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Abstract—This paper uses the simulated annealing 
algorithm to solve a unique staff workload scheduling 
problem present in a school that has about 250 academic staff 
and 4000 students. This paper also examines and compares 
various types of cooling schedules. Five types of cooling 
schedules, namely, geometric ratio, hybrid geometric function 
with reheating, quadratic equation, Huang’s equation and 
improved quadratic equation are tested for the scheduling 
problem. For each cooling schedule, ten test runs are 
conducted. The results show that the hybrid geometric 
function with reheating, whose value is directly proportional 
to the cost function, yields best results to the problem. 
 

Index Terms—Simulated annealing, cooling schedules, 
scheduling, staff workload. 

I. INTRODUCTION 
HE PROCESS of scheduling has become an important 
school function. Within a school, there are different 

types of scheduling that can be found for various purposes. 
For example, there is scheduling of curriculum timetables 
that show all subjects the school is offering. It is not only a 
time scheduling, but also a resource scheduling whereby 
the location and time of the teaching slots are reflected. In a 
school with various divisions, each division has a division 
timetable that shows only the teaching slots that the 
division is undertaking. All division timetables are a subset 
of the school master timetables. Once teaching slots are 
known, lecturers will be scheduled for teaching duties. 
When a particular subject involves two or more divisions, 
extra coordination will have to take place. Besides teaching 
scheduling, there would also be examination scheduling 
which normally takes place at the end of a semester. 
Examination scheduling, like curriculum scheduling, is also 
a time and resource scheduling process that involves 
coordination and careful planning. All these scheduling 
tasks would have to be properly planned before a school 
can function in a timely manner. 

In the School of Electrical and Electronics Engineering 
(EEE) of Nanyang Technological University (NTU), the 
process of scheduling used to be done manually. It 
involved weeks of planning and corrections before one 
master timetable could be used. The planner had to balance 
among manpower, time and availability of physical 
resources such as lecture theatres, tutorial rooms and 
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laboratories. The types of scheduling that the School of 
EEE did were 1) curriculum scheduling, 2) staff workload 
scheduling, 3) student timetable scheduling and 4) 
examination scheduling. 

Any of these scheduling processes could easily take half 
a month if they were to be done manually. It did not take 
long before the error-prone manual scheduling became 
intolerable. This is also a consequence when more students 
were matriculated. Thus, automated scheduling is not only 
desirable but also a must in solving the increasingly 
difficult timetabling problem. 

With the advancement of information technology, 
commercial software is readily available to solve many 
scheduling problems. Commercial software makes use of 
state-of-the-art algorithms such as genetic algorithms and 
simulated annealing. While commercial software packages 
are able to solve general scheduling problems, they are 
unable to adapt to unique curriculum changes and IT 
innovations in the future. To constantly engage software 
suppliers to upgrade the software package due to 
curriculum changes and new IT innovations would be too 
costly for the school to bear. Thus, there is a need to 
develop an automated scheduling system that meets EEE 
timetabling requirements so that it can be upgraded 
internally as and when the need arises. 

This paper examines how the simulated annealing 
algorithm is applied to automate the scheduling of EEE 
staff workload. The focus is on various cooling schedules. 

II. STAFF WORKLOAD SCHEDULING 
There are six divisions and one institute, Information 

Communications Institute of Singapore (ICIS) in EEE. A 
Head of Division (HOD) or director is overall responsible 
for staff workload assignment in each division/institute. 
Staff workload scheduling is the planning of the teaching 
timetable for each lecturer in the division/institute. Its 
objective is to assign the teaching hours to each staff 
member according to the average teaching hours as agreed 
by all HODs and the ICIS director in the meeting chaired 
by the Dean of EEE. The HOD or director may 
increase/decrease the staff teaching hours after considering 
the staff’s research and/or administrative duties. While the 
variation in teaching hours can occur among staff, the 
number of teaching hours assigned to the division/institute 
should remain the same as agreed. The teaching schedules 
generated must be implementable. They must minimize 
unnecessary inconveniences to the staff member concerned 
and at the same time must ensure that all teaching hours 
within the division/institute are assigned. 

Staff workload scheduling takes place after the 
curriculum timetable has been finalized. It is the process 
whereby the teaching staff members are assigned to 
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curriculum time slots that the division/institute is 
responsible for. The HOD or director assigns the crucial 
teaching loads, such as lecture and Final Year Design. The 
timetable coordinator then assigns the remaining loads. 
Teaching loads assigned by HOD become hard constraints 
since they cannot be changed by the timetable coordinator. 

There are five types of classes, namely lecture, tutorial, 
project, design and laboratory that can be assigned to staff. 
The duration of each semester is thirteen weeks. Lecture is 
conducted on the basis of one hour per session. For each 
subject, there could be one to three lecture sessions per 
week to be conducted and its workload may be distributed 
among two to four lecturers. Tutorial is also conducted on 
the basis of one hour per session per week for a total of 12 
weeks starting from the second week of the semester. There 
could be one or more tutors involved to teach the 12-week 
tutorials. Project and Design are conducted on the basis of 
three hours per session per week. To complete a project 
module, it will take 3 weeks. Design modules generally 
take 2-3 weeks to complete. Each student will complete 
four modules spread over 12 weeks. Laboratory is 
conducted on the basis of 3 hours per session per week. 
Each laboratory session takes only one week to complete. 
Each student will complete 12 weeks of laboratory. 

There are many constraints that the timetable coordinator 
needs to overcome. They can be generally classified into 
hard, medium and soft constraints. Hard constraints must 
be respected. The generated schedule cannot be executed if 
they are violated. Medium constraints, if violated, will 
cause discomfort to staff. Soft constraints, if violated, will 
cause the least discomfort to staff. Each of these constraints 
carries a cost value if the constraint is violated each time. 
Thus the total cost would be given by 

SMHT cCbCaCC ++=  (1) 

where HC  is the cost of a hard constraint violation; MC  is 
the cost of a medium constraint violation; SC  is the cost of 
soft constraint violation; ba,  and c  are the number of 
hard, medium and soft constraint violations respectively. 
The above equation is also known as the cost function. In 
practice, SMH CCC >>>> . In the actual implementation, 

1=SC ; 100=MC ; 1000=HC  to ensure that there is a 
wide cost variation among each type of constraints. One 
advantage for such assignment is that the status of the 
schedule could be identified easily. For example, if the cost 
is equal to 4578, then, it is likely that the schedule consists 
of a total of 4 hard constraint violations, 5 medium 
constraint violations and 78 soft constraint violations, 
assuming that the total number of medium and soft 
constraint violations does not reach 10 and 100 
respectively. 

Thus the objective of the timetable coordinator is to 
schedule the staff workload so that its CT is as low as 
possible. Examples of the three types of constraints are: 

1. Hard Constraints  
• A staff member cannot be scheduled to appear at 

two different locations at the same timeslot.  
• A staff member cannot be scheduled to teach in a 

timeslot if it is within a no-workload period.  
• A staff member cannot be scheduled to teach a 

subject that he/she did not opt for. 

2. Medium Constraints  
• The number of consecutive hours assigned to staff 

should not exceed a pre-specified maximum hours. 
• If the request to teach a particular subject was 

approved by HOD/director, the staff member 
should be assigned a certain minimum number of 
subject groupings so that the number of 
preparations is kept to a minimum.  

• Certain laboratory modules should be taught by the 
same staff assigned to teach the associated class. 

3. Soft Constraints  
• The total number of hours scheduled to a staff 

member should not be different from what was 
requested.  

• Staff members giving lectures should be given at 
least one-hour free time prior to the lecture. 

• The total teaching hours of a staff member in any 
day should not be more than a pre-specified daily 
limit. 

The generated schedule must meet at least the hard 
constraints specified before it can be classified as a feasible 
schedule. Like any other timetabling problems, staff 
workload scheduling is also categorized as a non-
polynomial (NP) problem. Non-polynomial means that the 
problem cannot be formulated by using any polynomial 
function, and thus the solution to the problem cannot be 
verified in polynomial time. The practicality of the final 
schedule generated will depend on how well the search 
algorithm is designed and how the optimization algorithm 
looks for a solution which leads to a minimum TC . 

III. OPTIMIZATION ALGORITHMS 
Many forms of algorithms have been formulated in the 

past few decades in an attempt to solve NP problems. Some 
are powerful but too complicated to be implemented on 
small problems, while others are easy to implement but 
cannot produce satisfactory results on larger problems. The 
choice of algorithms depends on numerous factors related 
to the nature of the problem. Some factors considered are 
1) population size of the problem, 2) number of constraints 
imposed, 3) time of execution to produce a feasible 
scheduling result and 4) time of implementation. 

The population size in the staff workload scheduling 
problem refers to the number of teaching slots to be 
scheduled. Typically for a division/institute, there are about 
3500-4000 teaching slots to be scheduled. Each teaching 
slot is one to three hours long. The number of constraints 
would be directly proportional to the number of staff 
members involved. The time to produce a feasible schedule 
varies proportionally to the number of teaching slots. In 
addition, it would depend on the algorithm chosen. 

There are many readily available algorithms to solve NP 
problems. The more popular ones are genetic algorithms, 
simulated annealing, graph coloring and constraint logic 
programming. Each of these has been implemented to solve 
timetabling problems by many researchers. Rich [1] has 
designed a software solution based on genetic algorithms 
for creating a university class timetable. Elmohamed et al. 
[2] have tackled the NP problem of academic class 
scheduling at the university level based on simulated 
annealing. Sheung et al. [3] used both genetic algorithms 
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and simulated annealing to solve a prototypical timetabling 
problem in a tertiary institute. 

Performance comparison of these algorithms was done 
in various types of problems. Hasan et al. [4] compared 
three algorithms, simulated annealing, genetic algorithms 
and tabu search for the unconstrained Quadratic Pseudo-
Boolean (QP) function. The difference between the average 
final solutions is not significant for all the three algorithms. 
Youssef et al. [5] compared simulated annealing, tabu 
search and genetic algorithm on the floor planning 
problem. Of the three algorithms, tabu search produces the 
best results with respect to the quality of the solution. With 
respect to the complexity of implementation and tuning of 
parameters, genetic algorithms require the most effort. 
Sheung’s [3] results reflect that simulated annealing 
converges faster and its final cost is lower than that of 
genetic algorithms. This is more so when the complexity of 
the algorithm grows. 

Ng [6] attempted to solve the traveling salesman 
problem (TSP) using Hopfield nets, simulated annealing, 
Boltzmann machines and genetic algorithms. Simulations 
were run for many cities. As the number of cities increases, 
simulated annealing has consistently produced optimal or 
near-optimal solutions and is faster compared to the other 
algorithms.  

No single algorithm behaves the best in all types of 
problem domains, but one algorithm could be more suitable 
for a specific problem. Also, the success of the algorithm 
largely depends on the understanding of the programmer of 
both the algorithm and the problem specifics. Simulated 
annealing is chosen to solve the staff workload scheduling 
problem due to its simplicity and ease of implementation. 

The most important criterion in choosing an algorithm is 
to determine whether the algorithm would converge to 
produce a feasible solution. It can be shown that simulated 
annealing will converge under appropriate conditions. Such 
conditions were derived by Laarhoven et al. [7]. These 
conditions will be examined later. Simulated annealing is 
robust, which makes it easier to solve general and specific 
problems. Many researchers have implemented simulated 
annealing not only to solve scheduling problems, but also 
in VLSI PCB routing [8] and automatic generation of one-
line diagrams [9]. 

Simulated annealing is derived from thermodynamics, 
specifically imitating the way that  metals cool and anneal. 
This is a technique patterned after the physical process of 
annealing of a solid, in the branch of engineering, known 
as metallurgy. A minimum cost function corresponds to the 
minimum energy (ground state) of a substance. The 
simulated annealing process lowers the temperature slowly 
until the system freezes and no further changes occur. At 
each temperature step, the length of the Markov chain must 
be long enough for the system to reach an equilibrium. The 
essence of the process is slow cooling, allowing ample time 
for redistribution of the atoms as they lose mobility. It is 
essential to ensure that a low energy state will be achieved. 

IV. IMPLEMENTING SIMULATED ANNEALING 
An overview of the algorithm is shown in Fig. 1. The 

algorithm begins by generating an initial schedule and the 
cost of the schedule is also evaluated by the cost function 

in (1). The costing shows the number of violated 
constraints. Thus, the lower the cost, the better the schedule 
is. An initial temperature is subsequently selected. The 
iterative process starts by constructing new schedules and 
imposing a random displacement from the solution space. 
If the cost of the new schedule generated is smaller than the 
cost of the current schedule, then the new schedule is 
accepted as a replacement to the current schedule. If the 
cost is worsened by a C∆  amount, then the schedule will 
only be accepted by a probability given by (2), 

)/exp( TCr ∆−<  (2) 

where r  is a randomly generated number between 0 to 1 
and T  is the temperature that changes as the process 
progresses. This equation is also known as Metropolis 
criterion. The manner on how the temperature varies is 
known as the cooling schedule. 

The iterative process will halt when the stopping 
criterion is satisfied. In this case, the program stops when it 
has reached 1000 iterations or when the cost is below 50. 
The value of 50 is chosen, as it is reasonably small. Based 
on the cost of the various types of constraints defined in 
Section II, the chosen value ensures that the final 
converged schedule may contain a few soft constraint 
violations of lesser importance while keeping free of any 
hard and medium constraint violations. 

To achieve good quality schedules, the cooling schedule 
is of critical importance. The temperature during the 
scheduling process will affect whether the solution is 
trapped in a local minimum or not. In the following section, 
five different types of cooling schedules are examined. 

V. COOLING SCHEDULES 
The result of simulated annealing is largely dependent on 

the selection of the cooling schedule. There have been 
some efforts to derive a universal set of rules for defining 
the cooling schedule but there is limited achievement. In 
this section, some popular cooling schedules such as 
geometric cooling schedule, Huang’s et al. [10] equation 
and quadratic equation are discussed. For each cooling 
schedule, ten test runs are conducted. All test runs use the 
same initial schedule.  

The results of each cooling schedule are shown in 
Tables I and II. Table I shows the number of iterations 
before all hard constraints are resolved. When all the hard 
constraints are resolved, the schedule is feasible and can be 
implemented. Table II shows the final cost after 1000 
iterations. The quality of the solution results is reflected in 
the final cost. The higher the final cost, the poorer the 
quality of the solution is. 

A. Geometric Cooling Schedule 
The geometric cooling schedule is probably the most well-
known and simplest in the simulated annealing arena. The 
geometric cooling schedule is represented by, 

ii TT α=+1  (3) 

where α  is the geometric ratio and T  is the temperature. It 
is easy to understand and can be implemented without 
much effort. The value of α  is determined experimentally 
via trial and error. It is usually in the range of 0.6 ~ 0.99. 
The value of T  will change every M  iterations. In the
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Fig. 1.  Flowchart of simulated annealing algorithm. 
 
test, M  is chosen to be 10. The geometric cooling 
schedule, though simple, is often not able to get 
satisfactory results. 

For the results of 8.0=α , it can be seen from Tables I 
and II that no test run is able to resolve all the hard 
constraints completely. The main reason behind this that 
the temperature decreases too fast as shown in Fig. 2 and 
the schedule is often trapped in a local minimum. 
For the results of 95.0=α  from Tables I and II, some 
improvement is seen in the results over 8.0=α . 40% of 

the test runs were able to resolve all the hard constraints 
successfully. However, the final cost of these test runs is 
still high. The temperature curve is shown in Fig. 3. 

Based on the results of these two tests, it can be 
observed that the higher the geometric ratio, the better the 
results are. This is because the higher the geometric ratio, 
the slower the temperature decrements, thereby, giving 
enough time for the schedule to converge to a  
global minimum. 
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TABLE I 
NO OF ITERATIONS TO ACHIEVE A FEASIBLE SCHEDULE ( 0=HC ) 

Trial 
Numbers 

Geometric 
80.0=α  

Geometric 
95.0=α  

Hybrid Geometric 
Function with 

Reheating 

Huang’s 
Equation 

Quadratic 
Equation 

Improved 
Quadratic 
Equation 

Test Run 1 **** **** **** **** **** **** 
Test Run 2 **** **** 634 605 **** 832 
Test Run 3 **** 319 395 518 **** **** 
Test Run 4 **** 282 548 **** **** 336 
Test Run 5 **** **** 823 **** 908 274 
Test Run 6 **** 145 412 **** **** **** 
Test Run 7 **** 302 658 **** **** 266 
Test Run 8 **** **** 314 543 **** 326 
Test Run 9 **** **** 62 689 **** 386 

Test Run 10 **** **** 719 834 837 **** 
**** means 0≠HC  at iteration = 1000. 
Test Run x , where =x 1,2 … or 10 in Tables I and II, refers to the same run. 

 
TABLE II 

FINAL COST AT 1000TH ITERATION 

Trial 
Numbers 

Geometric 
80.0=α  

Geometric 
95.0=α  

Hybrid Geometric 
Function with 

Reheating 

Huang’s 
Equation 

Quadratic 
Equation 

Improved 
Quadratic 
Equation 

Test Run 1 26254 2082 2284 7218 3802 1586 
Test Run 2 7320 17330 132 230 4766 36 
Test Run 3 49132 114 106 420 1756 1322 
Test Run 4 30126 112 14 18480 9742 218 
Test Run 5 3112 2254 48 4030 526 2 
Test Run 6 35036 206 24 4020 380 2366 
Test Run 7 11410 230 232 12162 13174 212 
Test Run 8 18398 3102 208 424 4906 206 
Test Run 9 29356 5182 42 254 4526 12 

Test Run 10 37068 2340 218 265 700 2126 
Test Run x , where =x 1,2 … or 10 in Tables I and II, refers to the same run. 
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Fig. 2.  Temperature curve for α = 0.8. 
 

B. Hybrid Geometric Function with Reheating 
In geometric cooling schedules, the temperature is 

decremented without considering the cost values. A more 
adaptive cooling schedule would be a function of the cost 
value and the gradient of the cost function. Tying the 
temperature to the cost ensures that the cooling schedule 
can be dynamically affected by the cost curve behavior. 

The lower the cost value means that fewer constraints 
are violated and hence the temperature should be kept low. 
Likewise, the higher the cost value means that more 
constraints are violated and hence reheating may be needed 
so that the solution process may chart a new and better 
convergence path. The implementation of the hybrid 
function is: 
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Fig. 3.  Temperature curve for α = 0.95. 
 

 
If (Hard Constraints still exists) Then 
  If Gradient < 0 Then  
 
    ii CT =+1  

(Temperature equal 
 to square root of 
 average cost) 

  Else  
    ii CT 3.11 =+  (Reheating occurs) 
  End If  
Else  
  ii TT 9.01 =+  (Geometric cooling  

 schedule) 
End If  
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It can be seen that this cooling schedule consists of two 
main parts. The first part is when the schedule consists of 
hard constraints, while the second is when the schedule has 
resolved all the hard constraints. In the first part, when the 
gradient of the cost curve < 0, this implies that the cost is 
reducing. When the gradient ≥ 0, this means that there is no 
change of the cost or the cost is increasing in that Markov 
chain. When this happens, it is possible that the schedule is 
trapped in a local minimum, thus reheating occurs. 
Reheating enables the solution to jump out of the local 
minimum. When the hard constraints are resolved, the 
schedule is feasible. Using a geometric cooling schedule 
ensures that the cost will converge slowly. The temperature 
change is at every M  iterations, similar to geometric 
cooling scheduling. 

The results of the hybrid geometric function schedule 
from Tables I and II are much better than those of the 
geometric cooling schedule. 90% of the test runs are able to 
generate feasible solutions. The main advantage of this 
cooling schedule is that the rate of change of the 
temperature is directly proportional to the rate of change of 
the schedule cost. Thus, the temperature will never 
decrease too quickly or too slowly. In general, the 
geometric cooling curve with reheating decays 
exponentially and is similar to the geometric cooling curve 
in Fig. 3. The cooling is adaptive to changes to schedule 
cost. 

It can be observed that although the cooling schedule 
realized 90% of generated schedules, the number of 
iterations required to achieve 0=HC  does not follow any 
particular trend. This is because the solution search is 
performed randomly. 

C. Huang’s Equation 
A more complex cooling schedule explored by Huang et 

al. [10] makes use of the standard deviation of the cost of 
previous Markov chains. In this type of cooling schedule, 
the temperature is directly dependent on the results of the 
scheduling. The equation is: 

)exp(1 σ
λ i

ii
T

TT −=+  (4) 

where λ  is a constant less than 1 and σ  is the standard 
deviation of the cost of the previous Markov chain. To 
avoid a drastic decrement of the cooling schedule, the ratio 
of ii TT /1+  is restricted to 0.9. This means that the 
temperature drop between two successive iterations cannot 
be too high and it does not imply that Huang’s equation is 
following the geometric cooling curve. Instead, Huang’s 
cooling curve is determined by (4). In the test runs, 

1.0=λ . Test is conducted at every M  iterations to 
determine if the temperature has reached equilibrium 
before the temperature is updated. 

Out of the ten test runs in Tables I and II, five runs 
produce feasible results. The cost variation of the initial 
Markov chains is small, thus, the standard deviation, σ, is 
small too. Although there is a mechanism to restrict the 
drastic drop of ii TT /1+ , the temperature decreases very fast 
due to the exponential decay nature of the cooling 
schedule. Fig. 4 shows the temperature curve for a typical 
test run. It can be seen that the temperature drops very  
fast within the first two hundred iterations.  This will easily  
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Fig. 4.  Temperature curve for Huang’s equation. 
 
cause the solution to be locked at a local minimum. 

D. Quadratic Equation 
Anderson et al. [11] suggested a quadratic equation cooling 
schedule for use in a class of network design problems in 
telecommunications. This cooling schedule is a function of 
the starting temperature ( 0T ), ending temperature ( FT ) and 
the iteration number i  as shown in (5). 

cbiaiTi ++=+
2

1  (5) 

where 
2

max0 )/()( ITTa F=  

)/()(2 max0 ITTb F −=  

0Tc =  

in which maxI  is the maximum number of iterations and 
could be chosen large so that more iterations can be 
covered. FT  is usually chosen such that FTT >>0 . Thus,  

00)( TTTF −≈− . 

If maxI  is chosen such that  

0max TI >> ,  

then  
0max0 / TIT <<− .  

It can be easily observed that the second term in (5) is the 
only negative component since )/()(2 max0 ITTF −  must be 
less than 0. In our experiments, 1000max =I , 1780 =T  and 

1.0=FT . The rate of decrement of the cooling schedule 
largely depends on )( 0TTF −  and maxI  because ab >> . As a 
result, the rate of cooling is slow as it is affected mostly by 
the linear coefficient, b , rather than the quadratic 
coefficient, a . This characteristic is confirmed in Fig. 5. 
Since the decrement of the rate of temperature is too slow, 
the algorithm is not able to converge to an optimal solution 
effectively as can be seen from Tables I and II. 

E. Improved Quadratic Function 
To improve the rate of falling of the cooling schedule, the 
variable b of (5) is modified to 

)/()( max0 ITTb F −= ϕ  (6) 

where ϕ  is a constant that is to be determined 
experimentally. The value of ϕ will control the rate of the 
temperature decrement. In the test runs, 7.1=ϕ . The 
temperature curve is shown in Fig. 6. The rate of 
temperature reduction has been adjusted so that the final 
solution is able to converge in 6 out of 10 test runs shown 
in Tables I and II. 
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Fig. 5.  Temperature curves for quadratic equation. 
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Fig. 6.  Temperature curves for improved quadratic equation.

TABLE III 
SUMMARY OF COOLING SCHEDULES 

Cooling Schedule % Schedules that 
can be implemented 

Highest Cost of 
feasible schedule 

Lowest Cost of 
feasible schedule 

Average Cost of 
feasible schedule 

Average No. of 
Iterations to achieve 

feasible schedule 
Geometric 80.0=α  0% **** **** **** **** 
Geometric 95.0=α  40% 230 112 166 262 
Hybrid Geometric Function 
with Reheating 90% 232 14 114 508 

Huang’s Equation 50% 424 230 318 638 
Quadratic Equation 20% 700 526 613 873 
Improved Quadratic Equation 60% 218 2 115 404 

 

VI. SOLUTION RESULTS 

A. Comparison of Cooling Schedules 
Table III summarizes the results of the cooling schedules 
discussed above. Among the types of cooling schedules, 
the hybrid geometric function with reheating cooling 
schedule produces the highest number of feasible 
schedules. It also has the best average cost of the feasible 
schedule. Although the average number of iterations is 
about two times that of geometric cooling, it is not a 
concern as this can be improved significantly if a more 
powerful computer is used. 

B. Quality of Results from Simulated Annealing 
The staff workload timetable generated from the 

simulated annealing algorithm is compared with the user 
specification. Due to the complexity of the problem, a zero 
cost may not be obtained. Table IV tabulates the assigned 
hours against the intended hours of all staff members in the 
division under test. It can be seen that 23 out of the 29 staff 
members were assigned the exact requested hours. The rest 
of the staff members were within ±3 hours from their 
intended hours. Thus, violation of soft constraints has been 
kept to a minimum. The total time taken to generate the 
schedule was 4 hours and 16 minutes. 

Fig. 7 shows a sample workload schedule of a staff 
member (THN) whose allocated hours is the highest under 
test. On Thursday of week 3, THN is assigned a total of 6 
hours. It can be seen that the software has avoided 
assigning THN more than 4 hours of continuous teaching. 
It is also verified that all the subjects allocated to the  
staff members has no hard constraint and medium 
constraint violations. 
From the above discussion, it is clear that a workload 
scheduling solution is considered acceptable it must  
not only satisfy the intended hours for each individual staff 

 
TABLE IV 

BREAKDOWN RESULTS OF TEACHING ASSIGNMENT 
Staffs’  
Initials 

Total 
Assigned Hours 

Intended  
Hours 

Difference 
 

CCH 198 198 0 
CHC 200 200 0 
CPK 183 183 0 
DMA 63 63 0 
EC 219 219 0 
EW 222 222 0 
GBH 204 201 3 
GWL/1 206 205 1 
HDJ 225 222 3 
JC 189 190 -1 
JCC 174 174 0 
LCH 36 36 0 
LKT 195 195 0 
LMH 219 222 -3 
MJG 203 203 0 
NLS 192 195 -3 
OTH 162 162 0 
RG 102 102 0 
SKY 212 212 0 
SL 172 172 0 
TCM 36 36 0 
THK 213 213 0 
THN 223 223 0 
TYC 222 222 0 
VO 210 210 0 
YKS 170 170 0 
YL 205 205 0 
ZYP 214 214 0 

 
member but also provide a clash-free timetable for each 
staff member. It is not always possible to make all assigned 
hours exactly equal to all intended hours for all staff 
because certain laboratory hours must be assigned as a 
multiple of three.  Also, the total assigned teaching hours in  
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A break in a busy 
day. 

 

 
 
Fig. 7.  Sample schedule of staff. 
 
the division may not distribute nicely among all staff due to 
the teaching hours pre-assigned by the HOD. The true 
optimal solution may never be known unless the iterative 
solution is allowed to execute without setting an iteration 
limit. For all practical purposes, a final cost in the 
neighborhood of 20 is considered very good. 

C. Comparison with Results from Genetic Algorithms 
Since the success implementation of the SA-based 

workload scheduling project, there has been an attempt to 
implement the same project using genetic algorithms (GA) 
[12]. Based on the initial GA runs, the results are in general 
inferior to those obtained from the SA algorithm and the 
program takes about two days to run.  

Nevertheless, the GA-based project did reveal that the 
technique might be suitable for the implementation of the 
workload scheduling project. The execution time may be 
reduced if the length of the DNA array, which stores the 
binary genes, can be shortened and the solution process is 
fine-tuned for optimal performance. 

VII. CONCLUSION 
This study uses simulated annealing to solve a staff 

workload scheduling problem. It also presented some 
possible cooling schedules. 

Based on the percent schedules that can be implemented 
and the average cost of feasible schedules, the hybrid 
geometric function with reheating is selected for the actual 
implementation. The execution time although is an 
important consideration, is not a major issue since a 
savings of couple of hours does not make any difference 
when the software is invoked for overnight execution. 

Simulated annealing, although requires long 
computational time, is still acceptable. More importantly, 
simulated annealing has the advantage of high solution 
quality and it is easy to implement. 
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