
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003

1682-0053/03$10 © 2003 JD

103

Abstract—The main objective of this paper is to develop a
component model architecture to construct a distributed
environment through which the contingency selection for
voltage security analysis, line overloads and the reactive
power limit violations of multiple power systems can be
monitored and controlled. A component, which is based on
single-server serving multiple clients, has been proposed. It
enables all neighboring power systems can have simultaneous
access to the remote contingency server at any time, with their
respective data and is able to get the contingency ranking
based on their performance indices. An EJB (Enterprise Java
Beans) based distributed environment has been implemented
in such a way that each power system client can access the
remote contingency EJB server through JNDI (Java Naming
and Directory Interface) naming service with its system data.
The server conducts the contingency analysis and it provides
the continuous automated critical contingency ranking list
based on performance index to all the registered power
system clients. EJB server inherently creates a new thread of
control for every client request and hence a complete
component based distributed environment has been achieved.

Index Terms—Contingency analysis, distributed
computing, EJB, client-server model, tunneling.

I. INTRODUCTION
HE KEY aspect of the new development in power
system on-line control is the enhancement of the

security of the power system in order to maintain a high
reliability of electric power supply. Security of the power
system requires the proper integration of both automatic
and manual control functions. Both the steady state and
dynamic state emergency conditions of a power system
operating problem have to be characterized by keeping the
system operating optimally based on voltage, real and
reactive power. During the normal state in order to forestall
an emergency and reassure that all loads to be satisfied, it is
essential to conduct security analysis to know whether the
system is vulnerable to electrical disturbance. The first
function of the security analysis is to determine whether the
normal system is secure or insecure by contingency
evaluation and the second function is to determine whether
the preventive action should be taken when the system is
insecure.

The power system on-line contingency analysis by
conventional client-server architecture is complicated;
memory management is difficult; source code is bulky; and

Manuscript received December 11, 2002; revised July 2, 2003.
K. Nithiyananthan is with the Department of Electrical and Electronics

Engineering, College of Engineering, Guindy, Anna University, Chennai–
25, India (e-mail: knithiyananthan@hotmail.com).

V. Ramachandran is with the Department of Computer Science and
Engineering, College of Engineering, Guindy, Anna University, Chennai–
25, India (e-mail: rama@annauniv.edu).

Publisher Item Identifier S 1682-0053(03)0192

exception-handling mechanism is not so easy. In the
conventional power system operation and control, it is
assumed that the information required for monitoring and
controlling of power systems is centrally available and all
computations are to be done sequentially at a single
location [1]. With respect to sequential computation, the
server has to be loaded every time for each client’s request
and the time taken to deliver the contingency ranking list is
also comparatively high [2], [3]. This paper outlines a new
approach to develop a solution for on-line contingency
analysis by the way of distributed computing. An EJB
based component model overcomes the difficulties
associated with sequential computation and it is easy to
implement. Enterprise contingency component models are
pluggable, reusable and solve complexity such as in the
area of synchronization, scalability, data security and
integrity, networking and distributed object frameworks.

Modularity and reusability are the primary advantages of
a component model. A component model is proposed to
provide a clear specification of the inputs needed from
other components of the power systems. The proposed
multi -component application allows for the integration of
components implement in different platforms. A
component can be easily moved to a remote location
without recompiling other parts of the application, in
particular other components that interact with it directly.
Hence component model is proposed even though it has
low execution speed.

A Load flow bean and contingency bean can be
developed once and they can be deployed on multiple
platforms without recompilation or source code
modification. Although the contingency code is easy to
replicate at the users end, the new or updated contingency
logic can be implemented very easily without any
recompilation. All the Power System clients in the
distributed environment are able to use the updated
contingency logic with out any interruption.

EJB uses built in security facilities for authentication,
authorization and for secure communication. Hence the
distributed on-line dynamic security through the
contingency EJB server is safe and secure.

II. THE PROPOSED EJB ARCHITECTURE
In this proposed model, each power system client can

access the remote contingency EJB server through the
servlets based on data object serialization [3]. The
contingency server in turn computes and disseminates
contingency ranking to all the power system clients
simultaneously for every specific period of time based on
client’s requirement. The various entities of proposed EJB
model are: a contingency EJB server, the contingency EJB
container that runs with in the server, home objects, remote

Component Model for Multi-area Power
Systems On-line Dynamic Security Analysis

K. Nithiyananthan and V. Ramachandran

T

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003 104

EJB objects, load flow bean and contingency bean that run
within EJB containers, power system clients and JNDI
services. The relationship between the above entities of the
proposed EJB model is shown in Fig. 1.

A. Contingency EJB Server

 The contingency EJB server provides an organized
framework or execution environment in which the EJB
container can run. It makes available system services for
multiprocessing, load balancing and device access for EJB
containers. The J2EE platform enables a multi tiered
distributed application model, the ability to reuse
components, a unified security model, and flexible
transaction control. Power system clients simultaneously
access the contingency EJB server through JNDI naming
service. Based on the client’s requirement, the server
communicates with the remote client, fetches the present
contingency data and computes the load flow after removal
of the faulty line. Output of the load flow is used by the
server to compute the performance Index and provides the
contingency ranking to that specific client. The process is
simultaneously done for every registered client by
generating a separate thread of control. The purpose of
loading the server with load flow computational skill is that
any further modification to the computation methodology
would reflect appropriate results at all the remote clients.

B. Contingency EJB Container

The load flow bean and contingency bean components
are stored inside the Contingency EJB container [4]. The
contingency EJB container provides services such as
contingency calculation management, versioning,
scalability, mobility, persistence, and security to the
components it contains. Since the EJB container handles all
of these functions, development of load flow component
and contingency component is made easy. EJB container
contains the load flow bean, home and remote interfaces as
the load flow component and the contingency bean, Home
and Remote Interfaces as the contingency component.

C. The Load Flow and Contingency Components

 The load flow bean executes with in a contingency EJB
container, which in turn executes within an EJB Server. A
load flow EJB component is the type of EJB class, which is
most likely to be load flow computation logic. contingency
component is also the type of EJB class, which is likely to
be contingency logic. All the other classes in the EJB
system support either client access or provide services to
EJB component classes. In this proposed architecture, load
flow bean and contingency bean are stateless session beans.
A stateless load flow bean and contingency bean does not
maintain a conversional state for a particular power system
client. When a power system client invokes the method of a
load flow bean, the bean’s instance variable may contain a
state, but only for the duration of the invocation. When the
method is finished, the state is no longer retained. Stateless
session beans can support multiple clients and it can offer
better scalability for dynamic security analysis for large
power system clients.

J2EE Server

EJB Container

Remote

Load flow Home

Load flow BeanServlet

Power
System
Client

JNDI

Contingency
Bean

Remote

Contingency
Home

Power
System
Client

Power
System
Client

Fig. 1. Component model for dynamic security.

D. EJB Home and Remote Interface

Load flow EJB component and contingency component,
which have the Home Interface that defines the methods
for creating, initializing and destroying the instances of the
server. The home interface is a contract between an EJB
components and its container, which defines construction,
destruction, and looks up of EJB instances. An EJB home
interface extends the interface javax.ejb.EJBHome, which
defines base-level functionality for a home interface and all
methods in this interface must be RMI-compatible. The
respective remote Interface lists the load flow method
available in the load flow bean and as well as methods
available in the contingency bean. The EJB object is the
client’s view of the enterprise bean and implements the
remote interface. While the load flow bean and
contingency bean define the remote interface, the container
generates the implementation code for the corresponding
EJB object. Each time the power system client invokes the
EJB object’s method, the EJB container handles the request
before delegating it to the load flow bean.

E. Power System Clients

Power system clients locate the specific contingency EJB
container that contains the load flow bean and contingency
bean through the Java Naming and Directory Interface
(JNDI) service. They make use of the EJB container to
invoke load flow bean and contingency bean to get a
reference to an EJBObject instance. When the client
invokes a method, the EJBObject instance receives the
request and delegates it to the corresponding bean instance
and also provides necessary wrapping functionality. In this
proposed method, dynamic security analysis by each client
is achieved through a servlet to EJB communication for
every specific period of time and applet to servlet
communication is enabled via HTTP tunneling. The proxy
servlet transforms objects into a stream of bytes (Byte
Array Output Stream) that are sent as contingency request
and reconstituted at the power system client at specific
interval of time. Power system client applet opens a URL
connection to the servlet, passing it by name, port number
of the remote host and it can upload the contingency data to
the EJB contingency server.

www.SID.ir

Arc
hi

ve
 o

f S
ID

NITHIYANANTHAN AND RAMACHANDRAN: COMPONENT MODEL FOR MULTI-AREA POWER SYSTEMS … 105

EJB Container/Server

Create a new EJB object
Home Interface

Return EJB Object
Reference

Invoke Load Flow Method

Receive &
Return
Home
Object
Reference

Create EJB
object

Remote
Interface

Invoke Contingency Method

Create a new EJB object

Return EJB Object Reference

Home

Load Flow
EJB Object

Load
Flow
Bean

Home Object

Contingency
EJB Object

Contingency
Bean

Servlet

Power System
Client

 (Applet)

JNDI

Fig. 2. Invoking a load flow method on the remote EJB server.

F. Java Naming and Directory Interface Service

Java Naming and Directory Interface (JNDI) adds value
to load flow bean, contingency bean deployment by
providing standard interface for power system clients [5].
Naming service in JNDI is the entity that associates names
with objects and it provides a facility to find an object
based on name. Directory service in JNDI is a naming
service that has been extended and enhanced to provide
directory object operations for manipulating attributes.
JNDI is a unified system to access all sorts of directory
service information such as security credentials, machine
configurations and network address of the power system
clients. JNDI is extensible and it insulates the application
from protocols and from implementation details. The
greatest use of JNDI service is to locate load flow bean and
contingency bean home objects. To acquire the reference of
the load flow home object declaratively specifying
environment properties files or system files which detail
the JNDI service provider used in the load flow bean,
contingency bean deployment respectively. The client then
uses the environment properties employed in creating the
initial context factory to lookup the load flow and
contingency objects stored in the directory.

III. EJB DATA FLOW MODEL
Power system clients use the Java Naming and Directory

Interface to lookup load flow and contingency objects over
a network [6]. A remote power system client first accesses
the load flow bean through its remote and home interfaces.
When the power system client performs a JNDI lookup for
a home object, EJB container might use JNDI to return a
RMI remote stub. The remote stub is a proxy for the load
flow home object, which is located elsewhere in the
network and once the power system client has a stub, it can
invoke a load flow method on the home object through the
remote stub object. The EJB object that implements the

remote and home interfaces are accessible from a client
through the standard RMI APIs. It communicates with the
remote EJB container thus requesting that the load flow
method and then communicates with the load flow bean
and with the contingency data as shown in Fig. 2.
Contingency EJB container executes the load flow bean
and sends the load flow solution to the contingency bean,
which in turn computes the performance index for each
removable contingency’s. Critical contingencies are
ranked, based on their performance index are sent back to
the each power system client via a servlet at specific
intervals.

IV. LOAD FLOW AND CONTINGENCY BEAN LIFE CYCLE
The following steps describe the life cycle of a load flow

bean and contingency bean instance as shown in Fig. 3.
• A stateless load flow bean and contingency bean

instance’s life starts when the container invokes
newInstance() on the load flow bean class to create a
new instance and the container calls setSession-
Context() followed by ejbCreate() on the instance. The
container can perform the instance creation at any time
and there is no relationship to a client’s invocation of the
create() method.

• The session bean instance is now ready to delegate the
load flow and contingency method calls from any power
system client.

• When the container no longer needs the instance the
container invokes ejbRemove() on it.
This ends the life of the stateless load flow bean and

contingency bean instance.

V. DEPLOYING PROCEDURES TO BUILD PROPOSED ON-LINR
DYNAMIC SECURITY ANALYSIS APPLICATION

In order to deploy the EJB component into the
contingency server the following steps are to be followed.

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003 106

Do not exist

New Instance ()
SetSessionContext ()
ejbCreate()

EJB
Remove ()

Load flow and
contigency method

Ready

Fig. 3. Life cycle of EJB load flow bean and contingency bean.

1. Start the deploy tool window and select the new

application.
2. Choose the corresponding enterprise archive file and

type the application display name.
3. Start the New Enterprise wizard to package the load flow

bean and type the JAR display name.
4. Add the loadflowint.class, loadflowHome.class and

loadflowEJB.class to JAR dialog box.
5. In the General dialog box choose the bean type as

stateless session bean and choose appropriate interfaces
in the Enterprise bean class. Enter the name of the
Enterprise bean.

6. Repeat steps 3, 4 and 5 and create the contingency
component, which contains the contingency bean.

7. Open the deploy wizard and give the full path name of
client’s jar file name which contains the stub classes and
it will enable remote access to the load flow bean and
contingency bean.

8. Enter the JNDI name and WAR context root and deploy
the contingency application.

VI. RESULTS
A complete component model for on–line dynamic

security analysis by EJB based n- tier architecture has been
implemented in Windows NT based HP workstations
connected in an Ethernet LAN. The results are shown in a
client applet as given in Fig. 4.

The above applet shows the contingency ranking for a
specific 8-bus power system client and the load flow result
with a line is removed. When each power system client
applet is loaded, it invokes the servlet via http tunneling
and in turn the servlet accesses the load flow bean by its
JNDI name, Web Context root. EJB container runs the load
flow bean automatically and sends the load flow solution as
input to the contingency bean. In turn the contingency bean
calculates the performance index based on voltages, real
and reactive power. Finally a critical contingency list has
been sent back to respective power system client. The
client then uses the environment properties employed in
creating the initial context factory to look up the load flow
and contingency objects stored in the directory.

VII. CONCLUSION
 An effective RMI based distributed model has been

developed to do security analysis of multi-area power
systems. It has been tried out to overcome the overheads
associated with sequential power system contingency

Fig. 4. Applet with contingency ranking list based on performance index.

evaluation through this model. Although a client-server
architecture for load flow solution is well established, this
paper emphasizes a unique methodology based on
Enterprise Java beans to serve a large number of clients in
a distributed power system environment, across various
platforms based on communication between virtual
machines. A practical implementation of this approach
suggested in this paper was assessed based on 6, 9, 10 and
13 bus sample systems. Accordingly the proposed model
can be implemented for large power system network spread
over a large geographical area.

REFERENCES
[1] G. Bandyopandhyay, I. Senguptha, and T. N. Saha, "Use of client-

server model in power system load flow computation," IE(I) Journal-
Electrical, vol. 79, no. 4, pp 199-203, Feb. 1999.

[2] B. Qiu and H. B. Gooi, "Web–based SCADA display systems
(WSDS) for access via Internet," IEEE Trans. on Power Systems,
vol. 15, no. 2, pp. 681-686, May 2000.

[3] G. P. Azevedo, B. Feijo, and M. Costa, "Control centers evolve with
agent technology," IEEE Trans. on Computer Applications in Power,
vol. 13, no. 3, pp 48-53, Jul. 2000.

[4] —, Enterprise Java Beans TM Specifications Version 1.0,
http://java.sun.com/products /ejb/docs10.html.

[5] —, Enterprise Java Beans – Part 2,
http://members.tripod.com/gsraj/ejb/chapter/ejb-2.html.

[6] E. Roman, Mastering Enterprise Java Beans and the Java 2
Platform, Enterprise Edition, Wiley Computer Publishing, John
Wiley &Sons 2000.

K. Nithiyananthan received the B.E. degree in Electrical and Electronics
Engineering and the M.E. degree in Power System Engineering from the
Faculty of Engineering and Technology, Annamalai University,
Chidambaram, India, in 1998 and 2000, respectively. He is currently
working as a Teaching\Research Associate in the Department of Electrical
and Electronics Engineering, College of Engineering, Guindy, Anna
University, INDIA. His research interests include power systems analysis
and modeling, distributed computing and Internet technologies.

V. Ramachandran received his M.E. and Ph.D. in Electrical Engineering
from College of Engineering, Guindy, Anna University, Chennai, India.
He is currently a Professor of Computer Science and Engineering in
College of Engineering, Guindy, Anna University, India. His research
interests include power systems reliability engineering, network security,
component technologies and soft computing.

www.SID.ir

