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Abstract—Discrete multitone (DMT) is a line code which 
has been adopted as a standard for the asymmetric digital 
subscriber line (ADSL) systems by the American National 
Standards Institute (ANSI). The DMT uses the IFFT and FFT 
for modulation and demodulation, respectively. The large size 
of the IFFT/FFT results in a heavy computational load on the 
programmable DSP processors. It also proves that a cost-
efficient hardware implementation of radix-2 IFFT/FFT 
butterfly structure is not feasible, since it requires a large 
number of multipliers and adders. For cost-efficient hardware 
implementation, we have proposed two schemes to develop the 
IFFT/FFT architecture based on the time-recursive approach. 
In fact, these methods require approximately a maximum of 
only 12.5% of the multipliers and 15.6% of the adders when 
compared to the conventional butterfly type of 
implementation. 
 

Index Terms—Discrete multitone (DMT), FFT/ IFFT, IIR 
structures, Time-recursive approach  

I. INTRODUCTION 
N THIS section, we consider the discrete multitone 
(DMT) [1], [2] which is a multicarrier transmission 

technique that uses the fast Fourier transform (FFT) and the 
inverse FFT to allocate the transmitted bits among many 
narrowband quadrature amplitude modulated (QAM) tones 
depending on the transport capacity of each tone.  

A. DMT Principles and its Computational Complexity 

For channels that exhibit high signal attenuation at 
frequencies within the passband, a valid alternative to 
carrierless-amplitude-phase (CAP) modulation [3] and 
quadrature amplitude modulation (QAM) [4] is represented 
by a modulation technique known as orthogonal frequency 
division multiplexing (OFDM), or multicarrier modulation 
(MCM). As the term implies, multicarrier modulation is 
obtained in principle by modulating several carriers in 
parallel using blocks of symbols, therefore using a symbol 
period that is typically much longer than the symbol period 
of a single carrier system transmitting at the same bit rate. 
The resulting narrowband signals around the frequencies of 
the carrier are then added and transmitted over the channel.  

The narrowband signals are usually referred to as 
subchannel signals. The advantage of OFDM with respect 
to single carrier systems is represented by the lower 
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complexity required for equalization, which under certain 
conditions can be performed by a filter with a single 
coefficient per subchannel. A long symbol period also 
yields a greater immunity of an OFDM system to impulse 
noise. Another important aspect is represented by the 
efficient implementation of modulator and demodulator, 
obtained by sophisticated signal processing algorithms. 

Multicarrier modulation has recently found use in many 
applications in both baseband and passband transmissions. 
Some of the most well-knowm applications are digital 
subscriber line (DSL) over wired media using discrete 
multitone  (DMT) [1], [2] and digital audio broadcasting 
(DAB) or digital video broadcasting (DVB) for wireless 
communications using OFDM [5]. 

The DMT, therefore, is a multicarrier modulation 
scheme for DSL applications with the discrete Fourier 
transform (DFT) bases as the carriers. DMT [1], [2] has 
many advantages over the traditional single-carrier 
modulation system [3], [4] and it has been adopted as the 
ANSI standard for asymmetric digital subscriber line 
(ADSL). Since it takes channel signal-to-noise ratios 
(SNRs) into account, transmission of high speed data over 
bandlimited channels (sub-channels) can be achieved by 
allocating more bits to those sub-channels with higher 
SNRs and fewer or no bits to those sub-channels with 
lower SNRs. The DFT is a heavily used and well–
understood operation in digital signal processing and a 
variety of structures exist for its very efficient 
implementation. 

The direct computation of the DFT requires 24N  real 
multiplications and NN )24( −  real additions. Therefore, 
the number of multiplications and additions is proportional 
to 2N . Hence, it is of practical interest to develop more 
efficient or fast algorithms for computing the DFT. The 
conventional approach to recursive architecture began with 
the advent of Goertzel’s algorithm [6]. This constitutes a 
set of algorithms proposed to compute the DFT of a given 
N -point sequence in a recursive manner. The computation 
of the N -point DFT results in 24N  real multiplications 
and 24N  real additions. Therefore, this algorithm, in 
comparison to the direct DFT computation, requires the 
same number of real multiplications, but N2  more real 
additions. Hence, it is slightly more inefficient than the 
direct approach. But the advantage of this algorithm is that 
the N -complex coefficients required to compute the output 
do not have to be computed or stored in advance, but they 
are computed recursively as needed. This algorithm can be 
made more efficient by avoiding the complex 
multiplications as given in [6]. Then, the number of real 
multiplications and additions for the scheme works out to 
be approximately 2N  and 22N , respectively, which are 
still proportional to 2N .  Goertzel’s algorithm is  attractive 
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Fig. 1.  The IFFT/FFT block diagram of the DMT transceiver system. 
 
only in applications requiring the computation of a few 
samples of the DFT. One such example is the dual-tone 
multifrequency (DTMF) signal detection. A variety of 
structures exist for the very efficient implementation of 
DFT in NN 2log  operations and are known as FFT 
algorithms [6].  

The DMT uses the inverse FFT (IFFT) for modulation 
and the FFT for demodulation. The DMT divides the 
channel into many sub-channels. The frequency response 
of the sub-channels can be approximated to have a flat 
response if they are large in number. The flatness is 
required in order to reduce the complexity of the equalizer. 
However, this increases the IFFT/FFT length due to an 
increase in the number of sub-channels. The large size of 
the IFFT/FFT results in a heavy computational load on 
programmable DSP processors. It also proves that a cost-
efficient hardware implementation of radix-2 IFFT/FFT 
butterfly type of structure is still not feasible, since it 
requires a large number of multipliers and adders, which is 
of the order of NN 2log .  

We consider the orthogonal transforms from a time-
recursive point of view instead of the whole block of data. 
We do so because in digital signal transmission, data arrive 
serially. In this paper, we have proposed two methods to 
derive the hardware-efficient parallel infinite impulse 
response (IIR) filter structures for the IFFT/FFT 
implementation based on the time-recursive approach 
outlined in [7]. The throughput of these schemes is one 
input sample per clock cycle. In the first method, we 
decompose the IFFT into an inverse modified discrete 
cosine transform (IMDCT) and an inverse modified 
discrete sine transform (IMDST); and the FFT is 
decomposed into a modified discrete cosine transform 
(MDCT) and a modified discrete sine transform (MDST). 
Then, based on the time-recursive approach, the transfer 
functions of the dually generated pairs of the IMDCT and 
IMDST, and the MDCT and MDST are realized. Based on 
these transfer functions, the IMDCT/IMDST and 
MDCT/MDST modules are proposed. All the structures are 
of second-order IIR filter types with different multiplier 
coefficients. We have then proposed the architectures to 
implement the IFFT using IMDCT and IMDST modules, 
and the FFT using the MDCT and MDST modules. In the 
second method, the IMDCT and IMDST are realized using 

the inverse discrete Hartley transform (IDHT).  Similarly, 
the MDCT and MDST are computed from the discrete 
Hartley transform (DHT). The advantage of these methods 
is that they require less number of multipliers and adders. 
The methods proposed, therefore, require approximately a 
maximum of only 12.5 % of the multipliers and 15.6 % of 
the adders, when compared to the butterfly type of 
implementation. The advantage of the schemes proposed is 
that they require lesser number of multipliers than those 
proposed in [8]. Furthermore, the modules used in the 
IFFT/FFT architecture are regular and modular. The 
second method proposed has lesser hardware complexity 
than the first one, but it takes twice the time to get the 
required output.  

B. Notation Convention 

The ‘notation convention’ used in the forthcoming 
Sections are given below:  

)(kX p : p -th symbol of the IFFT input 
)(, kX rp : real part of )(kX p  
)(, kX ip : imaginary part of )(kX p  

)(kX r : sequence of real parts of all successive symbols 
)(kX p  

)(kX i : sequence of imaginary parts of all successive  
      symbols )(kX p  

)(kX ri : sequence of interleaved real and imaginary 
parts of all successive symbols )(kX p  

),( tnxc : IMDCT of )]1(),...,([ −+ NtXtX rr ] 
)1,( +tnxc : IMDCT of )](),...,1([ NtXtX rr ++  

),( tnxs : IMDST of )]1(),...,([ −+ NtXtX rr  
)1,( +tnxs : IMDST of )](),...,1([ NtXtX rr ++  

)(nx p : p -th symbol of IFFT output 
)(nx : sequence of successive symbols )(nx p  

C. Organization of the Paper 

The paper is organized as follows: Section II derives the 
required expressions for the implementation of the IFFT 
and FFT modules in terms of IMDCT/ IMDST and 
MDCT/MDST modules, respectively. Section III discusses 
the realization of IFFT and FFT using IDHT/DHT 
modules. Section IV compares the hardware complexity 
involved in implementing the IFFT/FFT blocks in a typical 
DMT transceiver system and Section V enumerates the 
conclusions drawn. 
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II. REALIZATION OF IFFT AND FFT ARCHITECTURES 
The conceptual block diagram of a DMT transceiver, 

involving the IFFT/FFT, is depicted in Fig. 1. The DMT 
encoder generates the complex sub-symbols 

]1,....,1,0[  ),( −= NkkX p  which are fed to the IFFT. We 
use a subscript p in )(kX p  to denote the p -th symbol.  
The real and imaginary parts of )(kX p  are denoted by 

)(, kX rp  and )(, kX ip , respectively. To ensure that the 
IFFT generates only real-valued outputs )(nx p , the 
conjugate symmetry conditions on the input )(kX p  are 
imposed [1] and hence the encoder output )(kX p  is 
modified as:  


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where )()()( ,, kjXkXkX iprpp += . The 0 -th and N -th 
samples of every symbol are set to zero, since they are not 
used in the DSL applications. The steps involved in 
decomposing the IFFT are illustrated below: 

As defined in [6], the IFFT of a p -th symbol, )(kX p , 
of length N2  is: 
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where )(, nx cp  is the N -point IMDCT of )(, kX rp , 

)(, nx sp  is the N -point IMDST of )(, kX ip , respectively, 
and they are given by: 
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The IMDCT and IMDST involve only real-valued 
computations. Furthermore, it can be shown that 

1,...,1),2()(
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This relationship can help us in saving an additional 
%50  hardware complexity [8]. At the receiver side of the 

DMT system, the N2 -point FFT is used to demodulate the 
received signal, which is given by:  
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where )(nx p  is real-valued. Therefore, (6) can be written 
as: 
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where )(, kX rp  is the N2 -point MDCT of )(nx p , and 
)(, kX ip  is the 2N-point MDST of )(nx p , respectively, and 

they are given by: 
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Both the MDCT and the MDST use 
12  1  0 ),( −= N...,,,n nx p , as the inputs. Hence, we can 

employ real-valued kernels to implement the FFT. No 
complex-valued operations are required in computing the 
FFT. In addition, in the DMT system, the lower N -point 
FFT outputs are conjugate symmetric of the upper N -point 
outputs. Therefore, we can neglect the outputs ),(kX p  

12 1  −+= N,...,NN,k . Hence, this simple manipulation 
can save %50  of the hardware complexity [8]. 

A. Implementation of IFFT Using IMDCT and IMDST 
Modules 

We implement IFFT using the IMDCT and the IMDST 
modules, the expressions for which are derived in the 
following subsection. 

1) Derivations of Transfer Functions for IMDCT and 
IMDST 

Since the input to the modules is a serial sequence, the 
serial sequences )(mX r and )(mX i  are constructed from 

)(, kX r p  and )(, kX i p , respectively, and they are 
illustrated in Fig. 2. So )0(rX  and )(NX r  corresponds to 

)0(,0 r X  and ),0(,1 r X  respectively. 
We employ the time-recursive approach [7], [9] to 
implement  the dual generation  of  IMDCT and  IMDST 
modules. The IMDCT and IMDST of a sequential input 
data vector starting from )(tX r  ))(or ( tX i  and ending 
with )1( −+ NtX r  ))1(or ( −+ NtX i  are denoted as 

),( tnxc  and ),( tnxs , respectively, and defined as: 
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Fig. 3.  IIR filter structure for the IMDCT and IMDST. 
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where the time index t in ),( tnxc as well as in ),( tnxs  
denotes that the transform starts from ).(tX r  The data 
arrives serially. We are interested in the IMDCT and 
IMDST of the next input data vector, 
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The time difference equations for dually generated pairs 
can be obtained from (11) by considering )1,( +tnxc  and 

)1,( +tnxs  as ),( tnyc  and ),( tnys , respectively, which 
can be written as follows: 
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The z- transforms of the above difference equations are:  
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By solving (14) and by including a delay of N  (to make 
them causal systems), we get the transfer functions of 
IMDCT and IMDST, which are denoted as )(zHci  and 

)(zH si , respectively, and are given as follows: 
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2) Parallel IIR Structure for the IFFT 

Based on the transfer functions derived in (15), the 
IMDCT and the IMDST modules are realized using a 
single universal filter module consisting of a shift register 
array of size N , which is initially stored with zeros (need 
not reset to zero after each symbol is processed); and a 
second order IIR filter. This structure is depicted in Fig. 3. 
For the given input )(mX r , every N -th sample of 

),( tnyc  and ),( tnys  gives the IMDCT and the IMDST of 
)(, kX rp , ]110[ −= ,...,N,k , respectively, to that index n . 

The thN sample of ),( tnyc  corresponds to the IMDCT of 
)(,0 kX r and the N2 -th sample of ),( tnyc  corresponds to 

the IMDCT of )(,1 kX r , to that index n . Similarly, 
IMDCT and IMDST of the other symbols can be obtained 
for different inputs )(mX r  or )(mX i . A total of N -
modules are required to get all the IMDCT and the IMDST 
of a given input sequence of block of length N  
simultaneously. The multiplier coefficients 10 ,mm  and 2m  
of the n -th module can be obtained by selecting the 
corresponding n  values in the expressions for 10 ,mm  and 

2m  which are given below:  

)cos(20 n
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m
π

= , )cos(1 n
N

m
π

=  and )sin(2 n
N
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Based on (3), the IFFT of ]1210[  ),(, N-,....,,kkX rp =  are 
computed using these modules by adding every N -th 
sample of IMDCT of )(kX r  and IMDST of )(kX i , for 
each index n . Since IMDCT and IMDST are computed for 
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different inputs, we require two modules for each n . This 
redundancy can be avoided by using one module for each 
n . To achieve this, we construct a new sequence, say 

)(mX ri , by interleaving the symbols )(, kX rp  and 
)(, kX ip  as shown in Fig. 4. Since we require IMDCT for 

the input )(, kX r p  and IMDST for the input )(, kX i p , 
multiplexers (MUX) are used to select the required one 
between the two outputs of each module for that particular 
input and bypass the other one. The N -fold decimators are 
used to pick-up every N -th sample from the output of the 
modules. By using (5) and 1+N  modules 

),......,,( 10 NMMM , we construct N2 -point IFFT. The 
IFFT architecture based on these modules is illustrated in 
Fig. 5. First, we pass the imaginary part of the first symbol, 

]110[  ),(  ,0 ,...,N-,kkX i =  sequentially through all the 
modules, and then the decimators select the N -th sample 
of the outputs of all these modules, which are stored in R-
registers. Now, the real part of the first symbol, 

]110[  ),(  ,0 ,...,N-,kkX r =  is passed sequentially through all 
the modules, and then the N -th samples of all the outputs 
of the modules are added to their respective register (R) 
contents, which give the IFFT of the first symbol 

]1210[   ),(0 N-,...,,kkX = . Similarly, the IFFT of the other 
symbols can be computed from the given input )(mX ri .  

B. Implementation of FFT using MDCT and MDST 
Modules 

In (8), )(, kX rp  and )(, kX ip  are defined as the MDCT 
and the MDST of )(nx p , respectively. Sequence )(nx  is 
obtained from )(nx p  as illustrated in Fig. 6. The MDCT 
and MDST of a sequential input data vector starting from 

)(tx  and ending with )12( −+ Ntx  are denoted by 
),( tkX r  and ),( tkX i , respectively. 

)1,( +tkX r  and )1,( +tkX i  are the MDCT and the MDST 
of  the next input data vector  starting from )1( +tx  and 
ending with )2( Ntx + . Following the derivations given in 
(9) through (14), we get the transfer functions of the 
MDCT and the MDST, )(zHc  and )(zH s , respectively, 
as follows: 
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Fig. 7.  IIR filter structure for the MDCT and MDST. 
 

The MDCT and MDST IIR filter structure based on the 
above transfer functions is shown in Fig. 7. The multiplier 
coefficients 10 ,nn  and 2n  of the k -th module can be 
obtained by choosing the corresponding k  values in the 
expressions for 10 ,nn  and 2n , which are given below:  

),cos(20 k
N

n
π

=  )cos(1 k
N

n
π

=  and )sin(2 k
N

n
π

−= . 

The FFT architecture with the MDCT and MDST 
modules is shown in Fig. 8. The N2 -fold decimators select 
every N2 -th sample from the output of the modules which 
gives )(, kX rp  and )(, kX ip  simultaneously. Since we are 
interested in )(, kX rp  and )(, kX ip , for 110 −= ,....,N,k , 
we have used N  such modules in the FFT architecture, as 
shown in Fig. 8. 

III. REALIZATION OF IFFT/FFT USING IDHT/DHT 
MODULES 

In the first method, the IFFT/FFT architectures have 
been realized from the DCT-like and the DST-like 
modules. In the second method, which is outlined below, 
the DCT-like and DST-like functions are computed using 
the IDHT/DHT functions. The IDHT/DHT transfer 
functions are derived based on the time-recursive approach 
from which the required modules are constructed. Finally, 
using these modules, the IFFT/FFT architectures are 
realized. The main advantage of this method is that the 
complexity of the previous method can be reduced even 
further at the cost of time needed to calculate the result. 

A. Implementation of IDHT and DHT Modules 

As defined in [10], the IDHT of a N2 -point data 
sequence, )(, kX hp , is  

10,1,...,2

),
2
2(cas )(

2
1)(

12

0
 ,,

−=

= ∑
−

=

Nn

nk
N

kX
N

nx
N

k
hphp

π
 (17) 

and the DHT of a N2 -point data sequence, )(, nx hp , is  

10,1,...,2

),
2
2(cas)()(

12

0
, ,

−=

= ∑
−

=

Nk
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N

nxkX
N

n
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π
 (18) 

where ).sin()cos()(cas nk
N

nk
N

nk
N

πππ
+=  

The IDHT and the DHT transfer functions can be 
obtained in a manner similar to that of the IMDCT/IMDST 
transfer functions [9], which have been derived in 
Section II. However, the transfer functions, IDHT and 
DHT  differ by a factor of N2/1  only.  Following the same  
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Fig. 8.  FFT architecture using the MDCT and MDST modules. 
 
procedure followed in Section II, the transfer functions 
using the IDHT/DHT can be found as given in (19) and 
(20) below: 
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and 
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Based on the above transfer functions, the generalized 
structure for IDHT/DHT is constructed and is shown in 
Fig. 9. The multiplication factor C  is N2/1  for the IDHT 
module while it is 1 for the DHT module. For IDHT, the 
multiplier coefficients are )/ cos(20 NnQ π=  and 

)/ sin()/ cos(1 NnNnQ ππ −=  and for the DHT, the 
multiplier coefficients are )/ cos(20 NkQ π=  and 

)/ sin()/ cos(1 NkNkQ ππ −= . Every N2 -th sample of 
the n -th (or k -th) module output )(ty  gives the IDHT (or 
DHT) of the blocks (length of each block is equal to N2 ) 
of )(tx  to that of index n  (or k ). 

B. IMDCT and IMDST from IDHT 

In order to get the IMDCT and the IMDST of (4) using 
the IDHT IIR filter structure, we define two N2 -point 
sequences as follows: 


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NNkkNX

Nk    kX
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NNkkNX

NkkX
kX
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 (21) 

Now, the IDHT of )(, kX hrp  and )(, kX hip  give the 
IMDCT of ))((2 , kX r p  and IMDST of ))((2 , kX i p , 
respectively. 

C. IFFT Architecture Using IDHT Modules 

Fig. 10 shows the IFFT architecture using the IDHT 
modules. The common input )(kX hri  to the modules 
 is shown in Fig. 11. The operation of IFFT architecture via  
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Fig. 9.  IIR filter structure for IDHT/DHT.  
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Fig. 10.  IFFT architecture using IDHT modules. 
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Fig. 11.  )(kX hri  sequence 
 
IDHT modules is similar to that explained in Section II for 
Fig. 5. 

D. FFT Architecture Using DHT Modules 

We use the DHT module to get )(, kX r p  and )(, kX  ip  
of (8). We define a new N2 -point sequence, )(

1
nx p , as: 

11,2,...,2),2()(

)0()0(

1

1

−=−=

=

NnnNxnx

xx

pp

pp
. 

The sum of the DHT of )(nx p  and )(
1

nx p  produces the 
MDCT )(2 , kX rp . Similarly, the sum of the DHT of 

)(nx p  and )(
1

nx p−  produces the MDST )(2 , kX ip . 
Fig. 12 shows the FFT architecture using the DHT 
modules. The common input )(1 nx  to the modules is 
defined in Fig. 13. 

IV. HARDWARE COMPLEXITY ANALYSIS AND RESULTS OF 
COMPARISON 

In this section, we compare and contrast the hardware 
complexity of our proposed IFFT/ FFT architecture with 
the direct implementation using the butterfly type of 
approach [6] and the architecture proposed in [8]. In [8], 
the authors use the parallel lattice structures derived in [11] 
to realize the IFFT/ FFT blocks of a DMT. Since it uses N 
lattice modules, the latency and throughput of this parallel 
realization are N  and 1, respectively. Since there is no 
global communication and the structure is modular and 
regular, it is suitable for practical VLSI implementation.  

In the present paper, we consider the optimal unified  
IIR  filter structures,  based on the  time-recursive approach  
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Fig. 12.  FFT architecture using DHT modules. 
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Fig. 13.  )(nx1  sequence 
 
proposed in [7], for the realization of IFFT/ FFT blocks in 
a DMT. These filter architectures preserve the advantages 
of the lattice architecture while reducing the hardware 
complexity nearly by half. Unlike the FFT, this architecture 
has only local interconnections and is better suited for 
VLSI implementation. Also, an area-time complexity 
analysis provided in [7] shows that the proposed approach 
is asymptotically optimal in speed and area. Moreover, 
unlike many fast algorithms for DFT and DHT, there is no 
constraint on the transform size N . 

In this paper, since we have decomposed the IFFT and 
FFT into real-valued transform kernels (DCT-like and 
DST-like), they are implemented by modules consisting of 
real multipliers and real adders. The direct (butterfly-type) 
implementation of a N2 -point IFFT block requires 

N NN 4log4 2 + real multipliers and N NN 6log6 2 + real 
adders, since the data is complex. In the case of the FFT 
block, which is used in the demodulator part of the 
receiver, the direct (butterfly-type) implementation requires 
only 8N N2N +2log real multiplications and 

8N N3N +2log  real additions [12], since the input to the 
demodulator part of the DMT is real. Therefore, a further 
reduction of arithmetic operations is possible in the FFT 
block of the demodulator, while considering the butterfly 
type of implementation. This factor has not been taken into 
account by the authors of [8] for the butterfly type of 
implementation. Consequently, they obtain a better 
arithmetic complexity ratio ( CR ), which is defined later in 
this section, especially for the FFT computation, as can be 
seen from Table I of [8]. 

 Now, coming back to the two methods presented in this 

paper (refer to Sections II and III for details), the arithmetic 
complexity involved can be explained as follows: For the 
sake of simplicity, let us consider the procedure explained 
in sub-Sections II-A and II-B as method 1 and that of sub-
Sections III-C and III-D as method 2. In method 1, we use 

1+N  modules, each of which requires three real 
multipliers and three real adders to implement the N2 -
point IFFT [13]. Moreover, the overall IFFT architecture of 
Fig. 5 needs N2  extra adders for adding the IMDST and 
IMDCT outputs and one adder for the realization of 

Nz−−1 . The multiplier N/1  is common to all the 
modules. To sum up, we need a total of 43 +N  real 
multipliers and 45 +N real adders to implement the IFFT 
architecture of Fig. 5. However, the method proposed in [8] 
requires 44 −N  real multipliers and 35 −N  real adders. 
Based on similar lines, to implement the FFT architecture 
presented in Fig. 8, we require N3  real multipliers and 

13 +N  real adders, whereas the method proposed in [8] 
takes 44 −N  real multipliers and 23 −N  real adders. If we 
define the complexity ratio ( CR ) as BMCR /= , where B  
and M  are the number of real multipliers (or real adders) 
in the direct butterfly type of approach and the two 
methods proposed, respectively, the result of comparison of 
method 1 and the method proposed in [8] can be 
represented as given in Tables I and II, for real multipliers 
and real adders, respectively.  

Similarly, for the second method proposed in this paper 
(referred to as method 2), we need a total of 32 +N  real 
multipliers and 45 +N  real adders to implement the IFFT 
architecture of Fig. 10. To implement the corresponding 
FFT  architecture (refer to Fig. 12),  we require 12 +N  real  
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TABLE I 
COMPARISON OF REAL MULTIPLIERS FOR THE N2 -POINT IFFT/FFT ARCHITECTURE 

 IFFT FFT 
 

N  
 

Butterfly 
Proposed 

method in [8] 
Proposed 
method 1 

 
CR  

 
Butterfly 

Proposed 
method in [8] 

Proposed 
method 1 

 
CR  

256 9216 1020 772 8.38% 6144 1020 768 12.5% 
512 20480 2044 1540 7.52% 13312 2044 1536 11.6% 

1024 45056 4092 3076 6.83% 28672 4092 3072 10.7% 
 

TABLE II 
COMPARISON OF REAL ADDERS FOR THE N2 -POINT IFFT/FFT ARCHITECTURE 

 IFFT FFT 
 

N  
 

Butterfly 
Proposed 

method in [8] 
Proposed 
method 1 

 
CR  

 
Butterfly 

Proposed 
method in [8] 

Proposed 
method 1 

 
CR  

256 13824 1277 1284 9.29% 8192 766 769 9.4% 
512 30720 2557 2564 8.35% 17920 1534 1537 8.6% 

1024 67584 5117 5124 7.59% 38912 3070 3073 7.9% 
 

TABLE III 
COMPARISON OF REAL MULTIPLIERS FOR THE N2 -POINT IFFT/FFT ARCHITECTURE 

 IFFT FFT 
 

N  
 

Butterfly 
Proposed 

method in [8] 
Proposed 
method 2 

 
CR  

 
Butterfly 

Proposed 
method in [8] 

Proposed 
method 2 

 
CR  

256 9216 1020 515 5.59% 6144 1020 513 8.35% 
512 20480 2044 1027 5.01% 13312 2044 1025 7.7% 

1024 45056 4092 2051 4.55% 28672 4092 2049 7.1% 
 

TABLE IV 
COMPARISON OF REAL ADDERS FOR THE N2 -POINT IFFT/FFT ARCHITECTURE 

 IFFT FFT 
 

N  
 

Butterfly 
Proposed 

method in [8] 
Proposed 
method 2 

 
CR 

 
Butterfly 

Proposed 
method in [8] 

Proposed 
method 2 

 
CR 

256 13824 1277 1284 9.29% 8192 766 1281 15.6% 
512 30720 2557 2564 8.35% 17920 1534 2561 14.3% 

1024 67584 5117 5124 7.59% 38912 3070 5121 13.1% 
 
multipliers and 15 +N  real adders. The results of 
comparison of method 2 and the method presented in [8], 
along with the direct butterfly type of approach, is 
tabulated in Tables III and IV, for real multipliers and real 
adders, respectively. The hardware complexity of different 
methods considered in this paper for a N2 -point FFT/ 
IFFT is presented in Tables I through IV. From these 
Tables, it can be seen that for our methods, we require a 
maximum of only 12.5% of the multipliers and 15.6% of 
the adders when compared to the direct butterfly type of 
approach. Moreover, the number of real multipliers 
required in our methods are much smaller than those 
required in [8], while there is a very slight increase in the 
number of real adders. 

We have not considered the computational complexity of 
Goertzel's algorithm, since it is not applicable in the present 
context [14]. The relevance of IFFT/ FFT in the context of 
a DMT receiver system has been extensively discussed in 
[15]. The input/ output operations of the proposed methods 
are serial in/ parallel out (SIPO), since the modules take the 
inputs serially and give the outputs in parallel. On the other 
hand, the operations are parallel in/ parallel out (PIPO) in 
the direct butterfly type of implementation. The number of 
modules required for both the methods proposed in this 
paper depends on the value of the transform length N . An 
area-time complexity analysis provided in [7] shows that 
the proposed approach is asymptotically optimal in speed 
and area. 

V. CONCLUSIONS 
Discrete multitone (DMT) is a multicarrier transmission 

technique that uses fast Fourier transform (FFT) and 
inverse FFT [15]. In this paper, we have derived efficient 
parallel IIR filter structures based on the time-recursive 
approach, for the implementation of IFFT/FFT blocks in a 
DMT system. Based on this, we have proposed two 
methods for cost-efficient implementation of a large block 
size IFFT/FFT in the DMT/OFDM transceiver system. The 
proposed methods require lesser number of multipliers than 
those required by the architectures described in [8]. The 
second method proposed requires even lesser number of 
multipliers than those required by the first method, but 
takes twice the time to get the required output. The 
complexity ratios of the multipliers and adders of the 
proposed methods to the direct butterfly type of approach 
are approximately a maximum of only 12.5% and 15.6%, 
respectively. 
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