
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 

1682-0053/03$10  © 2003 Jahad Daneshgahi 

69 

  

Abstract—The electromagnetic coupling of incident plane 
wave through rectangular apertures perforating two parallel 
infinite conducting planes is analyzed using the characteristic 
modes theory based on the application of image theory and 
the equivalence principle. First, the integral equations for the 
parallel planes problem are established. Then, the integral 
equations are discretized into matrix equivalence. Next, the 
characteristic modes theory is applied to solve the matrix 
equations and to obtain the equivalent magnetic currents over 
the apertures surfaces in the planes. Finally, numerical results 
for the equivalent magnetic currents and for the output 
radiation pattern are given for the case of three apertures 
distributed over the two planes.  
 

Index Terms—Aperture problems, characteristic mode 
theory, electromagnetic scattering and radiation, rectangular 
aperture. 

I. INTRODUCTION 
HE COUPLING The coupling of electromagnetic fields 
between two or more isolated regions coupled with one 

or more apertures have been analyzed by many 
investigators [1]-[3]. In electromagnetic shielding, the 
problem of electromagnetic noise generated from 
electromagnetic equipment and microelectronic circuits 
with different power and frequency levels is becoming 
more critical. The treatment of parallel screens with 
multiple apertures is of practical interest to determine the 
reflection and transmission properties of infinite apertured 
screens. This analysis is useful for validation of screening 
effect where relevant simulation parameters may be 
modified to optimize simulation accuracy. 

The method of moments [4] is one of the most developed 
techniques used in solving such electromagnetic problems. 
On the other hand, different numerical methods such as 
finite difference frequency domain (FD-FD) techniques [5], 
the control region with suitable absorbing boundary 
conditions (ABC) are said to be able to solve 2-D aperture 
coupling problems [6], [7], the trans-finite element method 
[8], and others. 

The central theme of this paper is to apply the 
characteristic modes theory [9] to solve integral equations 
formulated  in terms of  the aperture surface  electric fields 
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Fig. 1.  The Geometry of the problem. 
 
and the geometry of the problem. The equivalent apertures 
magnetic currents are expanded in terms of a set of 
orthogonal expansion functions. The moment Galerkin’s 
method is applied to transform the integral functional 
equations into scalar matrix equations. The admittance 
matrices of 3-D apertures perforating two parallel infinite 
conducting planes are combined for all equivalent magnetic 
currents on every side of the closed apertures. The 
characteristic modes theory, which is applicable to simulate 
acoustic and electromagnetic wave propagations and to 
solve a large class of 3-D aperture problems [10], [11], is 
attempted to solve this problem. The objective is to obtain 
the self and mutual admittance of the apertures from which 
coupling is calculated. These fields are used to obtain 
radiation Pattern. 

II. PROBLEM FORMULATION 
Fig. 1 shows the geometry of the problem, in which a 

plane wave is incident on a conducting plane containing an 
array of N  apertures coupling the outside region, region 
a , to region b  which is formed by two parallel conducting 
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planes. Region b  is also coupled to the exterior region, 
region c , through another array of apertures in the 
conducting plane separating region b  from region c . The 
three regions media are linear, homogeneous, isotropic, and 
dissipation free and are therefore characterized respectively 
by their real scalar permitivities aε , bε , and cε . The 
infinite conducting plane separating region a  from region 
b  is assumed to be infinitely thin and is called S . The 
infinite conducting plane separating region b  from region 
c  is also assumed to be infinitely thin and is denoted by 
S ′ . The width of the i -th aperture in S  is iW  and the 
length is iL , and the width of the j -th aperture in S ′  is 

jW ′  and the length is jL′ . The distance between the 
apertures in S  is )1...,,3,2,1( −= Nidi , and the distance 
between the apertures in S ′  is )1...,,3,2,1( −′=′ Njd j . The 
distance between the two planes is denoted by d . 

The equivalence principle [12] allows the use of 
equivalent magnetic current sheets over the first array of 
apertures and divide the problem of coupling region a to 
region b  into two uncoupled parts. In region a , the 
excitation is transverse electric (TE) to the arrays axis and 
the exciting field has only a  y -component of magnetic 
field given by: 

)sincos(j θθκ zxi
y

ae +−=H  (1) 

where aaa µεωκ =  is the wavenumber of the medium of 
region a  and θ  is the angle that the propagation vector 
makes with the x -axis. The total field, incident and 
scattered, must have a zero electric field component 
tangential to the screen and continuous electric field 
components across the apertures surfaces. Another 
boundary condition enforces magnetic field continuity 
across the array of apertures. 

The magnetic current sheets in region (i)M  are placed on 
the apertures areas in S  just external to the closed plane 
conductors. The total magnetic field in region a is equal to 
the incident field in the presence of a complete conductor 
on S  plus the field produced by the equivalent magnetic 
currents sheets (i)M  with the apertures covered by perfect 
electric conductors 

N1,2,...,i             =×=  EnM (i)
a

(i)  (2) 

where )(i
aE  is the total electric field in the i -th aperture 

defined for 0=z , 22 iiii LyyLy +<<− , and 
22 iiii WxxWx +<<− . Also, n  is the outward unit 

vector normal to the S  plane, i.e., the i -th aperture. To 
ensure electric field continuity, (i)M  exists only on the i -
th aperture to compensate for the aperture’s electric field 
and vanishes over the rest of the surface of the conducting 
plane. 

In region b , the equivalent problem of the conducting 
plane is obtained by placing magnetic currents sheet 

(i)M−  on each of the i -th aperture array in the S  plane. 
As such, the excitation is then specified by the electric field 
due to (i)M− . Similarly, the magnetic currents (j)M ′  are 
placed on the array of apertures areas in the S ′  plane just 
external to the closed plane conductors. The total magnetic 
field in region b  is equal to the magnetic field due to 

(i)M−  plus the magnetic fields produced by the equivalent 
magnetic currents (j)M ′  with the apertures in S  and S ′  
are closed by electric conductors. 

N1,2,...,j                 ′=×′=′  EnM (j)
b

(j)
 (3) 

In (3), )( j
bE  is the electric field in the j -th aperture of 

S ′  defined for sz = , 2/2/ jjjj LyyLy ′+<<′− , and 
2/2/ jjjj WxxWx ′+<<′− , and n′  is the unit vector 

normal to the S ′  plane.  
The equivalence of region c  is given by attaching thin 

sheets of magnetic current (j)M ′−  on every j -th aperture 
and by short circuiting the apertures. 

Let )( )(ia MH  denotes the electromagnetic field in 
region a  due to the magnetic currents (i)M  and scH  
refers to the short-circuited incident magnetic field after 
closing the aperture array by perfect electric conductors. 
Hence, the total magnetic field in region a  is given by: 

∑
=

+=
N

i

i
a

sca MHHH
1

)( )( . (4) 

Similarly, )( and )( )()( jbib MHMH ′−  denote the 
electromagnetic fields in region b due to )()(  and ji MM ′− , 
respectively. The total magnetic field in region b  is then 
given by: 
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In a similar manner, )( )( jc MH ′−  denotes the 
electromagnetic fields in region c  due to )( )( jM ′− . The 
total magnetic field in region c  is: 
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′

=

′

=

′−=′−=
N

j

j
c

N

j

j
c

c MHMHH
1

)(

1

)( )()( . (6) 

To satisfy the boundary condition on tangential H across 
the apertures region, equate the tangential components of 

aH  to those of bH  over the aperture regions ( )lA  of the 
aperture array in S and equate the tangential components of 

bH  to those of cH  over the aperture regions ( )l′′A  of the 
aperture array in S ′ . This leads to equations (7) and (8) 
where the subscripts a , b , or c  designates the media and 
subscript t  refers to tangential components: 
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III. CHARACTERISTIC CURRENTS FOR THE APERTURES 
The eigenvalue equations (7), (8) can be put in a linear 

admittance operator form: 
IMY =)(  (9) 

where  
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define 2/)( ∗+= YYG  and jYYB 2/)( ∗−= , then 

)()()( MBjMGMY +=  (12) 

where the asterisk denotes the complex conjugate of the 
operator. Following Harrington and Mautz [9], the 
characteristic currents for the apertures are defined to be 
the eigenfunctions nM  of the eigenfunction equation. 

)()( nnn MGyMY =  (13) 

where the eigenfunctions nM  are defined as: 
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Put the eigenvalues ny  as: 

nn jby += 1  (15) 

then  
)()( nnn MGbMB =  (16) 

It is to note that region a admittances are assumed to be 
dominant, so the effect of regions b  and c  is small 
compared to that of region a admittances. The operators G  
and B  are self adjoint, whereas G  is positive definite as 
well. It then follows that nb  and hence nM  are real and are 
chosen to satisfy the orthogonality relationships: 
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 (17) 

where mnδ  is the Kronecker delta function (0 if nm ≠  and 
1 if nm = ), and .,.  denotes the inner product 
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where )(kCC =  and )(kDD =  on the k -th aperture in S , 
)(lCC =  and )(lDD =  on the l -th aperture in S ′ . All the 

currents in the apertures are required to radiate some 
power, however, the characteristic currents corresponding 
to large nb  are basically non-radiating. 

IV. NUMERICAL SOLUTION  
An exact solution of the eigenvalue equation (16) for the 

eigenfunctions is rather difficult. Therefore, an 
approximate solution of the eigenvalue problem is 
attempted using Galerkin’s method. The apertures of 
rectangular shapes are of considerable interest in such 
problems. 

In this problem, each i -th aperture in S  is subdivided 
uniformly into )()( . ii NL  subareas of dimensions yx∆∆  
where )(iN  represents the number of discretizations of the 
aperture along the x  direction and )(iL  represents the 
number of discretizations of the aperture along the y 
direction. Similarly, each j -th aperture in S ′  is 
subdivided uniformly into )()( . jj NL ′′  subareas of 
dimensions yx∆∆  where )( jN ′  represents the number of 
discretizations of the aperture along the x  direction and 

)( jL ′  represents the number of discretizations of the 
aperture along the y  direction. The index i  values range 
between 1 and N , and the index j  values ranges between 
1 and N ′ . Accordingly, the characteristic currents are split 
into two components along the surface of each aperture: 
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In (19), the indices k  and k ′  represent the number of 

apertures in S  and S ′ , respectively, )(i
mkU , )(l

mkL , )(i
kmU ′′  and 

)(l
kmU ′′  are the coefficients of the characteristic currents 

where the primes refers to the currents in the apertures in 
S ′ . Substituting (19) into (17), and using the linearity of 
the G  and B  operators together with the symmetric 
product, the integral equations are converted into matrix 
equations. A suitable choice is to pick testing functions 
identically the same as basis functions as well as satisfying 
the edge conditions on the apertures. The characteristic 
currents are approximated by a linear combination of the 
following functions: 

(y)(x)TP(x,y)g

(y)(x)TP(x,y)f

(y)(x)PT(x,y)g

(y)(x)PT(x,y)f

vu
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=

 (20) 

where (.)T  represents a triangular function, (.)P  
represents a pulse function, u  is the index of discretization 
along x -axis in S , v  is the index of discretization along 
y -axis in S , u′  is the index of discretization along x -

axis in S ′ , and v′  is the index of discretization along y -
axis in S ′ . The testing functions, nW , are chosen as 
follows: 
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To construct a numerical solution, apply the symmetric 
product using the basis and testing functions. In order to 
arrive at a consistent set of linear equation, apply the 
following  identity  when there are  differential operators in  
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TABLE I 
THE CONVERGENCE OF THE CHARACTERISTIC VALUES FOR EXAMPLE 1 

N |B0| |B1| |B2| |B3| … |BN| 
8 1.381583 1.882777 2.120752 2.542718 … 58609.152239 
10 1.334005 1.833745 2.044572 2.474918 … 14243.777775 
12 1.313263 1.812392 2.006496 2.445773 … 11233.049174 
14 1.304449 1.803449 1.979432 2.433939 … 114590.595915 

 
the kernel of integral equations. 

∫∫∫∫ ⋅∇=∇⋅ sABsBA d-ds  (22) 

It should be noted that at the points where the 
observation point coincides with the source point, the 
kernel of the integral equation exhibits singular behavior. 
Consequently, analytical solutions must be exercised in 
evaluating integrals in the neighborhood of the integrable 
singularities. Substituting (19), (20), and (21) into (17) 
results in the matrix eigenvalue equation 

][][ GbB n=  (23) 

where

the apertures surfaces. Representative numerical results of 
the transmitted power as function of different geometrical 
parameters are also shown. 

In these examples, the characteristic modes theory is 
used to express the eigenvalues table, the normalized 
characteristic modes and their corresponding equivalent 
magnetic currents in the apertures normalized to a 
maximum value and the resulting power transmitted. The 
apertures are assumed equal; the length of each aperture 

λ6.0211 =′=′= LLL  and the width of each aperture is 
λ04.0211 =′=′= WWW . The constitutive parameters are 

maximum value and the resulting power transmitted. The 
with their corresponding equivalent magnetic currents over 

__________________________________ 
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rrrrrrrrr

1111                    (24) 

and 













































′′′′⋅⋅′′′′′′⋅⋅′′
′′′′⋅⋅′′′′′′⋅⋅′′

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

′′′′⋅⋅′′′′′′⋅⋅′′
′′′′⋅⋅′′′′′′⋅⋅′′

′′⋅⋅′′⋅⋅

′′⋅⋅′′⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

′′⋅⋅′′⋅⋅

′′⋅⋅′′⋅⋅

=

′′′′′′′′′′

′′′′′′′′′′

′′

′′

′′

′′

′′

′′

][][][][][][][][
][][][][][][][][

][][][][][][][][
][][][][][][][][
][][][][][][][][
][][][][][][][][

][][][][][][][][
][][][][][][][][

][

1111

1111

111111111111

111111111111

1111

1111

111111111111

111111111111

NNNNNNNNNNNN

NNNNNNNNNNNN

NNNN

NNNN

NNNNNNNNNNNN

NNNNNNNNNNNN

NNNN

NNNN

LLBULBLLBULBLLBULBLLBULB
LUBUUBLUBUUBLUBUUBLUBUUB

LLBULBLLBULBLLBULBLLBULB
LUBUUBLUBUUBLUBUUBLUBUUB

LBLUBULBLUBLBLLBLUBLLBLU
LBUUBULBUUBUBULBUUBULBUU

LBLUBULBLUBLBLLBLUBLLBLU
LBUUBULBUUBUBULBUUBULBUU

B

   (25) 

__________________________________ 
 

In (25), U , U ′ , L , L′  correspond to discretization 
along, x -axis in S , x -axis in S ′ , y -axis in S , and y -
axis in S ′ , respectively. For example, ][ ijLBU ′  corresponds 
to a matrix of )()( ji LN ′×  elements and the indices i  and 
j  represent respectively the location of the aperture in S  

for the x -axis discretization and the location of the 
aperture in S ′  for the y -axis discretization. A similar 
matrix representation may be obtained for ][G . Similarly, 
the vector matrix nU

r
 elements has a similar explanation, 

for example the vector niL  corresponds to a vector of )(iL  
elements. 

V. EXAMPLES 
Some examples are treated with different apertures 

lengths and widths. A computer program is developed to 
solve a problem where the number of apertures in S , 

1=N  and the number of apertures in S ′ , 2=′N  and to 
treat different cases where the apertures dimensions are 
varied as well as the locations of the apertures and the 
separation between the two parallel planes. In these 
examples, numerical results are presented to show the 
convergence of the algorithm and the characteristic modes 

apertures are assumed equal; the length of each aperture 
λ6.0211 =′=′= LLL  and the width of each aperture is 

λ04.0211 =′=′= WWW . The constitutive parameters are 
assumed to be real: permitivity of media a  and c  are 

0εεε == ca , the permitivity of medium b  is 056.2 εε =b , 
and the pemeabilities of media a , b , and c  are 

0µµµµ === cba . The discretization along x -axis or y -
axis for each aperture are 10)2()1()1( =′=′= NNN  and 

1)2()1()1( =′=′= LLL . 
Example 1: The first aperture is centered at 

)0,3.0,22.0( λλ . The distance between the two planes is 
λ4.0  and the second and third apertures are located at 

)4.0,3.0,22.0( λλλ  and )4.0,3.0,62.0( λλλ , respectively. 
Example 2: The first aperture is centered at 

)0,3.0,22.0( λλ . The distance between the two planes is 
λ4.0  and the second and third apertures are located at 

)4.0,3.0,62.0( λλλ  and )4.0,3.0,42.0( λλλ , respectively. 
Example 3: The first aperture is centered at 

)0,3.0,22.0( λλ . The distance between the two planes is d  
and the second and third apertures are located at 

),3.0,42.0( dλλ  and ),3.0,22.0( dλλ , respectively. 
The tabulated eigenvalues of Example 1 are shown in 

Table I.  The characteristic  modes for each  aperture in this  
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Fig. 2.  The normalized characteristic modes for the aperture 1A  whose 
dimensions are λλ 04.06.0 ×  centered at )0,3.0,22.0( λλ  and the 
separation between the 2 planes is λ4.0 . 
 

 
Fig. 3.  The normalized characteristic modes for the aperture 1A′  whose 
dimensions are λλ 04.06.0 ×  centered at )4.0,3.0,22.0( λλλ . 
 

 
Fig. 4.  The normalized characteristic modes for the aperture 2A′  whose 
dimensions are λλ 04.06.0 ×  centered at )4.0,3.0,62.0( λλλ . 
 
example are shown in Figs. 2 to 4. For Example 2, the real 
and imaginary parts for the equivalent magnetic currents in 
each aperture are shown in Figs. 5 to 7. The transmitted 
power for Example 3, as a function of the distance between 
the two planes, is shown in Fig. 8.  

It is clear from Table I, that the results show a trend 
toward convergence and that the convergence is faster  
for lower order modes approximating the solution of  
the  problem.  Usually,  7 modes  show  that  an  acceptable 

 
Fig. 5.  The normalized real and imaginary parts of the equivalent 
magnetic current for the aperture 1A  whose dimensions are λλ 04.06.0 ×  
centered at )0,3.0,22.0( λλ  and the separation between the 2 planes is 

λ4.0 . 
 

 
Fig. 6.  The normalized real and imaginary parts of the equivalent 
magnetic current for the aperture 1A′  whose dimensions are λλ 04.06.0 ×  
centered at )4.0,3.0,62.0( λλλ . 
 

 
Fig. 7.  The normalized real and imaginary parts of the equivalent 
magnetic current for the aperture 2A′  whose dimensions are λλ 04.06.0 ×  
centered at )4.0,3.0,42.0( λλλ . 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 1, WINTER-SPRING 2003 74 

accurate solution may be reached. The eigenvalues of 
higher order modes have less contribution to the 
transmitted power than the lower order modes. The  
characteristic modes exhibit same characteristics due to the 
symmetry of the problem and the fact that the modes are 
independent of the excitation. 

VI. CONCLUSION 
A method based on the characteristic modes theory has 

been applied to solve the problem of electromagnetic 
radiation through three regions separated by two infinite 
parallel conducting planes and coupled through a number 
of apertures in each plane. The method can handle 
problems with different geometrical parameters. The 
analysis of the rectangular aperture of finite dimensions is 
similar to the situation of rectangular aperture coupling two 
regions separated by a perforated infinite conducting plane. 
The algorithms are applied efficiently to typical case 
situations. The convergence is proven for different 
geometrical parameters.  
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