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Electromagnetic Penetration Through Three
Different Dielectric Regions Separated by
Two Parallel Planes Perforated with
Multiple Apertures

Karim Y. Kabalan, Ali El-Hajj, and Asaad Rayes

Abstract—The electromagnetic coupling of incident plane
wave through rectangular apertures perforating two parallel
infinite conducting planes is analyzed using the characteristic
modes theory based on the application of image theory and
the equivalence principle. First, the integral equations for the
parallel planes problem are established. Then, the integral
equations are discretized into matrix equivalence. Next, the
characteristic modes theory is applied to solve the matrix
equations and to obtain the equivalent magnetic currents over
the apertures surfaces in the planes. Finally, numerical results
for the equivalent magnetic currents and for the output
radiation pattern are given for the case of three apertures
distributed over the two planes.

Index Terms—Aperture problems, characteristic mode
theory, electromagnetic scattering and radiation, rectangular
aperture.

1. INTRODUCTION

THE COUPLING The coupling of electromagnetic fields
between two or more isolated regions coupled with one
or more apertures have been analyzed by many
investigators [1]-[3]. In electromagnetic shielding, the
problem of electromagnetic noise’ generated from
electromagnetic equipment and microelectronic circuits
with different power and frequency levels 1s becoming
more critical. The treatment ‘of parallel screens with
multiple apertures is of practical interest to determine the
reflection and transmission’ properties of infinite apertured
screens. This analysis.is useful for validation of screening
effect where relevant simulation parameters may be
modified to optimize simulation accuracy.

The method of moments [4] is one of the most developed
techniques used in solving such electromagnetic problems.
On the other hand, different numerical methods such as
finite difference frequency domain (FD-FD) techniques [5],
the control region with suitable absorbing boundary
conditions (ABC) are said to be able to solve 2-D aperture
coupling problems [6], [7], the trans-finite element method
[8], and others.

The central theme of this paper is to apply the
characteristic modes theory [9] to solve integral equations
formulated in terms of the aperture surface electric fields
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Fig. 1. The Geometry of the problem.

and the geometry of the problem. The equivalent apertures
magnetic currents are expanded in terms of a set of
orthogonal expansion functions. The moment Galerkin’s
method is applied to transform the integral functional
equations into scalar matrix equations. The admittance
matrices of 3-D apertures perforating two parallel infinite
conducting planes are combined for all equivalent magnetic
currents on every side of the closed apertures. The
characteristic modes theory, which is applicable to simulate
acoustic and electromagnetic wave propagations and to
solve a large class of 3-D aperture problems [10], [11], is
attempted to solve this problem. The objective is to obtain
the self and mutual admittance of the apertures from which
coupling is calculated. These fields are used to obtain
radiation Pattern.

II. PROBLEM FORMULATION

Fig. 1 shows the geometry of the problem, in which a
plane wave is incident on a conducting plane containing an
array of N apertures coupling the outside region, region
a, toregion b which is formed by two parallel conducting
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planes. Region b is also coupled to the exterior region,
region c, through another array of apertures in the
conducting plane separating region b from region c. The
three regions media are linear, homogeneous, isotropic, and
dissipation free and are therefore characterized respectively
by their real scalar permitivities €,, €,, and €.. The
infinite conducting plane separating region a from region
b is assumed to be infinitely thin and is called S . The
infinite conducting plane separating region b from region
¢ is also assumed to be infinitely thin and is denoted by
S'. The width of the i-th aperture in S is W, and the
length is L, , and the width of the ; -th aperture in S’ is
W and the length is L. The distance between the
apertures in S is d, (1—123 ..N—1), and the distance
between the apertures in S' is d;(j=1,2,3,..,N'~1) . The
distance between the two planes i 1s denoted by d

The equivalence principle [12] allows the use of
equivalent magnetic current sheets over the first array of
apertures and divide the problem of coupling region a to
region b into two uncoupled parts. In region a, the
excitation is transverse electric (TE) to the arrays axis and
the exciting field has only a y -component of magnetic
field given by:

sz — eijH(xcose+zsin6) (1)

where k, =m,/e, 1, isthe wavenumber of the medium of
region a and O is the angle that the propagation vector
makes with the x-axis. The total field, incident and
scattered, must have a zero electric field component
tangential to the screen and continuous electric field
components across the apertures surfaces. Another
boundary condition enforces magnetic field continuity
across the array of apertures.

The magnetic current sheets in region:M “care placed on
the apertures areas in S just external to the closed plane
conductors. The total magnetic field in.region a is equal to
the incident field in the presence of a complete conductor
on S plus the field produced by.the equivalent magnetic
currents sheets M @ with the apertures_covered by perfect
electric conductors

M7 = px EY i=1,2,...N )

where E f;) is the total electric field in the 7 -th aperture
defined for z=0, <y, —L//2<y<y;+L;/2, and
x; =W, [2<x<x;+W;/2. Also, n is the outward unit
vector normal to the § ‘plane, i.e., the i-th aperture. To
ensure electric field continuity, M @ exists only on the i -
th aperture to compensate for the aperture’s electric field
and vanishes over the rest of the surface of the conducting
plane.

In region b, the equivalent problem of the conducting
plane is obtained by placing magnetic currents sheet
-M @ on each of the i -th aperture array in the S plane.
As such, the excitation is then specified by the electric field
due to —M" @ . Similarly, the magnetic currents M’ "7 are
placed on the array of apertures areas in the S’ plane just
external to the closed plane conductors. The total magnetic
ﬁeld in region b is equal to the magnetic field due to

plus the magnetlc fields produced by the equivalent
magnetlc currents M’ "7 with the apertures in S and S’
are closed by electric conductors.

()

M =n'xEY i=12,,N 3)

In (3), Egi ) is the electric field in the J -th aperture of
S" defined for z=s, y;-L;/2<y<y;+L}/2, and
X;=Wi/2<x<x;+W;/2, and n’ is the unit vector
normal to the S’ plane.

The equivalence of region ¢ 1s given by attaching thin
sheets of magnetic current — M’ "7 on every j-th aperture
and by short circuiting the apertures.

Let H'(M (’)) denotes the electromagnetlc field in
region a due to the magnetic currents M” and H*
refers to the short-circuited incident magnetic field after
closing the aperture array by perfect electric conductors.
Hence, the total magnetic field in region a is given by:

N
H'=H*+Y H,M"). (4)
i=1
Similarly, H"(~-M")and H"(M')  denote  the
electromagnetic fields in region b due to —M “ and M"Y,
respectively. The total magnetic field in region b is then
given by:

N. N'
HY =Y Hy(-M D)+ > H, (M)

= =1
N W ' )
==Y H,(M")+ Y H, M)
= =
In a similar manner, H°(-M'"") denotes the

electromagnetic fields in region ¢ due to (—-M' u )). The
total magnetic field in region c is:

N’ ) N' )
H =Y H.(M")=-%H.M"). (©)
j=

j=1
To satisfy the boundary condition on tangential H across
the apertures region, equate the tangential components of
H* to those of H ? over the aperture regions (A[) of the
aperture array in S and equate the tangential components of
H ’ to those of H® over the aperture regions (A}) of the
aperture array in S'. This leads to equations (7) and (8)
where the subscripts a, b, or ¢ designates the media and
subscript ¢ refers to tangential components:
iH(/)(MU)) ZH(/)(MU))
i=1 i=1 (7)

S HD M) = over 4, 0=12,..N
Jj=1

=

_ZH([)(M(l))+ZH([)(M'(j))+
s ®)
N’
DHS M )=0
Jj=1

overd, ('=12,.,N'

III. CHARACTERISTIC CURRENTS FOR THE APERTURES

The eigenvalue equations (7), (8) can be put in a linear
admittance operator form:

Y(M)=1 (€)

where
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2 2
rO=UJXr,0 (10)

i=l j=1

N
with n0-U Favo-m00).

N
Y5 () =U(H(’>()) Yy()= U(H“k)) and

Y,()= U( ~HY O-HY ().

and

£=L2sz (11)

N N N'
with 1, =| Jo<O = J1 and 1,=[Jo=0. mn (),
/=1 /=1 =1

define G=(Y+Y")/2 and B=(Y-Y")/2/, then
Y(M)=G(M)+jB(M) (12)

where the asterisk denotes the complex conjugate of the
operator. Following Harrington and Mautz [9], the
characteristic currents for the apertures are defined to be
the eigenfunctions M, of the eigenfunction equation.

Ym,)=y,GM,) (13)
where the eigenfunctions M, are defined as:
M, = {UM(’)}U UM’(J) (14)
i=1

Put the eigenvalues y, as:

Yu=1+jb, (15)
then
BM,)=b,G(M,) (16)

It is to note that region a admittances are assumed to be
dominant, so the effect of regions & and ¢ is small
compared to that of region a admittances. The operators G
and B are self adjoint, whereas. G is positive definite as
well. It then follows that b, and hence M, are real and are
chosen to satisfy the orthogonality relationships:

(M,,.GM,))=5,,
(M,,.B(M,))=b,3,, (17)
(M,.Y(M,))= 1,8,

where §,, is the Kronecker delta function (0 if m = n and
lif m=n), and <,> denotes the inner product

N N'
(c, D>:; ] c<k>*D(k)ds+; [[c p®as a8y
=4 =4

where C =C® and D=D"™ on the k -th aperture in S,
Cc=C® and D=D" on the -th aperture in S’. All the
currents in the apertures are required to radiate some
power, however, the characteristic currents corresponding
to large b, are basically non-radiating.

IV. NUMERICAL SOLUTION

An exact solution of the eigenvalue equation (16) for the
eigenfunctions is rather difficult. Therefore, an
approximate solution of the eigenvalue problem is
attempted using Galerkin’s method. The apertures of
rectangular shapes are of considerable interest in such
problems.

In this problem, each 7 -th aperture in S is subdivided
uniformly into L N subareas of dimensions AxAy
where N represents the number of discretizations of the
aperture along the x direction and L") represents the
number of discretizations of the aperture along the y
direction. Similarly, each j-th aperture in S’ is
subdivided uniformly into L'’.N')  subareas of
dimensions AxAy where N'/) represents the number of
discretizations of the aperture along the x direction and
L' represents the-number of discretizations of the
aperture along the y direction. The index i values range
between 1 and N, and the index ; values ranges between
1 and N'. Accordingly, the characteristic currents are split
into two components along the surface of each aperture:

INUUTO IBOUN
un=gU] 5 UGE0u, + z gy,
k=1 i=1

NK)LAK) LA\ (K)
TINS5

k")
I(l ’ 1
L )gk()_y
k'=1 i=1 I=1

19)

In (19), the indices k and k' represent the number of
apertures in S and S’, respectively, Ur(,f,)f,L(rfli,U,’,E’), and
U, ’(1) are the coefﬁments of the characteristic currents
where the primes refers to the currents in the apertures in
S’ . Substituting (19) into (17), and using the linearity of
the G and B operators together with the symmetric
product, the integral equations are converted into matrix
equations. A suitable choice is to pick testing functions
identically the same as basis functions as well as satisfying
the edge conditions on the apertures. The characteristic
currents are approximated by a linear combination of the
following functions:

%6y =T,&)P,W
g y)=T,x)P,»)

" (20)
S @y) = P)Ty(y)
g"'y) = Pu(T,(7)

where T7(.) represents a triangular function, P(.)

represents a pulse function, u is the index of discretization
along x-axis in S, v is the index of discretization along
y-axis in S, u' is the index of discretization along x -
axis in S, and v' is the index of discretization along y -
axis in §'. The testing functions, W,, are chosen as

follows: "
)} @1

k=1
To construct a numerical solution, apply the symmetric
product using the basis and testing functions. In order to
arrive at a consistent set of linear equation, apply the
following identity when there are differential operators in

fgors
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TABLEI
THE CONVERGENCE OF THE CHARACTERISTIC VALUES FOR EXAMPLE 1
N |Bol 31| |B2| || o |BM
8 1.381583 1.882777 2.120752 2.542718 58609.152239
10 1.334005 1.833745 2.044572 2.474918 14243.777775
12 1.313263 1.812392 2.006496 2.445773 11233.049174
14 1.304449 1.803449 1.979432 2.433939 114590.595915

the kernel of integral equations.

HA-VSBds - -HBVAds

It should be noted that at the points where the
observation point coincides with the source point, the
kernel of the integral equation exhibits singular behavior.
Consequently, analytical solutions must be exercised in
evaluating integrals in the neighborhood of the integrable
singularities. Substituting (19), (20), and (21) into (17)

(22)

results in the matrix eigenvalue equation

the apertures surfaces. Representative numerical results of
the transmitted power as function of different geometrical
parameters are also shown.

In these examples, the characteristic modes theory is
used to express the eigenvalues table, the normalized
characteristic modes and their corresponding equivalent
magnetic currents in the apertures normalized to a
maximum value and the resulting power transmitted. The
apertures are assumed equal; the length of each aperture
Ly =L =L,=0.6\ and the width of each aperture is
W, =W/ =W, =004\ . The constitutive parameters are

[B]=5,[G] (23) maximum value and the resulting power transmitted. The
where with their corresponding equivalent magnetic currents over
7 7 T 7 T a3 T ad 71 0
Un = [Unl Lnl UnN LnN Unl nl UnN' LnN'] (24)
and
[ [BUU ;] [BUL,] [BUU y1 [BULy]1 [BUU{] [BUL;] [BUU{y] [BUL{y]]
[BLU ;1 [BLLy] [BLU \y1  [BLL,y1 [BLU ] [BLLj] [BUU{y'1 [BLL{y]
[BUU y,1 [BUL ] [BUU w1 [BUL w1 [BUUj1 [BULY,] [BUU 1 [BULjy] (25)
[B] = [BLU ;1 [BLL y] [BLU yy1 [BLLyy]l [BLUj,1 [BLLj,] [BUU gyl [BLLyy']
[BUU, 1 [BULy] [BUUy]1 [BULyl .[BUU 1 [BULj] [BUU{y] [BULjy]
[BL'U, 1 [BL'Ly] [BL'Uy1 <IBL'Ly]  [BL'Uj] [BL'L]] [BL'U{y] [BL'L{y]
[BUU yy]1 [BULyy] [BUUyy]l [BULyy]l [BUUNq] [BULj] [BUUyy1 [BULyy]
|[BL'Uyn] [BL'Lyy] [BL'U yy 10 [BL'Lyy] [BL'Uyq] [BL'Lyy] [BL'U w1 [BL'Lywy1]

In 25), U, U', L, L' correspond to discretization
along, x-axis in S, x-axisdn 8", y-axisin S, and y -
axis in §”, respectively. Forexample, [BUL};] corresponds
to a matrix of N xL'"") elements and the indices i and
j represent respectively the'location of the aperture in §
for the x-axis discretization and the location of the
aperture in S’ for the y -axis discretization. A similar
matrix representation may be obtained for [G]. Similarly,
the vector matrix U , clements has a similar explanation,
for example the vector L,; corresponds to a vector of o
elements.

V. EXAMPLES

Some examples are treated with different apertures
lengths and widths. A computer program is developed to
solve a problem where the number of apertures in S,
N =1 and the number of apertures in §', N'=2 and to
treat different cases where the apertures dimensions are
varied as well as the locations of the apertures and the
separation between the two parallel planes. In these
examples, numerical results are presented to show the
convergence of the algorithm and the characteristic modes

apertures are assumed equal; the length of each aperture
L =L/ =L,=0.60L and the width of each aperture is
W, =W/=W, =0.04\ . The constitutive parameters are
assumed to be real: permitivity of media a and c are
€, =€, =€, the permitivity of medium b is g, =2.56¢g,
and the pemeabilities of media a, b, and c¢ are
L, = Hp = U, = Ko . The discretization along x -axis or y -
axis for each aperture are N =NV =N'@ =10 and
QI L ONy S CHR

Example 1:  The first aperture is centered at
(0.22A,0.3%,0) . The distance between the two planes is
0.4\ and the second and third apertures are located at
(0.22A,0.31,0.4A) and (0.62A4,0.31,0.41) , respectively.

Example 2:  The first aperture is centered at
(0.22A,0.3%,0) . The distance between the two planes is
0.4\ and the second and third apertures are located at
(0.62A,0.31,0.41) and (0.42A,0.3X,0.41), respectively.

Example 3:  The first aperture is centered at
(0.22X,0.3%,0) . The distance between the two planes is d
and the second and third apertures are located at
(0.421,0.3A,d) and (0.22A,0.3A,d) , respectively.

The tabulated eigenvalues of Example 1 are shown in
Table I. The characteristic modes for each aperture in this
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example are shown in Figs. 2 to 4. For Example 2, the real
and imaginary parts for the equivalent magnetic currents in
each aperture are shown in Figs. 5 to 7. The transmitted
power for Example 3, as a function of the distance between
the two planes, is shown in Fig. 8.

It is clear from Table I, that the results show a trend
toward convergence and that the convergence is faster
for lower order modes approximating the solution of
the problem. Usually, 7 modes show that an acceptable
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accurate solution may be reached. The eigenvalues of
higher order modes have less contribution to the
transmitted power than the lower order modes. The
characteristic modes exhibit same characteristics due to the
symmetry of the problem and the fact that the modes are
independent of the excitation.

VI. CONCLUSION

A method based on the characteristic modes theory has
been applied to solve the problem of electromagnetic
radiation through three regions separated by two infinite
parallel conducting planes and coupled through a number
of apertures in each plane. The method can handle
problems with different geometrical parameters. The
analysis of the rectangular aperture of finite dimensions is
similar to the situation of rectangular aperture coupling two
regions separated by a perforated infinite conducting plane.
The algorithms are applied efficiently to typical case
situations. The convergence is proven for different
geometrical parameters.
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