponding 
BACKGROUND node is transformed into a gray node. Apart 
from updating the BACKGROUND node to the GRAY node, 
we have to build the subquadtree with the affected node as 
the root. This could be easily done using the algorithm 
suggested by Shaffer et al. [12] and update the quadtree by 
modifying the pointers. 

• OTG Transformation: In this transformation, some 
OBJECT pixels in a homogeneous region change to 
BACKGROUND pixels. As was the case in BTG, we have to 
decompose the region further. In the quadtree, this requires 
changing the OBJECT node to the GRAY node and builds 
the subquadtree with the affected node as the root. The 
subquadtree can be built in the same way as done in BTG 
transformation. 

Before we present the details of each transformation, let 
us define some symbols used in our analysis. Oδ  and Bδ  
are the number of OBJECT and BACKGROUND nodes in 
the quadtree representation of the image before 
modification and let n be the quadtree's depth. Similarly, 

Oδ ′  and Bδ ′  are the number of OBJECT and BACKGROUND 
nodes in the quadtree representation of the image after 
modification and let n′  be the quadtree's depth. Suppose a 
leaf node in the quadtree of the original image is replaced 
by a subquadtree because of some modification in the 
original image. Then Nδ  is the number of leaf nodes in 
that subquadtree. 

A. BACKGROUND to OBJECT Node Transformation 
Fig. 3 shows the BTO transformation. Fig. 3(a) is the 

original image in which the heavily marked region 
undergoes the BTO transformation to give us the image in 
Fig. 3(b). The quadtree representation of the original 
image and the modified image is given by Figs. 3(c) and 
3(d), respectively. 

Let the affected region be R and the neighboring regions 
(and corresponding nodes in the quadtree) lie in p different 
components. This means that the neighbors are labeled 
with p different labels. Once the region changes and the 
node changes its Nodetype from BACKGROUND to 

OBJECT, all the neighbors will become connected. If they 
belong to the same component i.e. p is 1, then there is 
nothing to do. But if some neighbors belong to different 
components, we need to relabel nodes belonging to p-1 
components to denote this change. Here we apply the 
smaller component relabeling heuristic suggested by Even 
et al. [13]. This heuristic says that the label of the 
component having largest number of nodes is used to 
relabel the nodes belonging to other components. Finding 
the component with largest number of nodes is easy since  
we keep the count of the nodes associated with each of the 
labels. So, we relabel the nodes belonging to smaller 
components with the label of the largest component. Size 
of a component is the number of nodes in it. The detail of 
the algorithm to handle the BTO transformation is given 
below. 

BTO Algorithm  
1. Update the Quadtree. Let the affected region be R. 
2. Find SR, OBJECT neighbors of R in all four 
 directions. 
3. Find LR, the set of labels assigned to nodes in SR. 
4. Keep only one node per label in SR and remove all 
 other nodes in SR. 
5. Among the labels in LR, identify the label l of the 
 largest component. 
6. Remove the node in SR corresponding to that label. 
7. Assign the label l to region R and update the count 
8. forall ∈α SR do 
9.   }{αα =W  

  while φα ≠W  do 
10.   Remove a member x  from αW  
11.   Relabel x  with l and update the count 
12.   Find Sx, the set of OBJECT neighbors of x in all 
   directions 
13.   forall ∈y  Sx which do not have the label l do 
14.    Put y  in αW  

 done 

The most expensive operation in this and following 
algorithms is following pointers to visit nodes. So, we 
present the analysis in terms of the nodes visited by the 
algorithms. 
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(a)                          (b) 

 

             
(c)                          (d) 

 
Fig. 4.  OTB transformation: (a) original image, (b) OTB transformed image, (c) quadtree original image, (d) quadtree of OTB transformed image. 
 

Lemma 5: The total number of nodes visited by the BTO 
algorithm is )( nO O +δ . 

Proof: When a BACKGROUND node transforms to OBJECT 
node, it may cause merging of sibling nodes. Merging 
nodes at a level means visiting the father node and the 
sibling nodes and replacing the father node by an OBJECT 
leaf node. The merging may not stop here and in worst 
case, we may have to perform merging at each level. This 
means that step 1 will require visiting at most 5 n  nodes. 
By Lemma 1, step 2 will visit at most 20 nodes on an 
average. To relabel the nodes belonging to smaller 
components, we have to explore the adjacency of each 
node belonging to those components in for loop (steps 9-
14). Now the sum of the sizes of the smaller components is 
bounded by the number of OBJECT nodes denoted by Oδ . 
So the total number of nodes visited in for loop (steps 9-
14) is at most 20 Oδ  on an average. Hence the number of 
nodes visited is bounded by )( nO O +δ . 

B. OBJECT to BACKGROUND Node Transformation 
The OTB transformation is demonstrated with the help of 

Fig. 4. The original image and the modified image are 
shown in Figs. 4(a) and 4(b), respectively. Corresponding 
quadtree representations are given in Figs. 4(c) and 4(d) 
respectively. Transformation of a node from OBJECT type 
to BACKGROUND type may cause merging of nodes as 
shown in the figure. 

The algorithm given below updates component labeling 
under OTB transformation. When a region R is an OBJECT 
region, all its neighboring OBJECT regions are connected 
and belong to the same component. This means that all 
OBJECT neighbors of an OBJECT node have the same 
label as that node. Once that node becomes a 
BACKGROUND node, the neighboring nodes may become 
disconnected and hence form separate components. Let 
OBJECT neighbors of R be grouped into set SR. 

OTB Algorithm: 
Let the original region be R and its label be l. 
1. Find R, OBJECT neighbors of R in all four directions. 
2. Update the Quadtree. 
3. { 21,nn }=GET_PAIR(SR). 
 while 1n  and 2n  are not NULL do 
4.   IBFS( 21,nn ). 

5.   { 21,nn }=GET_PAIR(SR). 
 done 
6. Identify the largest list of nodes. 
 It corresponds to the largest component created out of 
 the original component  
 forall smaller lists do 
7.   Get a new label. Label all the nodes in that list with 
  the new label 
 done 
To start with, we take a pair of neighboring node and do 

an IBFS on that pair. If the pair is still connected, we will 
encounter a common node and hence we do not require any 
relabling for the region to which the pair belongs. If during 
the course of IBFS, we encounter an OBJECT node in the 
neighborhood of R, then it means that node too is in the 
same region. So we remove that node from the set SR. If the 
nodes in the pair are not connected anymore, then a stage 
will come when we have scanned all the nodes in the 
smaller component and IBFS stops. A complete list of 
nodes is formed for the smaller component. A stage will 
come when we have exhausted all pairs of neighbors. At 
this point, the largest list corresponds to the largest 
component. All other lists represent smaller components. 
Here we apply the smaller component relabling heuristic to 
relabel the smaller components. For each smaller list, we 
get a new label and relabel all the nodes in the list by that 
label. 
Lemma 6: The total number of nodes visited by OTB 
algorithm is )( nO O +δ . 
Proof: The algorithm visits at most 20 nodes in step 1. 
Merging in step 2 may cause it to visit at most 5 n  nodes. 
GET_PAIR() function simply returns any two nodes from 
the set SR and this pair cannot be repeated again because 
one of the nodes in the pair gets deleted from the set before 
another call to GET PAIR() function. So finding node pairs 
is a constant time operation requiring no node visits. The 
number of OBJECT nodes visited by the all the IBFS 
invoked in step 4 within the loop is bounded by O  and we 
explore the adjacencies of the visited OBJECT nodes in all 
4 directions. Therefore by Lemma 1, we visit at most 
20 Oδ  nodes. The number of nodes visited in step 7 is 
bounded by Oδ . The number of nodes visited by the 
algorithm is hence bounded by ( nO +δ ). 
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(a)                         (b) 

 

               
(c)                         (d) 

 
Fig. 5.  BTG transformation: (a) original image, (b) BTG transformed image, (c) quadtree original image, (d) quadtree of BTG transformed image. 
 

C. BACKGROUND to GRAY Node Transformation 
The BTG transformation is shown with the help of Fig. 5. 

The original image and the modified image are given in 
Figs. 5(a) and 5(b), respectively; while their quadtree 
representations are in Figs. 5(c) and 5(d), respectively. 
When a node changes to the GRAY node, we have to scan 
the region and construct a subquadtree. Then we replace 
the leaf node representing that region by the subquadtree 
obtained. In order to construct the subquadtree, we can use 
the algorithm by Shaffer et al. [12]. 

The algorithm for BTG transformation is presented 
below. We first find the neighbors of the affected region 
and then update the quadtree to reflect the changes in that 
region. We label the newly created OBJECT nodes that are 
adjacent to a node in SR and merge equivalence labels in 
the equivalence table. This will make all the boundary 
nodes in the modified region be labeled with the existing 
labels. Once the boundary nodes in the modified region are 
labeled, we label the rest of the newly created nodes by the 
classical component labeling algorithm by Samet [10]. 
After this is done, the components that become connected 
will have their labels in the same equivalence class. So, for 
each equivalence class, we identify the label, say l, used for 
largest number of nodes. Then we pick a node from SR 
with a label in the same equivalence class as l and do a 
BFS starting from that node. We replace the labels of the 
nodes encountered in the BFS with the label l. This step is 
repeated for each equivalence class of labels. 

Algorithm: BTG 
Let R be the affected region. 
1. Find SR, the set of OBJECT neighbors of R in all 
 directions 
2. Initialize the Equivalence Table with the labels of SR 
3. Update the Quadtree 
 forall α  in SR do 
4.   Find Sα, neighbors of α  in the affected region. 

  forall ∈x  Sα do 
5.    if x  is unlabeled then label it with α′ s label 
6.    if x′ s label is different then 
    merge the equivalence classes of the two   
    labels 
7. Label the updated portion of the quadtree using 

classical method 

8. Update the counts of nodes associated with each label 
in the Quadtree 

9. For each equivalence class, identify the label used for 
maximum number of nodes 

10. Remove the nodes from SR with those labels 
   forall ∈α SR do  
11.  Let l be the label of α  
12.  Let the label identified in Step 9 for the      
  equivalence class of l be m  
13.  }{αα =W  
  while φα ≠W  do 
14.   Remove a member x  from αW  and relabel x   

  with m 
15.   if x  is in SR then remove it from SR 
16.   Find Sx, the set of OBJECT neighbors of x  in all 
   directions  
   forall ∈y Sx which have the label l do 
17.    Put y  in αW  

done  

Lemma 7: The total number of nodes visited by the BTG 
algorithm is bounded by )( nO NO ++ δδ . 

Proof: At most 20 nodes are visited in finding the set SR in 
step 1. Updating the quadtree in step 3 has the time 
complexity bounded by the number of nodes created which 
is at most 5n on an average by Lemma 2. Suppose the 
number of leaf nodes in subquadtree is Nδ . Then the 
classical algorithm for labeling the regions in the 
subquadtree will visit at most )( NO δ  nodes [10]. For steps 
11-17, the number of nodes that are relabeled is bounded 
by Oδ  and for each such node we explore the adjacency in 
all four directions. So the number of nodes being visited in 
these steps is at most 20 Oδ . Hence the lemma holds. 

D. OBJECT to GRAY Node Transformation 
The OTG transformation is demonstrated with the help 

of Fig. 6. The original image is presented in Fig. 6(a) and 
its corresponding quadtree is presented in Fig. 6(c). 
Similarly, the modified image is presented in Fig. 6(b) and 
its respective quadtree is presented in Fig. 6(d). Similar to 
the BTG transformation, we have to construct a 
subquadtree for the affected region and replace the leaf 
node with the obtained subquadtree. The neighbors of the 
affected node R are found out and put in set SR. Then the 
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 (a)                         (b) 

 

          
 (c)                         (d) 

 
Fig. 6.  OTG transformation: (a) original image, (b) OTG transformed image, (c) quadtree original image, (d) quadtree of OTG transformed image. 
 
quadtree is updated. We label all the newly created nodes 
in the neighborhood of the nodes in SR, with the label of R. 
This is followed by labeling the subquadtree using the 
classical method. Now, we have to identify all the 
disconnected components that were previously connected. 
This is done by applying the IBFS on the pair of nodes 
obtained from the set SR. After this process is complete, we 
are left with lists of nodes corresponding to different 
components created. We identify the largest list. For all 
other lists, we label all the nodes in the list with a new 
label. The details of the OTG algorithm are presented 
below. 

OTG Algorithm: 
Let R be the affected region and its label be l 
1. Find SR, the set of OBJECT neighbors of R in all 
 directions 
2. Update the Quadtree. 
3. forall α  in SR do Label the neighbors of α  in the 
 updated portion with label l 
4. Label the updated portion of the quadtree using 
 classical method. 
5. Update the counts of nodes associated with the labels 
6. { 21,nn }=GET_PAIR(SR). 
  while 1n  and 2n  are not NULL do 
7.   IBFS( 21,nn ). 
8.   { 21,nn }=GET_PAIR(SR). 
9. Identify the largest list of nodes. 
 It corresponds to the largest component created out of 
 the original component 
 forall smaller lists do 
10. Get a new label. Label all the nodes in that list with  
   the new label 
 done 

Lemma 8: The total number of nodes visited by the OTG 
algorithm is bounded by )( nO NO ++ δδ . 

Proof: Finding all the members of the set SR in step 1 
requires visiting at most 20 nodes by Lemma 1. Updating 
the quadtree will require visiting at most 5n node on an 
average by Lemma 2. The number of nodes visited in step 
3 is bounded by )( OO δ . Step 4 will require at most 

)( NO δ  nodes where the subquadtree has Nδ  leaf nodes. 
The number of nodes visited by all the IBFS within the 

loop in step 7 are bounded by 20 Oδ . The number of nodes 
visited in step 10 is bounded by Oδ . Hence the number of 
nodes visited by the OTG algorithm is bounded by 

)( nO NO ++ δδ . 

IV. COMPARISON WITH BATCH APPROACH 
Suppose we have an image set I  in which consecutive 

images jI  and 1+jI  are very similar to each other. In the 
batch approach for maintaining connected components, we 
first build the quadtree and then label the components. This 
procedure is done for every image in the set. Let us just 
concentrate on a pair of images jI  and 1+jI . In order to 
build the quadtree of the image jI , we have to scan the 
whole image and using the algorithm suggested by Shaffer 
et al. [12] in time bounded by )(mO  where m  is the 
number of nodes in the quadtree representation of that 
image. Let the quadtree has BO δδ +  leaf nodes. Then the 
time required to construct the quadtree is bounded by 

)( BOO δδ +  since the number of nodes in a quadtree is 
bounded by the number of leaf nodes it has. 

To find connected components in the quadtree, the time 
complexity of the algorithm by Samet [10] is )( BOO δδ +  
if we assume that we have a linear cost maintenance of 
equivalence table as suggested in [4]. This requires 
postorder traversal of the whole quadtree twice. We have to 
repeat the same proceedure for the next image 1+jI . 
Creation of the quadtree of the modified image 1+jI  is 
bounded by )( BOO δδ ′+′  if the quadtree has BO δδ ′+′  leaf 
nodes. Then finding connected components in this quadtree 
takes )( BOO δδ ′+′  time. Hence the time complexity of the 
batch approach to update labels when a homogeneous 
region undergoes change is )( BOBOO δδδδ ′+′++ . 

In contrast, our approach for maintaining connected 
components requires constructing the quadtree just once for 
the image set I . We construct the quadtree for the first 
image and for successive images; we update the quadtree 
of the previous image. For this, we assume that instead of 
providing the whole images, we are just given the 
differences between an image and its predecessor image. 
So, we just have to update those portions of the quadtree 
that are undergoing changes, rather than building the whole 
quadtree from the scratch. Hence if the difference between 
consecutive images is not much, then only a minor portion 
of the quadtree need to be updated. The updation cost per 
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unit change is bounded by )( NO δ  where N  is the number 
of leaf nodes in the updated portion of the quadtree. 

Theorem 1: Algorithms to maintain connected components 
on quadtrees visit at most )( nO NO ++ δδ  nodes. 

Proof: For a unit change, a region may undergo any one of 
the four transformations discussed in the previous section. 
The time complexity of our algorithms for each of these 
transformations is bounded by )( nO NO ++ δδ  nodes, by 
Lemmas 5, 6, 7 and 8. Hence the theorem holds. 

Since the subquadtree with δN leaf nodes is a part of the 
quadtree of the modified image, )( BON δδδ ′+′≤ . 
Moreover, for large images, n is very small compared to 

BO δδ + . This means that the number of nodes visited by 
our algorithm has a bound lower than that of the batch 
method. If the number of changes involved is very few i.e. 
the consecutive images are very similar, our algorithms will 
not only save time in updating the quadtree, but also update 
the labels faster than the classical algorithm on an average. 
Theoretically, in the worst case, the updation of labels in 
our algorithms for maintaining connected components can 
be as bad as the classical algorithm employed in the batch 
approach. 

V.  CONCLUSIONS 
We have presented dynamic algorithms to update the 

connected components labeling in quadtree representation 
of binary images, when a homogeneous region undergoes 
some changes. Our algorithms save on the rebuilding cost 
of the quadtree for every change. The bound on the number 
of nodes visited by our algorithms can be reduced further 
by maintaining more history information [14]. It is shown 
that for small changes in an image represented by a 
quadtree, on an average, algorithms presented in this paper 
take less amount of time to update the quadtree and also to 
label connected components as compared to the classical 
algorithm. However, in the worst case, our algorithms are 
as bad as the classical algorithm. It is worth to determine 
the threshold value experimentally, for which the proposed 
algorithms are found better than the classical algorithm. 
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