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Abstract—A teacher of Computer Science and Mathematics 
has two options: use precious classroom time in routine 
operations and boring formulas, thus killing the interest of 
students and hampering their intellectual development, or 
challenge their curiosity by formulating interesting and 
stimulating questions giving them a taste for independent 
thinking. The teacher need only provide the building blocks 
and let students themselves form more complex structures, 
providing them timely hints when needed. In this paper we 
demonstrate how a very simple procedure can be used, with 
minor modifications, as a building block to solve a variety of 
seemingly unrelated problems in the field of graph 
algorithms. 
 
Index Terms—Discover, design, problem solving, graph 
algorithms 

I. INTRODUCTION 
EACHING the standard course “Analysis & Design of 
Algorithms” at an undergraduate level in a typical 

Computer Science program has essentially two objectives. 
The first objective, dealing with analysis, is to familiarize 
students with existing algorithms. The second one, which is 
perhaps far more important, is to equip the students with 
the necessary tools and techniques, and above all the 
confidence, required in solving a non-textbook problem. 
This second objective, concerned with the design of 
algorithms, is essentially a creative effort containing all the 
ingredients of a thriller: adventure, excitement, challenge, 
and suspense.  

There is no guarantee that one who critiques literature 
can learn to write beautiful poetry. Similarly the ability to 
understand and analyze algorithms does not guarantee that 
one could become an efficient algorithm designer. The 
study of the methods and rules of discovery and invention 
is a field in its own right. Though there are rules of thumb 
that can be followed to help an individual design an 
algorithm, there is no precise algorithm available that can 
be used to design new algorithms. Despite the fact that one 
cannot guarantee that a student could become an efficient 
algorithm designer, we believe that the instructor, 
following our approach and providing proper guidance, can 
sow the seeds that could blossom into the genius that 
produces efficient yet astonishingly simple algorithms. 

Our experience of teaching algorithms indicates that 
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creativity in algorithm design depends, to a large extent, on 
how we deal with the analysis phase. We stress that while 
we are familiarizing students with existing algorithms, we 
should not formally teach anything. Instead we should 
encourage, rather incite, students to create algorithms 
themselves using some very fundamental concepts. The 
objective is that students should experience the tension and 
excitement of discovery even during the initial phases of 
understanding existing algorithms. Polya [1] remembers 
the time when he was a student himself: he was always 
perturbed by the question: Yes the solution seems to work, 
it appears to be correct; but how is it possible to invent 
such a solution? How could I invent or discover such 
things by myself? We feel that with the availability of some 
pre-requisite knowledge, timely hints, and stimulating 
questions posed by the instructor, one can always 
encourage students to redesign an algorithm right from 
scratch. It is important now to find a good working 
definition of design (of algorithms). 

A. What is Design? 
According to the Webster’s dictionary [2], design is to 

conceive and plan out in the mind. In the words of Miller 
[3], Design is the thought process comprising the creation 
of an entity. Rine [4] defines design as a systematic, 
directed set of decisions that are introduced, made and 
deployed, leading to an effective or efficient outcome, 
solution, or technology. The last definition suits our 
discovery based learning approach in which a teacher 
formulates a directed set of questions and hints in order to 
help his/her students design algorithms. It is interesting to 
note that our approach is similar in some respects to the so-
called Moore Method of teaching and learning.  

B. The Moore Method 
R. L. Moore was a professor of mathematics at the 

University of Texas. In the words of Hale [5]: What was so 
special about his mode of teaching was that he did not 
lecture, he did not profess. He sat in the back of the room, 
mostly quiet, occasionally asking a question, allowing his 
students to find the answers in their own ways. Many 
professors still use his teaching style not only in his subject 
of specialization (topology), but in analysis, algebra, game 
theory, and other courses, and have advanced or modified 
the Moore Method in a number of ways [6], [7]. Taylor [8], 
while characterizing (his version of) the Moore method of 
teaching, does not allow collective effort on the part of the 
students inside or outside of class. He also does not allow 
the use of any source material. We, on the other hand, 
encourage lively discussions inside as well as outside the 
classroom. The teacher, in our model, starts with something 
(very simple), and then actively guides the students in their 
path of discovery.  

In this paper, we provide a detailed study of a number  
of graph algorithms that have applications in diverse 
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Fig. 1:  The Bucket B after first iteration through Steps 2-4. 
 
fields like  chemistry,  biology,  mathematics, engineering, 
social sciences, and also computer science. We start with a 
simple algorithm known as the Bucket Algorithm (the 
bucket symbolizes a friendly container where a child puts 
every new toy or every new discovery) consisting of just 
four lines of pseudo code [9], [10]: 

Bucket Algorithm (Input: G, Output: a Bucket B) 
1. Put any vertex x of Graph G in the Bucket B. 
2. While there are edges coming out of the Bucket B. 
3.    Select an edge connecting u in B to v not in B. 
4.    Put v in B. 

We shall show how this primitive procedure can be used 
to reinvent a number of existing powerful algorithms in 
graph theory [11]-[17]. With some encouragement from the 
instructor, the students should develop a keen desire and 
ability to understand the motives behind, and the 
procedures followed in order to arrive at innovative 
solutions. They would learn the ways and means of 
devising their own algorithms. Specifically the Bucket 
Algorithm would be used to solve the following problems:  

1. Find if a given graph is connected 
2. Find the number of connected components of a 

graph 
3. Find if a graph is a tree 
4. Find a bridge in a graph 
5. Find a path between two vertices in a graph provided 

a path exists 
6. Find a spanning tree of a graph 
7. Find a minimum-spanning tree of a graph: 
8. Rediscovering Prim’s Algorithm 
9. Rediscovering Kruskal’s Algorithm 
10. Solve the single-source shortest-paths problem:  

Rediscovering Dijkstra’s Algorithm 
11. Conduct a breadth first search in a graph 
12. Conduct a depth first search in a graph 
We believe that it is possible to apply this approach in 

other fields as well. This technique has already been 
practiced with varying degrees of success in teaching 
subjects like Electric Circuits, Digital Circuit Design, 
Semi-conductor Theory, Discrete Mathematics, Computer 
Organization, and Data Structures, to name a few. The 
motivation is that once the tutor provides students with the 
building blocks and the confidence needed for the creative 
process, it becomes almost certain that the students would 
be able to arrive at the right conclusion with minimal 
direction provided by the instructor. The role of the teacher 
is, however, redefined: (s)he is certainly not required  
to  reproduce what is given  in the textbook:  rather provide  

 
Fig. 2:  The Bucket B after 4 iterations through Steps 2-4. 
 
missing links in the jigsaw puzzle such that the students 
may recreate the bigger picture themselves. 

II. UNDERSTANDING THE BUCKET ALGORITHM 
The Bucket Algorithm is simple and straightforward. It 

is just a 4-line algorithm with a simple while loop with no 
recursion. We start with something simple but potentially 
very powerful. Simple, because it is easy to understand and 
at the same time flexible enough to handle a variety of 
problems belonging to different categories.  

A. How Does it Work? 
We identify a Graph G and a Bucket B (See Fig. 1). Step 

1 instructs us to put any node, say node a, of the Graph G 
into the bucket. Next we choose any edge joining a to any 
other node, say node b, in the graph (since all other nodes 
are currently outside of the bucket) and put b in the bucket. 
See Figure 1 for a picture of what the Bucket B will look 
like at this stage. Now we have a set of nodes {a, b} in the 
bucket giving rise to a set of edges {(a, f), (b, c), (b, d)} to 
choose from in Step 3 as we iterate through the while loop. 

Fig. 2 shows the bucket B after 4 iterations through the 
Bucket Algorithm. Notice that there are two types of 
vertices: those inside the bucket represented by the set  
{a, b, c, d, e}, and those outside the bucket, the set {f, g, h, 
i, j, k}. These two different kinds of vertices give rise to 
three different kinds of edges. The first is the set of edges 
connecting vertices inside the bucket with each other:  
{(a, b), (b, c), (b, d), (d, e)}. The second is the set of edges 
connecting vertices outside the bucket with each other:  
{(f, g), (g, h), (h, i), (i, j), (i, k)}. The third is the set of 
edges (the “branches coming out of the Bucket B” in Step 
2) connecting vertices inside the bucket to vertices outside 
the bucket, the set {(a, f), (c, k), (d, f)}. An edge belonging 
to this last set of edges is called a cross edge and is of most 
interest to us. Depending on the constraint we place on the 
selection of cross edges in Step 3, we can implement 
numerous algorithms. 

B. Playing with the Algorithm 
The instructor should encourage students to play around 

with the Bucket Algorithm to get comfortable with it. 
During this activity the instructor should ask thought 
provoking questions such that the students focus on 
multiple facets of the algorithm that would later help in 
designing new algorithms. Such questions could be: 

1. Under what conditions there would be no edges coming 
out of the Bucket? Note that this condition should be 
met otherwise the algorithm would never terminate.  
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2. Would all the vertices of the graph move into the bucket 
after the completion of the algorithm? When would this 
scenario be true, and when would it be false?  

3. Does it make any difference if we have a different 
starting vertex? Note that there are situations when it 
really makes a difference. 

Students must come to realize the importance of cross 
edges: it is because of this cross edge (u, v) we select in 
Step 3 that we discover the new vertex v.  

C. Solving Other Problems 
The above questions would induce a deeper 

understanding amongst students about how the Bucket 
Algorithm works under different conditions and give some 
hints while solving more complex problems. After the 
students are confident that they understand the idea behind 
the Bucket Algorithm, the instructor can start asking them 
to modify it to solve more complex problems. What is the 
worst-case complexity of this algorithm? It is 
recommended that the instructor not involve the underlying 
data structure at this stage in order to tackle the issue of 
complexity. It becomes essential to include it at a later 
stage. 

D. The Right Provocation 
It is well known that a real understanding of the problem 

is a necessary condition to solve any problem. According 
to Rine [18], “ Half way home to solving a problem is a 
clear understanding of the problem”. Out of a sequence of 
six questions posed by Sakiena [11] in order to guide one 
to discover the right algorithm, the first question is Do I 
really understand the problem? Then comes the role of the 
teacher in terms of how he/she states a problem and 
provokes (or guides) his/her students to solve it in a 
specified manner. For example if a teacher is talking about 
Quick Sort, he/she cannot expect his/her students to 
discover the said algorithm just after understanding the 
sorting problem. The teacher should first make the students 
appreciate the need of partitioning the array into halves 
such that all numbers in the first half are smaller than each 
number in the second half. Why we should do this and how 
should we do this are both equally important to design, 
discover (and even understand) the said sorting algorithm. 
The understanding of the previous state of an abstract 
system and the (usefulness of the) final system state after 
the application of a so called fundamental operation [10] 
(for example the partitioning procedure in Quick Sort) is 
crucial in problem solving in computer science as in other 
disciplines. 

III. FIND IF A GRAPH IS CONNECTED 
Assuming that the students know what a connected 

graph is, the instructor should ask the students: “Can you 
modify the Bucket Algorithm such that you may be able to 
determine whether a given graph G is connected?” The 
emphasis should be using the existing techniques with 
minimum modification. The answer is simple: if, after the 
Bucket Algorithm has been applied to a graph G, there are 
still any nodes left outside the bucket the graph is not 
connected. If, however, all nodes are inside the bucket, 
then graph G is connected. 

 
Fig. 3:  A graph G that is not connected. Once the Bucket Algorithm 
terminates, nodes i and j will be left outside the bucket B. 
 

Notice while students were becoming familiar with the 
Bucket Algorithm, the instructor asked when there would 
be nodes left outside the bucket. Brighter students would 
have been able to identify at that stage that some nodes will 
be left outside the Bucket B when a graph is not connected 
since no cross edges exist connecting them to nodes inside 
the bucket (Fig. 3). 

Not all students may be able to identify this property of 
the Bucket Algorithm. The instructor in this case will have 
to make an extra effort to guide such students. Once all 
students have understood the solution (having arrived at it 
on their own with well-timed prodding from the instructor) 
the instructor should start the discussion regarding cost 
calculation, i.e., the complexity of the modified algorithm. 

IV. THE NUMBER OF CONNECTED COMPONENTS 
Once the students understand how to find if a graph is 

connected the above problem becomes simple and very 
little imagination is needed to answer the above question. 
Applying the Bucket Algorithm once on a graph with more 
than one connected component would tell us that the graph 
is not connected as all the vertices do not end up in the 
bucket. The vertices that do end up in the bucket belong to 
a single connected component. Applying the algorithm 
again with a new bucket would give us a new connected 
component, and so on and so forth. The number of times 
we have to apply the Bucket Algorithm depends upon the 
number of connected components, and this would 
determine the worst-case time complexity. 

V.  FIND A BRIDGE IN A GRAPH 
A cut edge or bridge is one whose removal produces a 

graph with more connected components than the original. 
There are essentially two different problems here; it is the 
job of the instructor to at least identify them for those 
students who cannot visualize the solution immediately. 
The first problem is to check if a given edge is a bridge. 
This could be solved if we remove the given edge and then 
check the number of connected components in the resulting 
graph. What would be the resulting complexity of this 
algorithm? The second problem is to find or locate a bridge 
in a given graph. Once the first problem is solved it should 
be a simple matter to handle it. How many times the Bucket 
Algorithm is applied and what is the resulting worst-case 
complexity of the algorithm? 
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VI. FIND IF A GIVEN GRAPH IS A TREE 
The algorithms that solve this problem depend on how 

we define a tree. This in not only true for this problem but 
is true for a majority of problems. It highlights the fact that 
looking at various definitions or properties is sometimes 
extremely useful and it provides the seed for designing a 
number of very powerful algorithms. Solving a problem 
from different angles and then making a comparison is the 
single most important exercise for a student studying 
algorithms (Rawlins [14]). 

A. Every Edge in a Tree is a Bridge 
We know that a tree of n vertices consists of bare 

minimum number edges, which makes it a connected 
graph. This implies that removing any edge would 
disconnect a tree. Thus every edge in a tree is a bridge. We 
already know how to check if a given edge is a bridge in a 
graph. The problem is thus reduced to repeatedly applying 
the algorithm in Section V. The number of times we would 
have to do this and finding the resulting complexity is an 
interesting exercise by itself. 

B. The Number of Edges in a Graph 
We can define a tree in a number of ways. In fact, one 

definition implies another. For example, a connected graph 
is a tree provided the number of edges in the graph is 
exactly equal to one minus the number of nodes in the 
graph, i.e., n-1. The catch is that the graph should be 
connected otherwise the definition would not apply. We 
know how to find if a given graph is connected using the 
Bucket Algorithm. So the problem is reduced to counting 
the number of edges. How complex is this problem? Is it 
possible to count the number of edges while we are 
checking if the given graph is connected? Would that 
perhaps reduce the complexity? 

C. The Spanning Tree of a Tree 
We know that a tree has the minimum number of edges 

required to connect a given number of vertices. A spanning 
tree of a given graph also satisfies this property, as it is a 
tree. Thus the spanning tree of a tree would be exactly the 
same tree. This definition or property can be used to design 
an algorithm to check if a given graph is a tree.  

D.  A Comparison 
A comparison of all these algorithms would be 

extremely beneficial to the students if they were 
encouraged to work it out independently. Once they have 
the answers it would again be stimulating for them to 
compare their findings with their colleagues within the 
classroom. Encouraging and initiating interesting 
discussions and even heated debates is one of the most 
important responsibilities of a teacher: (s)he must simply 
coordinate and make sure that the interaction is moving in 
the right direction. Only once the students have gained 
confidence that they understand the basic problem and can 
find an efficient solution should we move to more complex 
problems such as finding whether a given graph is a forest. 

VII. FIND THE SPANNING TREE OF A GRAPH 
The algorithm that we design to solve this problem 

depends on how we visualize the development of a 

spanning tree. We can start with the original graph and start 
with pruning or removing edges until the graph becomes a 
tree. Or, we can start with no edges and start growing edges 
until we get a tree. It is also possible to identify some of the 
so-called cross edges, which would constitute the spanning 
tree. The resulting complexity would change dramatically 
depending upon the approach used. Each approach has its 
merits and demerits and the comparison itself is very 
stimulating especially because each approach has more 
advanced applications.  

A. Cutting Edges 
If we remove all redundant edges from a given graph 

and just keep edges essential to keep it connected the 
remaining graph would be a spanning tree of the given 
graph. This idea would give birth to an algorithm: Remove 
all edges that do not disconnect the given graph. What 
would be the worst-case time complexity of this algorithm? 

B. Growing Edges 
We start with no edges at all but with n isolated vertices. 

We add edges out of the edge pool of the graph such that 
the resulting graph remains a tree. This approach is 
opposite to the one discussed above: instead of pruning we 
are growing edges. In the earlier approach we should be 
careful and should not disconnect the graph. In the second 
approach we should be careful not to create cycles in the 
graph. In each case the Bucket Algorithm helps us. How 
many times we use the Bucket Algorithm would eventually 
decide the overall worst-case complexity. 

C. Selecting Edges 
While running the Bucket Algorithm, we might have 

noticed that every time we discover a new vertex it is 
because of a cross edge (step 3), and that the number of 
such cross edges would be exactly equal to n-1. If we just 
keep a record of all such edges we might get the spanning 
tree of the given graph. How efficient would this be if 
compared with the algorithms described earlier?  

VIII.  FIND A MINIMUM SPANNING TREE 
There could be many non-isomorphic spanning trees 

possible for a given graph: each approach that we have 
described for finding a spanning tree of a graph was 
flexible and there was a lot of maneuvering possible within 
it, thus giving rise to different spanning trees. What if we 
find all distinct spanning trees of a given graph using any 
approach and then select the one with minimum weight? 
Why is this approach, which looks at all possible solutions 
and then selects the one of our choice, not feasible?  

A. Cutting or Growing Edges 
Each algorithm used to find a spanning tree in the 

previous section could be used with proper modification to 
find a minimum-spanning tree of a connected and weighted 
graph. While cutting edges we select the edge of maximum 
weight (provided it does not disconnect the graph), having 
first sorted the edges in descending order of weight. This 
would give rise to an algorithm very similar to Krushkal’s. 
Similarly, we can grow edges starting from the edge of 
minimum weight (making sure no cycle is created). Please 
note that here we are not using any fancy data structure 
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since the objective is not to have a complicated design, 
unlike the approach used by some books. 

B. Selecting Edges: A Greedy Algorithm 
While forming a spanning tree we can select any cross 

edge. In order to form a minimum spanning tree, we should 
try to include edges of less weight thus excluding those of 
higher weight. It follows that among all cross edges that we 
may select we should pick the one of minimum weight. 
Using this simple technique the Bucket Algorithm can 
easily be modified to find a minimum spanning tree of a 
weighted directed or undirected graph (Fig. 4). 

It is important that the minimum spanning tree problem 
is an optimization problem in which we intend to minimize 
the sum of weights of all edges in the spanning tree. In 
order to minimize the global sum, we are trying to 
minimize a local quantity. We are lucky this time: a so-
called greedy approach is working optimally and is in fact 
optimizing the global sum also. However, although greedy 
approaches are relatively efficient (being based on local 
conditions only), they are not always optimal.  

C. The Magic of Prim’s Algorithm 
It would be useful if the students were asked to prove 

that this greedy approach would actually find a minimum 
spanning tree. Without reading proofs given in the 
textbook they should come up with something of their own 
making. A lively discussion can be initiated to find the 
merits and demerits of individual work. They should also 
be asked to derive the time complexity of this approach. It 
would be useful if they compare this approach with Prim’s 
algorithm. In fact, the two approaches look identical. 
However the time complexity of Prim’s algorithm is better. 
Why? The reason is in fact more exciting because Prim’s 
algorithm is not just greedy, there is something else, 
something magical which cuts down the time complexity 
for not so obvious reasons. What is that magic? How and 
why it is working? Can this magic be used elsewhere and 
under what conditions? 

IX. FIND A PATH BETWEEN TWO VERTICES IN A GRAPH 
It is possible to find a path between two vertices 

provided the graph is connected. Now instead of checking 
whether the graph is connected or not, we had better check 
if the two given vertices belong to a single connected 
component. If we keep moving on the edges connecting 
one vertex to another within the graph, a time would come 
when we would reach our destination. What is wrong with 
this approach? If there are cycles in the graph it is possible 
that we never reach our destination. What if there are no 
cycles in the graph – what if we first make a spanning tree 
of the graph? Even now it would be difficult to find a path, 
since we might have to do a lot of backtracking. 

A. Cutting Edges 
If we remove all redundant edges from a given graph 

and just keep the edges essential to keep the two vertices 
connected, the remaining graph would be a “straight 
forward” path between the two vertices in the given graph. 
What would be the worst-case time complexity of this 
algorithm? Note that we have used a similar technique  
to find  a spanning tree  of  a graph. It  would  be  useful  to  

 
     (a)                        (b) 

Fig. 4:  Minimum spanning tree: the greedy approach (a) next edge 
selected: (a, f), (b) next edge selected: (b, c). 
 
pinpoint the similarities and also the differences. 

B. Selecting Edges 
Does the problem become simpler if we first find the 

spanning tree of the given graph? Now if we start moving 
from the given vertex to the destination vertex, would it be 
less confusing? Perhaps, but again we may start our 
journey in the wrong direction and would have to 
backtrack. Students should experience this confusion and 
the resultant backtracking. Suppose we apply the Bucket 
Algorithm starting with the given vertex: the spanning tree 
thus formed would originate from the given vertex since 
the given vertex would be the root. We also keep a record 
of the parent of every vertex in the spanning tree. With this 
additional information would it be easier to find a path 
from the given vertex, now the root, to the destination 
vertex? The answer is still “no” because a parent may have 
multiple children, and thus many diversions. However if 
we start from the destination vertex and keep selecting the 
parent vertex, we would eventually reach the root without 
any confusion.  

X.  THE SHORTEST PATH PROBLEM 
If all edges in the graph were to have the same weight, 

would the path, found using the algorithms of section IX, 
be a shortest path? If not then what should be done to 
achieve our objective? Note that it is easier to find a 
shortest path in a graph with uniform edge weights, so first 
we should solve a simpler problem before attacking a more 
complex one. Now assume that the edge weights are 
different. Do we need a different algorithm from the one 
used to find a shortest path in a graph with uniform edge 
weights? Why?  

A. First Find a Minimum Spanning Tree 
If somehow we remove edges of higher weights from the 

graph without disconnecting the two given vertices, would 
the problem become simpler? What if we first find a 
minimum spanning tree of a graph and then move 
backwards from the destination to the source vertex as 
described in Section IX B?  

B. Shortest Path from one vertex to every other vertex 
Assume the given vertex goes in the bucket first. Now 

examine all cross edges that would be coming out of the 
given vertex with different weights. Identify the cross edge 
with minimum weight. Let us name the vertex on the other 
side of this edge i, and the weight of this edge w. What 
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would be the length of the shortest path from the given 
vertex to vertex i? Under what conditions is above our 
solution? Note that there are situations when the above 
procedure would not yield the shortest path. The 
experience gained while answering the above questions can 
be utilized to modify the Bucket Algorithm to solve the 
problem. It is interesting to note that we are inching 
towards Dijkstra’s Algorithm. 

XI. GRAPH TRAVERSAL TECHNIQUES 
Again, it is possible to traverse a graph in a haphazard 

manner. Efficiency demands that we do not visit the same 
vertex again and again. We must make every move in a 
systematic manner to ensure that we do not miss out any 
vertex belonging to the same connected component [6]. 
You might have noticed that the Bucket Algorithm is 
essentially a graph traversal algorithm. However, in most 
of the current textbooks, you would only find some very 
specific techniques like the Breadth and Depth First 
Search traversal algorithms – more complicated than our 
Bucket Algorithm.  

A. Traditional Techniques & the Bucket Algorithm 
It is interesting to note that the Breadth as well as Depth 

First Searches are two different implementations of the 
Bucket Algorithm. While introducing this algorithm we 
purposely did not disclose the implementation details 
ignoring the underlying data structure required to program 
the algorithm. The objective was to highlight the basic idea 
and initially suppress the programming details. Baase [13] 
uses JAVA to describe algorithms and this may be one 
reason why the book is relatively difficult to read even if 
students have prior knowledge of the language. Cormen 
[12] and Skiena [11] use a pseudo programming language 
and operate at a slightly higher level. The Bucket 
Algorithm is simple because it is more abstract and 
flexible.  

B. The Underlying Data Structure 
We know that we use a cross edge to discover a new 

vertex in the Bucket Algorithm (step 3). Some of these 
cross edges come from vertices that entered the bucket 
earlier, others from vertices that are new comers in the 
bucket. Our decision of which vertex to choose would 
convert the Bucket Algorithm into a Breadth First Search, 
Depth First Search, or a combination of the two. Using a 
Last in First Out (LIFO or a stack) or a First In First Out 
(FIFO or a queue) data structure to store the already 
discovered vertices would make all the difference: a stack 
implementation would convert the Bucket Algorithm into a 
Depth First Search while a queue would transform it into a 
Breadth First Search.  

XII. CONCLUSIONS 
The most important task of a teacher should be to enable 

the students to discover and acquire experience of 
independent work. According to Polya [1]: If the student is 
left alone with his problem without any help or with 
insufficient help, he may make no progress at all. If the 
teacher helps too much, nothing is left to the students. The 
teacher should help, but not too much and not too little, so 

that the student shall have a reasonable share of the work.  
In this paper we have demonstrated how a teacher can 

help students discover a number of graph algorithms with 
some initial help, starting with something seemingly 
simplistic yet capable of being transformed into a number 
of powerful algorithms with minor modifications. We have 
shown that by asking thought provoking questions it 
becomes possible for the teacher to guide the students 
while solving difficult problems. We have also shown that 
making comparisons between various techniques and 
solutions provides a deep insight which itself is very useful 
in solving otherwise difficult problems [19]. It is also 
important to differentiate between complex problems and 
difficult problems: complex problems or NP-complete 
problems are those for which no polynomial-time algorithm 
has yet been discovered [11], [12]. On the other hand, a 
problem may be difficult (to solve) simply because it is not 
well understood or the students fail to find a suitable 
strategy with the existing tools and techniques without 
external help. 

At times it is almost impossible to solve a given problem 
while it is easy to solve a related problem (the shortest path 
problem is solvable while the longest path problem is 
unsolvable in polynomial time). Similarly sometimes a 
problem is so complex in its original form while it is easier 
to solve it while placing certain restrictions (the graph 
isomorphism problem is solvable for trees but is difficult to 
solve in general). It is extremely useful to find why a 
certain technique works under certain conditions and why 
it fails in others (greedy methods provide optimal solutions 
in finding the shortest path but fail to find the longest path). 
The theory of NP-Completeness connects all problems that 
are NP-Complete: it is also possible to find a useful 
relationship among (some) solvable problems and this is 
what we have attempted to do in this paper. According to 
Hale [5], There are different kinds of learning, but I refer 
here to the intellectual kind. To learn means to cause your 
mind to function in a different way: new memories are 
created and/or new connections are forged. These 
relationships (or connections) provide the algorithm 
designer a perspective that proves invaluable when solving 
new problems and analyzing old ones.  
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