
IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003

1682-0053/03$10 © 2003 JD

134

Abstract—A teacher of Computer Science and Mathematics
has two options: use precious classroom time in routine
operations and boring formulas, thus killing the interest of
students and hampering their intellectual development, or
challenge their curiosity by formulating interesting and
stimulating questions giving them a taste for independent
thinking. The teacher need only provide the building blocks
and let students themselves form more complex structures,
providing them timely hints when needed. In this paper we
demonstrate how a very simple procedure can be used, with
minor modifications, as a building block to solve a variety of
seemingly unrelated problems in the field of graph
algorithms.

Index Terms—Discover, design, problem solving, graph
algorithms

I. INTRODUCTION
EACHING the standard course “Analysis & Design of
Algorithms” at an undergraduate level in a typical

Computer Science program has essentially two objectives.
The first objective, dealing with analysis, is to familiarize
students with existing algorithms. The second one, which is
perhaps far more important, is to equip the students with
the necessary tools and techniques, and above all the
confidence, required in solving a non-textbook problem.
This second objective, concerned with the design of
algorithms, is essentially a creative effort containing all the
ingredients of a thriller: adventure, excitement, challenge,
and suspense.

There is no guarantee that one who critiques literature
can learn to write beautiful poetry. Similarly the ability to
understand and analyze algorithms does not guarantee that
one could become an efficient algorithm designer. The
study of the methods and rules of discovery and invention
is a field in its own right. Though there are rules of thumb
that can be followed to help an individual design an
algorithm, there is no precise algorithm available that can
be used to design new algorithms. Despite the fact that one
cannot guarantee that a student could become an efficient
algorithm designer, we believe that the instructor,
following our approach and providing proper guidance, can
sow the seeds that could blossom into the genius that
produces efficient yet astonishingly simple algorithms.

Our experience of teaching algorithms indicates that

Manuscript received October 24, 2002; revised July 18, 2003.
This work was supported by a research grant from the Lahore

University of Management Sciences, Lahore, Pakistan. A brief version of
this paper was presented at INMIC 2001 (IEEE National Multi-topic
Conference, 2001).

M. Ashraf Iqbal is with the Department of Computer Science, Lahore
University of Management Sciences (LUMS), Lahore-54792, Pakistan
(e-mail: aiqbal@lums.edu.pk).

Sara Tahir was with the Department of Computer Science, Lahore
University of Management Sciences (LUMS), Lahore-54792, Pakistan.
Currently she is pursuing an M.S. degree in Management Science and
Engineering at the Stanford University, US (e-mail: stahir@stanford.edu).

Publisher Item Identifier S 1682-0053(03)0186

creativity in algorithm design depends, to a large extent, on
how we deal with the analysis phase. We stress that while
we are familiarizing students with existing algorithms, we
should not formally teach anything. Instead we should
encourage, rather incite, students to create algorithms
themselves using some very fundamental concepts. The
objective is that students should experience the tension and
excitement of discovery even during the initial phases of
understanding existing algorithms. Polya [1] remembers
the time when he was a student himself: he was always
perturbed by the question: Yes the solution seems to work,
it appears to be correct; but how is it possible to invent
such a solution? How could I invent or discover such
things by myself? We feel that with the availability of some
pre-requisite knowledge, timely hints, and stimulating
questions posed by the instructor, one can always
encourage students to redesign an algorithm right from
scratch. It is important now to find a good working
definition of design (of algorithms).

A. What is Design?
According to the Webster’s dictionary [2], design is to

conceive and plan out in the mind. In the words of Miller
[3], Design is the thought process comprising the creation
of an entity. Rine [4] defines design as a systematic,
directed set of decisions that are introduced, made and
deployed, leading to an effective or efficient outcome,
solution, or technology. The last definition suits our
discovery based learning approach in which a teacher
formulates a directed set of questions and hints in order to
help his/her students design algorithms. It is interesting to
note that our approach is similar in some respects to the so-
called Moore Method of teaching and learning.

B. The Moore Method
R. L. Moore was a professor of mathematics at the

University of Texas. In the words of Hale [5]: What was so
special about his mode of teaching was that he did not
lecture, he did not profess. He sat in the back of the room,
mostly quiet, occasionally asking a question, allowing his
students to find the answers in their own ways. Many
professors still use his teaching style not only in his subject
of specialization (topology), but in analysis, algebra, game
theory, and other courses, and have advanced or modified
the Moore Method in a number of ways [6], [7]. Taylor [8],
while characterizing (his version of) the Moore method of
teaching, does not allow collective effort on the part of the
students inside or outside of class. He also does not allow
the use of any source material. We, on the other hand,
encourage lively discussions inside as well as outside the
classroom. The teacher, in our model, starts with something
(very simple), and then actively guides the students in their
path of discovery.

In this paper, we provide a detailed study of a number
of graph algorithms that have applications in diverse

Should We Teach Algorithms?
M. Ashraf Iqbal and Sara Tahir

T

IQBAL AND TAHIR: SHOULD WE TEACH ALGORITHMS?

135

Fig. 1: The Bucket B after first iteration through Steps 2-4.

fields like chemistry, biology, mathematics, engineering,
social sciences, and also computer science. We start with a
simple algorithm known as the Bucket Algorithm (the
bucket symbolizes a friendly container where a child puts
every new toy or every new discovery) consisting of just
four lines of pseudo code [9], [10]:

Bucket Algorithm (Input: G, Output: a Bucket B)
1. Put any vertex x of Graph G in the Bucket B.
2. While there are edges coming out of the Bucket B.
3. Select an edge connecting u in B to v not in B.
4. Put v in B.

We shall show how this primitive procedure can be used
to reinvent a number of existing powerful algorithms in
graph theory [11]-[17]. With some encouragement from the
instructor, the students should develop a keen desire and
ability to understand the motives behind, and the
procedures followed in order to arrive at innovative
solutions. They would learn the ways and means of
devising their own algorithms. Specifically the Bucket
Algorithm would be used to solve the following problems:

1. Find if a given graph is connected
2. Find the number of connected components of a

graph
3. Find if a graph is a tree
4. Find a bridge in a graph
5. Find a path between two vertices in a graph provided

a path exists
6. Find a spanning tree of a graph
7. Find a minimum-spanning tree of a graph:
8. Rediscovering Prim’s Algorithm
9. Rediscovering Kruskal’s Algorithm
10. Solve the single-source shortest-paths problem:

Rediscovering Dijkstra’s Algorithm
11. Conduct a breadth first search in a graph
12. Conduct a depth first search in a graph
We believe that it is possible to apply this approach in

other fields as well. This technique has already been
practiced with varying degrees of success in teaching
subjects like Electric Circuits, Digital Circuit Design,
Semi-conductor Theory, Discrete Mathematics, Computer
Organization, and Data Structures, to name a few. The
motivation is that once the tutor provides students with the
building blocks and the confidence needed for the creative
process, it becomes almost certain that the students would
be able to arrive at the right conclusion with minimal
direction provided by the instructor. The role of the teacher
is, however, redefined: (s)he is certainly not required
to reproduce what is given in the textbook: rather provide

Fig. 2: The Bucket B after 4 iterations through Steps 2-4.

missing links in the jigsaw puzzle such that the students
may recreate the bigger picture themselves.

II. UNDERSTANDING THE BUCKET ALGORITHM
The Bucket Algorithm is simple and straightforward. It

is just a 4-line algorithm with a simple while loop with no
recursion. We start with something simple but potentially
very powerful. Simple, because it is easy to understand and
at the same time flexible enough to handle a variety of
problems belonging to different categories.

A. How Does it Work?
We identify a Graph G and a Bucket B (See Fig. 1). Step

1 instructs us to put any node, say node a, of the Graph G
into the bucket. Next we choose any edge joining a to any
other node, say node b, in the graph (since all other nodes
are currently outside of the bucket) and put b in the bucket.
See Figure 1 for a picture of what the Bucket B will look
like at this stage. Now we have a set of nodes {a, b} in the
bucket giving rise to a set of edges {(a, f), (b, c), (b, d)} to
choose from in Step 3 as we iterate through the while loop.

Fig. 2 shows the bucket B after 4 iterations through the
Bucket Algorithm. Notice that there are two types of
vertices: those inside the bucket represented by the set
{a, b, c, d, e}, and those outside the bucket, the set {f, g, h,
i, j, k}. These two different kinds of vertices give rise to
three different kinds of edges. The first is the set of edges
connecting vertices inside the bucket with each other:
{(a, b), (b, c), (b, d), (d, e)}. The second is the set of edges
connecting vertices outside the bucket with each other:
{(f, g), (g, h), (h, i), (i, j), (i, k)}. The third is the set of
edges (the “branches coming out of the Bucket B” in Step
2) connecting vertices inside the bucket to vertices outside
the bucket, the set {(a, f), (c, k), (d, f)}. An edge belonging
to this last set of edges is called a cross edge and is of most
interest to us. Depending on the constraint we place on the
selection of cross edges in Step 3, we can implement
numerous algorithms.

B. Playing with the Algorithm
The instructor should encourage students to play around

with the Bucket Algorithm to get comfortable with it.
During this activity the instructor should ask thought
provoking questions such that the students focus on
multiple facets of the algorithm that would later help in
designing new algorithms. Such questions could be:

1. Under what conditions there would be no edges coming
out of the Bucket? Note that this condition should be
met otherwise the algorithm would never terminate.

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003

136

2. Would all the vertices of the graph move into the bucket
after the completion of the algorithm? When would this
scenario be true, and when would it be false?

3. Does it make any difference if we have a different
starting vertex? Note that there are situations when it
really makes a difference.

Students must come to realize the importance of cross
edges: it is because of this cross edge (u, v) we select in
Step 3 that we discover the new vertex v.

C. Solving Other Problems
The above questions would induce a deeper

understanding amongst students about how the Bucket
Algorithm works under different conditions and give some
hints while solving more complex problems. After the
students are confident that they understand the idea behind
the Bucket Algorithm, the instructor can start asking them
to modify it to solve more complex problems. What is the
worst-case complexity of this algorithm? It is
recommended that the instructor not involve the underlying
data structure at this stage in order to tackle the issue of
complexity. It becomes essential to include it at a later
stage.

D. The Right Provocation
It is well known that a real understanding of the problem

is a necessary condition to solve any problem. According
to Rine [18], “ Half way home to solving a problem is a
clear understanding of the problem”. Out of a sequence of
six questions posed by Sakiena [11] in order to guide one
to discover the right algorithm, the first question is Do I
really understand the problem? Then comes the role of the
teacher in terms of how he/she states a problem and
provokes (or guides) his/her students to solve it in a
specified manner. For example if a teacher is talking about
Quick Sort, he/she cannot expect his/her students to
discover the said algorithm just after understanding the
sorting problem. The teacher should first make the students
appreciate the need of partitioning the array into halves
such that all numbers in the first half are smaller than each
number in the second half. Why we should do this and how
should we do this are both equally important to design,
discover (and even understand) the said sorting algorithm.
The understanding of the previous state of an abstract
system and the (usefulness of the) final system state after
the application of a so called fundamental operation [10]
(for example the partitioning procedure in Quick Sort) is
crucial in problem solving in computer science as in other
disciplines.

III. FIND IF A GRAPH IS CONNECTED
Assuming that the students know what a connected

graph is, the instructor should ask the students: “Can you
modify the Bucket Algorithm such that you may be able to
determine whether a given graph G is connected?” The
emphasis should be using the existing techniques with
minimum modification. The answer is simple: if, after the
Bucket Algorithm has been applied to a graph G, there are
still any nodes left outside the bucket the graph is not
connected. If, however, all nodes are inside the bucket,
then graph G is connected.

Fig. 3: A graph G that is not connected. Once the Bucket Algorithm
terminates, nodes i and j will be left outside the bucket B.

Notice while students were becoming familiar with the
Bucket Algorithm, the instructor asked when there would
be nodes left outside the bucket. Brighter students would
have been able to identify at that stage that some nodes will
be left outside the Bucket B when a graph is not connected
since no cross edges exist connecting them to nodes inside
the bucket (Fig. 3).

Not all students may be able to identify this property of
the Bucket Algorithm. The instructor in this case will have
to make an extra effort to guide such students. Once all
students have understood the solution (having arrived at it
on their own with well-timed prodding from the instructor)
the instructor should start the discussion regarding cost
calculation, i.e., the complexity of the modified algorithm.

IV. THE NUMBER OF CONNECTED COMPONENTS
Once the students understand how to find if a graph is

connected the above problem becomes simple and very
little imagination is needed to answer the above question.
Applying the Bucket Algorithm once on a graph with more
than one connected component would tell us that the graph
is not connected as all the vertices do not end up in the
bucket. The vertices that do end up in the bucket belong to
a single connected component. Applying the algorithm
again with a new bucket would give us a new connected
component, and so on and so forth. The number of times
we have to apply the Bucket Algorithm depends upon the
number of connected components, and this would
determine the worst-case time complexity.

V. FIND A BRIDGE IN A GRAPH
A cut edge or bridge is one whose removal produces a

graph with more connected components than the original.
There are essentially two different problems here; it is the
job of the instructor to at least identify them for those
students who cannot visualize the solution immediately.
The first problem is to check if a given edge is a bridge.
This could be solved if we remove the given edge and then
check the number of connected components in the resulting
graph. What would be the resulting complexity of this
algorithm? The second problem is to find or locate a bridge
in a given graph. Once the first problem is solved it should
be a simple matter to handle it. How many times the Bucket
Algorithm is applied and what is the resulting worst-case
complexity of the algorithm?

IQBAL AND TAHIR: SHOULD WE TEACH ALGORITHMS?

137

VI. FIND IF A GIVEN GRAPH IS A TREE
The algorithms that solve this problem depend on how

we define a tree. This in not only true for this problem but
is true for a majority of problems. It highlights the fact that
looking at various definitions or properties is sometimes
extremely useful and it provides the seed for designing a
number of very powerful algorithms. Solving a problem
from different angles and then making a comparison is the
single most important exercise for a student studying
algorithms (Rawlins [14]).

A. Every Edge in a Tree is a Bridge
We know that a tree of n vertices consists of bare

minimum number edges, which makes it a connected
graph. This implies that removing any edge would
disconnect a tree. Thus every edge in a tree is a bridge. We
already know how to check if a given edge is a bridge in a
graph. The problem is thus reduced to repeatedly applying
the algorithm in Section V. The number of times we would
have to do this and finding the resulting complexity is an
interesting exercise by itself.

B. The Number of Edges in a Graph
We can define a tree in a number of ways. In fact, one

definition implies another. For example, a connected graph
is a tree provided the number of edges in the graph is
exactly equal to one minus the number of nodes in the
graph, i.e., n-1. The catch is that the graph should be
connected otherwise the definition would not apply. We
know how to find if a given graph is connected using the
Bucket Algorithm. So the problem is reduced to counting
the number of edges. How complex is this problem? Is it
possible to count the number of edges while we are
checking if the given graph is connected? Would that
perhaps reduce the complexity?

C. The Spanning Tree of a Tree
We know that a tree has the minimum number of edges

required to connect a given number of vertices. A spanning
tree of a given graph also satisfies this property, as it is a
tree. Thus the spanning tree of a tree would be exactly the
same tree. This definition or property can be used to design
an algorithm to check if a given graph is a tree.

D. A Comparison
A comparison of all these algorithms would be

extremely beneficial to the students if they were
encouraged to work it out independently. Once they have
the answers it would again be stimulating for them to
compare their findings with their colleagues within the
classroom. Encouraging and initiating interesting
discussions and even heated debates is one of the most
important responsibilities of a teacher: (s)he must simply
coordinate and make sure that the interaction is moving in
the right direction. Only once the students have gained
confidence that they understand the basic problem and can
find an efficient solution should we move to more complex
problems such as finding whether a given graph is a forest.

VII. FIND THE SPANNING TREE OF A GRAPH
The algorithm that we design to solve this problem

depends on how we visualize the development of a

spanning tree. We can start with the original graph and start
with pruning or removing edges until the graph becomes a
tree. Or, we can start with no edges and start growing edges
until we get a tree. It is also possible to identify some of the
so-called cross edges, which would constitute the spanning
tree. The resulting complexity would change dramatically
depending upon the approach used. Each approach has its
merits and demerits and the comparison itself is very
stimulating especially because each approach has more
advanced applications.

A. Cutting Edges
If we remove all redundant edges from a given graph

and just keep edges essential to keep it connected the
remaining graph would be a spanning tree of the given
graph. This idea would give birth to an algorithm: Remove
all edges that do not disconnect the given graph. What
would be the worst-case time complexity of this algorithm?

B. Growing Edges
We start with no edges at all but with n isolated vertices.

We add edges out of the edge pool of the graph such that
the resulting graph remains a tree. This approach is
opposite to the one discussed above: instead of pruning we
are growing edges. In the earlier approach we should be
careful and should not disconnect the graph. In the second
approach we should be careful not to create cycles in the
graph. In each case the Bucket Algorithm helps us. How
many times we use the Bucket Algorithm would eventually
decide the overall worst-case complexity.

C. Selecting Edges
While running the Bucket Algorithm, we might have

noticed that every time we discover a new vertex it is
because of a cross edge (step 3), and that the number of
such cross edges would be exactly equal to n-1. If we just
keep a record of all such edges we might get the spanning
tree of the given graph. How efficient would this be if
compared with the algorithms described earlier?

VIII. FIND A MINIMUM SPANNING TREE
There could be many non-isomorphic spanning trees

possible for a given graph: each approach that we have
described for finding a spanning tree of a graph was
flexible and there was a lot of maneuvering possible within
it, thus giving rise to different spanning trees. What if we
find all distinct spanning trees of a given graph using any
approach and then select the one with minimum weight?
Why is this approach, which looks at all possible solutions
and then selects the one of our choice, not feasible?

A. Cutting or Growing Edges
Each algorithm used to find a spanning tree in the

previous section could be used with proper modification to
find a minimum-spanning tree of a connected and weighted
graph. While cutting edges we select the edge of maximum
weight (provided it does not disconnect the graph), having
first sorted the edges in descending order of weight. This
would give rise to an algorithm very similar to Krushkal’s.
Similarly, we can grow edges starting from the edge of
minimum weight (making sure no cycle is created). Please
note that here we are not using any fancy data structure

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003

138

since the objective is not to have a complicated design,
unlike the approach used by some books.

B. Selecting Edges: A Greedy Algorithm
While forming a spanning tree we can select any cross

edge. In order to form a minimum spanning tree, we should
try to include edges of less weight thus excluding those of
higher weight. It follows that among all cross edges that we
may select we should pick the one of minimum weight.
Using this simple technique the Bucket Algorithm can
easily be modified to find a minimum spanning tree of a
weighted directed or undirected graph (Fig. 4).

It is important that the minimum spanning tree problem
is an optimization problem in which we intend to minimize
the sum of weights of all edges in the spanning tree. In
order to minimize the global sum, we are trying to
minimize a local quantity. We are lucky this time: a so-
called greedy approach is working optimally and is in fact
optimizing the global sum also. However, although greedy
approaches are relatively efficient (being based on local
conditions only), they are not always optimal.

C. The Magic of Prim’s Algorithm
It would be useful if the students were asked to prove

that this greedy approach would actually find a minimum
spanning tree. Without reading proofs given in the
textbook they should come up with something of their own
making. A lively discussion can be initiated to find the
merits and demerits of individual work. They should also
be asked to derive the time complexity of this approach. It
would be useful if they compare this approach with Prim’s
algorithm. In fact, the two approaches look identical.
However the time complexity of Prim’s algorithm is better.
Why? The reason is in fact more exciting because Prim’s
algorithm is not just greedy, there is something else,
something magical which cuts down the time complexity
for not so obvious reasons. What is that magic? How and
why it is working? Can this magic be used elsewhere and
under what conditions?

IX. FIND A PATH BETWEEN TWO VERTICES IN A GRAPH
It is possible to find a path between two vertices

provided the graph is connected. Now instead of checking
whether the graph is connected or not, we had better check
if the two given vertices belong to a single connected
component. If we keep moving on the edges connecting
one vertex to another within the graph, a time would come
when we would reach our destination. What is wrong with
this approach? If there are cycles in the graph it is possible
that we never reach our destination. What if there are no
cycles in the graph – what if we first make a spanning tree
of the graph? Even now it would be difficult to find a path,
since we might have to do a lot of backtracking.

A. Cutting Edges
If we remove all redundant edges from a given graph

and just keep the edges essential to keep the two vertices
connected, the remaining graph would be a “straight
forward” path between the two vertices in the given graph.
What would be the worst-case time complexity of this
algorithm? Note that we have used a similar technique
to find a spanning tree of a graph. It would be useful to

 (a) (b)

Fig. 4: Minimum spanning tree: the greedy approach (a) next edge
selected: (a, f), (b) next edge selected: (b, c).

pinpoint the similarities and also the differences.

B. Selecting Edges
Does the problem become simpler if we first find the

spanning tree of the given graph? Now if we start moving
from the given vertex to the destination vertex, would it be
less confusing? Perhaps, but again we may start our
journey in the wrong direction and would have to
backtrack. Students should experience this confusion and
the resultant backtracking. Suppose we apply the Bucket
Algorithm starting with the given vertex: the spanning tree
thus formed would originate from the given vertex since
the given vertex would be the root. We also keep a record
of the parent of every vertex in the spanning tree. With this
additional information would it be easier to find a path
from the given vertex, now the root, to the destination
vertex? The answer is still “no” because a parent may have
multiple children, and thus many diversions. However if
we start from the destination vertex and keep selecting the
parent vertex, we would eventually reach the root without
any confusion.

X. THE SHORTEST PATH PROBLEM
If all edges in the graph were to have the same weight,

would the path, found using the algorithms of section IX,
be a shortest path? If not then what should be done to
achieve our objective? Note that it is easier to find a
shortest path in a graph with uniform edge weights, so first
we should solve a simpler problem before attacking a more
complex one. Now assume that the edge weights are
different. Do we need a different algorithm from the one
used to find a shortest path in a graph with uniform edge
weights? Why?

A. First Find a Minimum Spanning Tree
If somehow we remove edges of higher weights from the

graph without disconnecting the two given vertices, would
the problem become simpler? What if we first find a
minimum spanning tree of a graph and then move
backwards from the destination to the source vertex as
described in Section IX B?

B. Shortest Path from one vertex to every other vertex
Assume the given vertex goes in the bucket first. Now

examine all cross edges that would be coming out of the
given vertex with different weights. Identify the cross edge
with minimum weight. Let us name the vertex on the other
side of this edge i, and the weight of this edge w. What

IQBAL AND TAHIR: SHOULD WE TEACH ALGORITHMS?

139

would be the length of the shortest path from the given
vertex to vertex i? Under what conditions is above our
solution? Note that there are situations when the above
procedure would not yield the shortest path. The
experience gained while answering the above questions can
be utilized to modify the Bucket Algorithm to solve the
problem. It is interesting to note that we are inching
towards Dijkstra’s Algorithm.

XI. GRAPH TRAVERSAL TECHNIQUES
Again, it is possible to traverse a graph in a haphazard

manner. Efficiency demands that we do not visit the same
vertex again and again. We must make every move in a
systematic manner to ensure that we do not miss out any
vertex belonging to the same connected component [6].
You might have noticed that the Bucket Algorithm is
essentially a graph traversal algorithm. However, in most
of the current textbooks, you would only find some very
specific techniques like the Breadth and Depth First
Search traversal algorithms – more complicated than our
Bucket Algorithm.

A. Traditional Techniques & the Bucket Algorithm
It is interesting to note that the Breadth as well as Depth

First Searches are two different implementations of the
Bucket Algorithm. While introducing this algorithm we
purposely did not disclose the implementation details
ignoring the underlying data structure required to program
the algorithm. The objective was to highlight the basic idea
and initially suppress the programming details. Baase [13]
uses JAVA to describe algorithms and this may be one
reason why the book is relatively difficult to read even if
students have prior knowledge of the language. Cormen
[12] and Skiena [11] use a pseudo programming language
and operate at a slightly higher level. The Bucket
Algorithm is simple because it is more abstract and
flexible.

B. The Underlying Data Structure
We know that we use a cross edge to discover a new

vertex in the Bucket Algorithm (step 3). Some of these
cross edges come from vertices that entered the bucket
earlier, others from vertices that are new comers in the
bucket. Our decision of which vertex to choose would
convert the Bucket Algorithm into a Breadth First Search,
Depth First Search, or a combination of the two. Using a
Last in First Out (LIFO or a stack) or a First In First Out
(FIFO or a queue) data structure to store the already
discovered vertices would make all the difference: a stack
implementation would convert the Bucket Algorithm into a
Depth First Search while a queue would transform it into a
Breadth First Search.

XII. CONCLUSIONS
The most important task of a teacher should be to enable

the students to discover and acquire experience of
independent work. According to Polya [1]: If the student is
left alone with his problem without any help or with
insufficient help, he may make no progress at all. If the
teacher helps too much, nothing is left to the students. The
teacher should help, but not too much and not too little, so

that the student shall have a reasonable share of the work.
In this paper we have demonstrated how a teacher can

help students discover a number of graph algorithms with
some initial help, starting with something seemingly
simplistic yet capable of being transformed into a number
of powerful algorithms with minor modifications. We have
shown that by asking thought provoking questions it
becomes possible for the teacher to guide the students
while solving difficult problems. We have also shown that
making comparisons between various techniques and
solutions provides a deep insight which itself is very useful
in solving otherwise difficult problems [19]. It is also
important to differentiate between complex problems and
difficult problems: complex problems or NP-complete
problems are those for which no polynomial-time algorithm
has yet been discovered [11], [12]. On the other hand, a
problem may be difficult (to solve) simply because it is not
well understood or the students fail to find a suitable
strategy with the existing tools and techniques without
external help.

At times it is almost impossible to solve a given problem
while it is easy to solve a related problem (the shortest path
problem is solvable while the longest path problem is
unsolvable in polynomial time). Similarly sometimes a
problem is so complex in its original form while it is easier
to solve it while placing certain restrictions (the graph
isomorphism problem is solvable for trees but is difficult to
solve in general). It is extremely useful to find why a
certain technique works under certain conditions and why
it fails in others (greedy methods provide optimal solutions
in finding the shortest path but fail to find the longest path).
The theory of NP-Completeness connects all problems that
are NP-Complete: it is also possible to find a useful
relationship among (some) solvable problems and this is
what we have attempted to do in this paper. According to
Hale [5], There are different kinds of learning, but I refer
here to the intellectual kind. To learn means to cause your
mind to function in a different way: new memories are
created and/or new connections are forged. These
relationships (or connections) provide the algorithm
designer a perspective that proves invaluable when solving
new problems and analyzing old ones.

ACKNOWLEDGEMENT
We are thankful to the Department of Computer Science,

Lahore University of Management Sciences for providing
support for this research. We wish to specially thank
R. Khan for providing motivation as well as inspiration for
this research. We are thankful to A. Alvi who has
suggested a number of modifications and helped us in
making some improvements. We also wish to thank S.
Skiena, S. Baase, S. Mahkari, H. Mian,, K. Fahd, J. Ikram,
M. Maud, and T. Jadoon for their help and encouragement.

REFERENCES
[1] G. Polya, How to Solve it; A New Aspect of Mathematical Method,

Princeton University Press, 1988.
[2] Webster’s Third New International Dictionary, Merriam-Webster

Inc., Springfield, Massachusetts, US, 1981, P. 611.
[3] W. R. Miller, http://www.tcdc.com/dphils/dphil1.htm#top.
[4] D. Rine, Lectures in Patterns-Directed Design, George Mason

University, 2002.

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 2, NO. 2, SUMMER-FALL 2003

140

[5] M. Hale, http://www.stetson.edu/~mhale/teach/index.htm.
[6] D. R. Chalice, "How to teach a class by the modified Moore

Method," Amer. Math. Monthly, vol. 102, no. 4, pp. 317-321,
Apr. 1995.

[7] P.R. Halmos, "The teaching of problem solving," Amer. Math.
Monthly, vol. 82, no. 5, pp. 466-470, May 1975.

[8] D. Taylor, Creative Teaching: Heritage of R. L. Moore, University
of Houston, 1972, p. 149.

[9] M. A. Iqbal, Class Notes for Discrete Mathematics & Analysis of
Algorithms, Lahore University of Management Sciences, Lahore,
2001.

[10] M. A. Iqbal, Teaching Computer Science, Technical Report,
Department of Computer Science, Lahore University of Management
Sciences, Lahore, 2003.

[11] S. S. Skiena, The Algorithm Design Manual, Springer-Verlag New
York, Inc., 1997.

[12] T. Cormen, C. Leiserson, R. Rivest, and Clifford Stein, Introduction
to Algorithms, MIT Press, Cambridge MA, 2001.

[13] S. Baase and A. V. Gelder, Computer Algorithms: Introduction to
Design and Analysis, Addison-Wesley, 2000.

[14] G. Rawlins, Compared to What? Computer Science Press, New
York, 1992.

[15] K. A. Ross and C. R. B. Wright, Discrete Mathematics, Prentice Hall
International, 1992.

[16] K. H. Rosen, Discrete Mathematics and Its Applications,
WCB/McGraw-Hill, 2003.

[17] L. R. Foulds, Graph Theory Applications, Narosa Publishing House,
1992.

[18] D. Rine, Lecture, National Computer Conference, 1980.
[19] M. A. Iqbal and A. Alvi, "The Magic of Dynamic Programming,"

accepted for presentation at the 2003 Int. Conf. on Engineering
Education, Valencia, Spain, 2003.

M. Ashraf Iqbal was born in Multan, Pakistan, in 1951. He graduated in
Electrical Engineering from the University of Engineering & Technology,
Lahore, Pakistan, in 1975. He received the M.Sc. degree in Electrical &
Computer Engineering in 1983, and his Ph.D. degree from the same
university in 1991. He joined the Department of Electrical Engineering at
the Engineering University, Lahore, as a lecturer in 1975. He was
promoted to Professor in 1992.

In 1985 and 1986, Dr. Iqbal worked as a graduate fellow at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, Virginia, USA. He conducted
research as a Fulbright Scholar at the Department of EE-Systems,
University of Southern California, Los Angeles, California, in 1992. In
1996 he worked as a DAAD Research fellow at the University of Stuttgart,
Institute for Parallel & Distributed High-Performance Systems (IPVR),
Stuttgart, Germany. He joined the department of Computer Science,
Lahore University of Management Sciences (LUMS) in 2000, and worked
as the head of the department from 2000 to 2003. Currently, he is working
as a Professor in the same department.

Dr. Iqbal’s research interests include distributed and parallel
computing. Presently he is active in designing innovative techniques of
teaching computer science and mathematics. He is a member of the
Institute of Electrical and Electronics Engineers (IEEE). He is also an
Urdu poet and his first collection of poems was published in 2001.

Sara Tahir was born in Karachi, Pakistan, in 1979. She graduated with
distinction, on the Dean’s honor roll, from the Lahore University of
Management Sciences (LUMS), Pakistan, in June 2000 with a B.Sc.
(Honors) Degree in Computer Science and a minor in Mathematics.
Pursuing a career as a software engineer, she worked with SoftWeb,
Pakistan for a year after graduation before joining Habib Bank AG Zurich,
Dubai, U.A.E. In September 2002 Sara joined Stanford University, U.S. to
pursue a Master of Science degree in Management Science and
Engineering. She expects to graduate by June 2004.

