
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

1682-0053/04$10 © 2004 JD

31

Abstract—This paper uses the simulated annealing
algorithm to solve a unique staff workload scheduling
problem present in a school that has about 250 academic staff
and 4000 students. This paper also examines and compares
various types of cooling schedules. Five types of cooling
schedules, namely, geometric ratio, hybrid geometric function
with reheating, quadratic equation, Huang’s equation and
improved quadratic equation are tested for the scheduling
problem. For each cooling schedule, ten test runs are
conducted. The results show that the hybrid geometric
function with reheating, whose value is directly proportional
to the cost function, yields best results to the problem.

Index Terms—Simulated annealing, cooling schedules,
scheduling, staff workload.

I. INTRODUCTION
HE PROCESS of scheduling has become an important
school function. Within a school, there are different

types of scheduling that can be found for various purposes.
For example, there is scheduling of curriculum timetables
that show all subjects the school is offering. It is not only a
time scheduling, but also a resource scheduling whereby
the location and time of the teaching slots are reflected. In a
school with various divisions, each division has a division
timetable that shows only the teaching slots that the
division is undertaking. All division timetables are a subset
of the school master timetables. Once teaching slots are
known, lecturers will be scheduled for teaching duties.
When a particular subject involves two or more divisions,
extra coordination will have to take place. Besides teaching
scheduling, there would also be examination scheduling
which normally takes place at the end of a semester.
Examination scheduling, like curriculum scheduling, is also
a time and resource scheduling process that involves
coordination and careful planning. All these scheduling
tasks would have to be properly planned before a school
can function in a timely manner.

In the School of Electrical and Electronics Engineering
(EEE) of Nanyang Technological University (NTU), the
process of scheduling used to be done manually. It
involved weeks of planning and corrections before one
master timetable could be used. The planner had to balance
among manpower, time and availability of physical
resources such as lecture theatres, tutorial rooms and

Manuscript received April 4, 2003; revised December 4, 2003. This

work was supported in part by the NTU research scholarship, which
enabled Mr. Ng to pursue his M.Eng. degree at NTU.

M. L. Ng is with ST Training & Simulation Pte. Ltd., Singapore
(e-mail: ngml@pacific.net.sg).

H. B. Gooi and C. Lu are with the School of Electrical & Electronic
Engineering, Nanyang Techological University, Singapore 639798 (e-
Email: ehbgooi@ntu.edu.sg).

Publisher Item Identifier S 1682-0053(04)0208

laboratories. The types of scheduling that the School of
EEE did were 1) curriculum scheduling, 2) staff workload
scheduling, 3) student timetable scheduling and 4)
examination scheduling.

Any of these scheduling processes could easily take half
a month if they were to be done manually. It did not take
long before the error-prone manual scheduling became
intolerable. This is also a consequence when more students
were matriculated. Thus, automated scheduling is not only
desirable but also a must in solving the increasingly
difficult timetabling problem.

With the advancement of information technology,
commercial software is readily available to solve many
scheduling problems. Commercial software makes use of
state-of-the-art algorithms such as genetic algorithms and
simulated annealing. While commercial software packages
are able to solve general scheduling problems, they are
unable to adapt to unique curriculum changes and IT
innovations in the future. To constantly engage software
suppliers to upgrade the software package due to
curriculum changes and new IT innovations would be too
costly for the school to bear. Thus, there is a need to
develop an automated scheduling system that meets EEE
timetabling requirements so that it can be upgraded
internally as and when the need arises.

This paper examines how the simulated annealing
algorithm is applied to automate the scheduling of EEE
staff workload. The focus is on various cooling schedules.

II. STAFF WORKLOAD SCHEDULING
There are six divisions and one institute, Information

Communications Institute of Singapore (ICIS) in EEE. A
Head of Division (HOD) or director is overall responsible
for staff workload assignment in each division/institute.
Staff workload scheduling is the planning of the teaching
timetable for each lecturer in the division/institute. Its
objective is to assign the teaching hours to each staff
member according to the average teaching hours as agreed
by all HODs and the ICIS director in the meeting chaired
by the Dean of EEE. The HOD or director may
increase/decrease the staff teaching hours after considering
the staff’s research and/or administrative duties. While the
variation in teaching hours can occur among staff, the
number of teaching hours assigned to the division/institute
should remain the same as agreed. The teaching schedules
generated must be implementable. They must minimize
unnecessary inconveniences to the staff member concerned
and at the same time must ensure that all teaching hours
within the division/institute are assigned.

Staff workload scheduling takes place after the
curriculum timetable has been finalized. It is the process
whereby the teaching staff members are assigned to

Staff Workload Scheduling in Large
Engineering Schools

M. L. Ng, H. B. Gooi, and C. Lu

T

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

32

curriculum time slots that the division/institute is
responsible for. The HOD or director assigns the crucial
teaching loads, such as lecture and Final Year Design. The
timetable coordinator then assigns the remaining loads.
Teaching loads assigned by HOD become hard constraints
since they cannot be changed by the timetable coordinator.

There are five types of classes, namely lecture, tutorial,
project, design and laboratory that can be assigned to staff.
The duration of each semester is thirteen weeks. Lecture is
conducted on the basis of one hour per session. For each
subject, there could be one to three lecture sessions per
week to be conducted and its workload may be distributed
among two to four lecturers. Tutorial is also conducted on
the basis of one hour per session per week for a total of 12
weeks starting from the second week of the semester. There
could be one or more tutors involved to teach the 12-week
tutorials. Project and Design are conducted on the basis of
three hours per session per week. To complete a project
module, it will take 3 weeks. Design modules generally
take 2-3 weeks to complete. Each student will complete
four modules spread over 12 weeks. Laboratory is
conducted on the basis of 3 hours per session per week.
Each laboratory session takes only one week to complete.
Each student will complete 12 weeks of laboratory.

There are many constraints that the timetable coordinator
needs to overcome. They can be generally classified into
hard, medium and soft constraints. Hard constraints must
be respected. The generated schedule cannot be executed if
they are violated. Medium constraints, if violated, will
cause discomfort to staff. Soft constraints, if violated, will
cause the least discomfort to staff. Each of these constraints
carries a cost value if the constraint is violated each time.
Thus the total cost would be given by

SMHT cCbCaCC ++= (1)

where HC is the cost of a hard constraint violation; MC is
the cost of a medium constraint violation; SC is the cost of
soft constraint violation; ba, and c are the number of
hard, medium and soft constraint violations respectively.
The above equation is also known as the cost function. In
practice, SMH CCC >>>> . In the actual implementation,

1=SC ; 100=MC ; 1000=HC to ensure that there is a
wide cost variation among each type of constraints. One
advantage for such assignment is that the status of the
schedule could be identified easily. For example, if the cost
is equal to 4578, then, it is likely that the schedule consists
of a total of 4 hard constraint violations, 5 medium
constraint violations and 78 soft constraint violations,
assuming that the total number of medium and soft
constraint violations does not reach 10 and 100
respectively.

Thus the objective of the timetable coordinator is to
schedule the staff workload so that its CT is as low as
possible. Examples of the three types of constraints are:

1. Hard Constraints
• A staff member cannot be scheduled to appear at

two different locations at the same timeslot.
• A staff member cannot be scheduled to teach in a

timeslot if it is within a no-workload period.
• A staff member cannot be scheduled to teach a

subject that he/she did not opt for.

2. Medium Constraints
• The number of consecutive hours assigned to staff

should not exceed a pre-specified maximum hours.
• If the request to teach a particular subject was

approved by HOD/director, the staff member
should be assigned a certain minimum number of
subject groupings so that the number of
preparations is kept to a minimum.

• Certain laboratory modules should be taught by the
same staff assigned to teach the associated class.

3. Soft Constraints
• The total number of hours scheduled to a staff

member should not be different from what was
requested.

• Staff members giving lectures should be given at
least one-hour free time prior to the lecture.

• The total teaching hours of a staff member in any
day should not be more than a pre-specified daily
limit.

The generated schedule must meet at least the hard
constraints specified before it can be classified as a feasible
schedule. Like any other timetabling problems, staff
workload scheduling is also categorized as a non-
polynomial (NP) problem. Non-polynomial means that the
problem cannot be formulated by using any polynomial
function, and thus the solution to the problem cannot be
verified in polynomial time. The practicality of the final
schedule generated will depend on how well the search
algorithm is designed and how the optimization algorithm
looks for a solution which leads to a minimum TC .

III. OPTIMIZATION ALGORITHMS
Many forms of algorithms have been formulated in the

past few decades in an attempt to solve NP problems. Some
are powerful but too complicated to be implemented on
small problems, while others are easy to implement but
cannot produce satisfactory results on larger problems. The
choice of algorithms depends on numerous factors related
to the nature of the problem. Some factors considered are
1) population size of the problem, 2) number of constraints
imposed, 3) time of execution to produce a feasible
scheduling result and 4) time of implementation.

The population size in the staff workload scheduling
problem refers to the number of teaching slots to be
scheduled. Typically for a division/institute, there are about
3500-4000 teaching slots to be scheduled. Each teaching
slot is one to three hours long. The number of constraints
would be directly proportional to the number of staff
members involved. The time to produce a feasible schedule
varies proportionally to the number of teaching slots. In
addition, it would depend on the algorithm chosen.

There are many readily available algorithms to solve NP
problems. The more popular ones are genetic algorithms,
simulated annealing, graph coloring and constraint logic
programming. Each of these has been implemented to solve
timetabling problems by many researchers. Rich [1] has
designed a software solution based on genetic algorithms
for creating a university class timetable. Elmohamed et al.
[2] have tackled the NP problem of academic class
scheduling at the university level based on simulated
annealing. Sheung et al. [3] used both genetic algorithms

www.SID.ir

Arc
hi

ve
 o

f S
ID

NG et al.: STAFF WORKLOAD SCHEDULING IN LARGE ENGINEERING SCHOOLS

33

and simulated annealing to solve a prototypical timetabling
problem in a tertiary institute.

Performance comparison of these algorithms was done
in various types of problems. Hasan et al. [4] compared
three algorithms, simulated annealing, genetic algorithms
and tabu search for the unconstrained Quadratic Pseudo-
Boolean (QP) function. The difference between the average
final solutions is not significant for all the three algorithms.
Youssef et al. [5] compared simulated annealing, tabu
search and genetic algorithm on the floor planning
problem. Of the three algorithms, tabu search produces the
best results with respect to the quality of the solution. With
respect to the complexity of implementation and tuning of
parameters, genetic algorithms require the most effort.
Sheung’s [3] results reflect that simulated annealing
converges faster and its final cost is lower than that of
genetic algorithms. This is more so when the complexity of
the algorithm grows.

Ng [6] attempted to solve the traveling salesman
problem (TSP) using Hopfield nets, simulated annealing,
Boltzmann machines and genetic algorithms. Simulations
were run for many cities. As the number of cities increases,
simulated annealing has consistently produced optimal or
near-optimal solutions and is faster compared to the other
algorithms.

No single algorithm behaves the best in all types of
problem domains, but one algorithm could be more suitable
for a specific problem. Also, the success of the algorithm
largely depends on the understanding of the programmer of
both the algorithm and the problem specifics. Simulated
annealing is chosen to solve the staff workload scheduling
problem due to its simplicity and ease of implementation.

The most important criterion in choosing an algorithm is
to determine whether the algorithm would converge to
produce a feasible solution. It can be shown that simulated
annealing will converge under appropriate conditions. Such
conditions were derived by Laarhoven et al. [7]. These
conditions will be examined later. Simulated annealing is
robust, which makes it easier to solve general and specific
problems. Many researchers have implemented simulated
annealing not only to solve scheduling problems, but also
in VLSI PCB routing [8] and automatic generation of one-
line diagrams [9].

Simulated annealing is derived from thermodynamics,
specifically imitating the way that metals cool and anneal.
This is a technique patterned after the physical process of
annealing of a solid, in the branch of engineering, known
as metallurgy. A minimum cost function corresponds to the
minimum energy (ground state) of a substance. The
simulated annealing process lowers the temperature slowly
until the system freezes and no further changes occur. At
each temperature step, the length of the Markov chain must
be long enough for the system to reach an equilibrium. The
essence of the process is slow cooling, allowing ample time
for redistribution of the atoms as they lose mobility. It is
essential to ensure that a low energy state will be achieved.

IV. IMPLEMENTING SIMULATED ANNEALING
An overview of the algorithm is shown in Fig. 1. The

algorithm begins by generating an initial schedule and the
cost of the schedule is also evaluated by the cost function

in (1). The costing shows the number of violated
constraints. Thus, the lower the cost, the better the schedule
is. An initial temperature is subsequently selected. The
iterative process starts by constructing new schedules and
imposing a random displacement from the solution space.
If the cost of the new schedule generated is smaller than the
cost of the current schedule, then the new schedule is
accepted as a replacement to the current schedule. If the
cost is worsened by a C∆ amount, then the schedule will
only be accepted by a probability given by (2),

)/exp(TCr ∆−< (2)

where r is a randomly generated number between 0 to 1
and T is the temperature that changes as the process
progresses. This equation is also known as Metropolis
criterion. The manner on how the temperature varies is
known as the cooling schedule.

The iterative process will halt when the stopping
criterion is satisfied. In this case, the program stops when it
has reached 1000 iterations or when the cost is below 50.
The value of 50 is chosen, as it is reasonably small. Based
on the cost of the various types of constraints defined in
Section II, the chosen value ensures that the final
converged schedule may contain a few soft constraint
violations of lesser importance while keeping free of any
hard and medium constraint violations.

To achieve good quality schedules, the cooling schedule
is of critical importance. The temperature during the
scheduling process will affect whether the solution is
trapped in a local minimum or not. In the following section,
five different types of cooling schedules are examined.

V. COOLING SCHEDULES
The result of simulated annealing is largely dependent on

the selection of the cooling schedule. There have been
some efforts to derive a universal set of rules for defining
the cooling schedule but there is limited achievement. In
this section, some popular cooling schedules such as
geometric cooling schedule, Huang’s et al. [10] equation
and quadratic equation are discussed. For each cooling
schedule, ten test runs are conducted. All test runs use the
same initial schedule.

The results of each cooling schedule are shown in
Tables I and II. Table I shows the number of iterations
before all hard constraints are resolved. When all the hard
constraints are resolved, the schedule is feasible and can be
implemented. Table II shows the final cost after 1000
iterations. The quality of the solution results is reflected in
the final cost. The higher the final cost, the poorer the
quality of the solution is.

A. Geometric Cooling Schedule
The geometric cooling schedule is probably the most well-
known and simplest in the simulated annealing arena. The
geometric cooling schedule is represented by,

ii TT α=+1 (3)

where α is the geometric ratio and T is the temperature. It
is easy to understand and can be implemented without
much effort. The value of α is determined experimentally
via trial and error. It is usually in the range of 0.6 ~ 0.99.
The value of T will change every M iterations. In the

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

34

START

Generate initia l
schedule

Set initial temperature,
compute cost of
initial schedule

Are stopping
criteria
 met?

No

Select a random
neighbour to the current

schedule

Compute
cost difference, C diff

Is C
d iff

 > 0 ?
Accept with

 a probability

Accept new schedule

Yes

Update
temperature

(cooling schedule)

No

End Yes

Loop Markov
chain M times.

Finished?

No

Yes

Fig. 1. Flowchart of simulated annealing algorithm.

test, M is chosen to be 10. The geometric cooling
schedule, though simple, is often not able to get
satisfactory results.

For the results of 8.0=α , it can be seen from Tables I
and II that no test run is able to resolve all the hard
constraints completely. The main reason behind this that
the temperature decreases too fast as shown in Fig. 2 and
the schedule is often trapped in a local minimum.
For the results of 95.0=α from Tables I and II, some
improvement is seen in the results over 8.0=α . 40% of

the test runs were able to resolve all the hard constraints
successfully. However, the final cost of these test runs is
still high. The temperature curve is shown in Fig. 3.

Based on the results of these two tests, it can be
observed that the higher the geometric ratio, the better the
results are. This is because the higher the geometric ratio,
the slower the temperature decrements, thereby, giving
enough time for the schedule to converge to a
global minimum.

www.SID.ir

Arc
hi

ve
 o

f S
ID

NG et al.: STAFF WORKLOAD SCHEDULING IN LARGE ENGINEERING SCHOOLS

35

TABLE I
NO OF ITERATIONS TO ACHIEVE A FEASIBLE SCHEDULE (0=HC)

Trial
Numbers

Geometric
80.0=α

Geometric
95.0=α

Hybrid Geometric
Function with

Reheating

Huang’s
Equation

Quadratic
Equation

Improved
Quadratic
Equation

Test Run 1 **** **** **** **** **** ****
Test Run 2 **** **** 634 605 **** 832
Test Run 3 **** 319 395 518 **** ****
Test Run 4 **** 282 548 **** **** 336
Test Run 5 **** **** 823 **** 908 274
Test Run 6 **** 145 412 **** **** ****
Test Run 7 **** 302 658 **** **** 266
Test Run 8 **** **** 314 543 **** 326
Test Run 9 **** **** 62 689 **** 386

Test Run 10 **** **** 719 834 837 ****
**** means 0≠HC at iteration = 1000.
Test Run x , where =x 1,2 … or 10 in Tables I and II, refers to the same run.

TABLE II

FINAL COST AT 1000TH ITERATION

Trial
Numbers

Geometric
80.0=α

Geometric
95.0=α

Hybrid Geometric
Function with

Reheating

Huang’s
Equation

Quadratic
Equation

Improved
Quadratic
Equation

Test Run 1 26254 2082 2284 7218 3802 1586
Test Run 2 7320 17330 132 230 4766 36
Test Run 3 49132 114 106 420 1756 1322
Test Run 4 30126 112 14 18480 9742 218
Test Run 5 3112 2254 48 4030 526 2
Test Run 6 35036 206 24 4020 380 2366
Test Run 7 11410 230 232 12162 13174 212
Test Run 8 18398 3102 208 424 4906 206
Test Run 9 29356 5182 42 254 4526 12

Test Run 10 37068 2340 218 265 700 2126
Test Run x , where =x 1,2 … or 10 in Tables I and II, refers to the same run.

0

50

100

150

200

1 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

Number of Iterations

Te
m

pe
ra

tu
re

Fig. 2. Temperature curve for α = 0.8.

B. Hybrid Geometric Function with Reheating
In geometric cooling schedules, the temperature is

decremented without considering the cost values. A more
adaptive cooling schedule would be a function of the cost
value and the gradient of the cost function. Tying the
temperature to the cost ensures that the cooling schedule
can be dynamically affected by the cost curve behavior.

The lower the cost value means that fewer constraints
are violated and hence the temperature should be kept low.
Likewise, the higher the cost value means that more
constraints are violated and hence reheating may be needed
so that the solution process may chart a new and better
convergence path. The implementation of the hybrid
function is:

0

50

100

150

200

1 80 1
60

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

Num be r of Ite ra tions

Te
m

pe
ra

tu
re

Fig. 3. Temperature curve for α = 0.95.

If (Hard Constraints still exists) Then
 If Gradient < 0 Then

 ii CT =+1

(Temperature equal
 to square root of
 average cost)

 Else
 ii CT 3.11 =+ (Reheating occurs)
 End If
Else
 ii TT 9.01 =+ (Geometric cooling

 schedule)
End If

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

36

It can be seen that this cooling schedule consists of two
main parts. The first part is when the schedule consists of
hard constraints, while the second is when the schedule has
resolved all the hard constraints. In the first part, when the
gradient of the cost curve < 0, this implies that the cost is
reducing. When the gradient ≥ 0, this means that there is no
change of the cost or the cost is increasing in that Markov
chain. When this happens, it is possible that the schedule is
trapped in a local minimum, thus reheating occurs.
Reheating enables the solution to jump out of the local
minimum. When the hard constraints are resolved, the
schedule is feasible. Using a geometric cooling schedule
ensures that the cost will converge slowly. The temperature
change is at every M iterations, similar to geometric
cooling scheduling.

The results of the hybrid geometric function schedule
from Tables I and II are much better than those of the
geometric cooling schedule. 90% of the test runs are able to
generate feasible solutions. The main advantage of this
cooling schedule is that the rate of change of the
temperature is directly proportional to the rate of change of
the schedule cost. Thus, the temperature will never
decrease too quickly or too slowly. In general, the
geometric cooling curve with reheating decays
exponentially and is similar to the geometric cooling curve
in Fig. 3. The cooling is adaptive to changes to schedule
cost.

It can be observed that although the cooling schedule
realized 90% of generated schedules, the number of
iterations required to achieve 0=HC does not follow any
particular trend. This is because the solution search is
performed randomly.

C. Huang’s Equation
A more complex cooling schedule explored by Huang et

al. [10] makes use of the standard deviation of the cost of
previous Markov chains. In this type of cooling schedule,
the temperature is directly dependent on the results of the
scheduling. The equation is:

)exp(1 σ
λ i

ii
T

TT −=+ (4)

where λ is a constant less than 1 and σ is the standard
deviation of the cost of the previous Markov chain. To
avoid a drastic decrement of the cooling schedule, the ratio
of ii TT /1+ is restricted to 0.9. This means that the
temperature drop between two successive iterations cannot
be too high and it does not imply that Huang’s equation is
following the geometric cooling curve. Instead, Huang’s
cooling curve is determined by (4). In the test runs,

1.0=λ . Test is conducted at every M iterations to
determine if the temperature has reached equilibrium
before the temperature is updated.

Out of the ten test runs in Tables I and II, five runs
produce feasible results. The cost variation of the initial
Markov chains is small, thus, the standard deviation, σ, is
small too. Although there is a mechanism to restrict the
drastic drop of ii TT /1+ , the temperature decreases very fast
due to the exponential decay nature of the cooling
schedule. Fig. 4 shows the temperature curve for a typical
test run. It can be seen that the temperature drops very
fast within the first two hundred iterations. This will easily

0

50

100

150

200

1 90
180

270
360

450
540

630
720

810
900

990

Numbe r o f Ite rations

Te
m

pe
ra

tu
re

Fig. 4. Temperature curve for Huang’s equation.

cause the solution to be locked at a local minimum.

D. Quadratic Equation
Anderson et al. [11] suggested a quadratic equation cooling
schedule for use in a class of network design problems in
telecommunications. This cooling schedule is a function of
the starting temperature (0T), ending temperature (FT) and
the iteration number i as shown in (5).

cbiaiTi ++=+
2

1 (5)

where
2

max0)/()(ITTa F=

)/()(2 max0 ITTb F −=

0Tc =

in which maxI is the maximum number of iterations and
could be chosen large so that more iterations can be
covered. FT is usually chosen such that FTT >>0 . Thus,

00)(TTTF −≈− .

If maxI is chosen such that

0max TI >> ,

then
0max0 / TIT <<− .

It can be easily observed that the second term in (5) is the
only negative component since)/()(2 max0 ITTF − must be
less than 0. In our experiments, 1000max =I , 1780 =T and

1.0=FT . The rate of decrement of the cooling schedule
largely depends on)(0TTF − and maxI because ab >> . As a
result, the rate of cooling is slow as it is affected mostly by
the linear coefficient, b , rather than the quadratic
coefficient, a . This characteristic is confirmed in Fig. 5.
Since the decrement of the rate of temperature is too slow,
the algorithm is not able to converge to an optimal solution
effectively as can be seen from Tables I and II.

E. Improved Quadratic Function
To improve the rate of falling of the cooling schedule, the
variable b of (5) is modified to

)/()(max0 ITTb F −= ϕ (6)

where ϕ is a constant that is to be determined
experimentally. The value of ϕ will control the rate of the
temperature decrement. In the test runs, 7.1=ϕ . The
temperature curve is shown in Fig. 6. The rate of
temperature reduction has been adjusted so that the final
solution is able to converge in 6 out of 10 test runs shown
in Tables I and II.

www.SID.ir

Arc
hi

ve
 o

f S
ID

NG et al.: STAFF WORKLOAD SCHEDULING IN LARGE ENGINEERING SCHOOLS

37

0

50

100

150

200

1 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

Number of Iterations

Te
m

pe
ra

tu
re

Fig. 5. Temperature curves for quadratic equation.

0

50

100

150

200

1 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

Number of Iterations

Te
m

pe
ra

tu
re

Fig. 6. Temperature curves for improved quadratic equation.

TABLE III
SUMMARY OF COOLING SCHEDULES

Cooling Schedule % Schedules that
can be implemented

Highest Cost of
feasible schedule

Lowest Cost of
feasible schedule

Average Cost of
feasible schedule

Average No. of
Iterations to achieve

feasible schedule
Geometric 80.0=α 0% **** **** **** ****
Geometric 95.0=α 40% 230 112 166 262
Hybrid Geometric Function
with Reheating 90% 232 14 114 508

Huang’s Equation 50% 424 230 318 638
Quadratic Equation 20% 700 526 613 873
Improved Quadratic Equation 60% 218 2 115 404

VI. SOLUTION RESULTS

A. Comparison of Cooling Schedules
Table III summarizes the results of the cooling schedules
discussed above. Among the types of cooling schedules,
the hybrid geometric function with reheating cooling
schedule produces the highest number of feasible
schedules. It also has the best average cost of the feasible
schedule. Although the average number of iterations is
about two times that of geometric cooling, it is not a
concern as this can be improved significantly if a more
powerful computer is used.

B. Quality of Results from Simulated Annealing
The staff workload timetable generated from the

simulated annealing algorithm is compared with the user
specification. Due to the complexity of the problem, a zero
cost may not be obtained. Table IV tabulates the assigned
hours against the intended hours of all staff members in the
division under test. It can be seen that 23 out of the 29 staff
members were assigned the exact requested hours. The rest
of the staff members were within ±3 hours from their
intended hours. Thus, violation of soft constraints has been
kept to a minimum. The total time taken to generate the
schedule was 4 hours and 16 minutes.

Fig. 7 shows a sample workload schedule of a staff
member (THN) whose allocated hours is the highest under
test. On Thursday of week 3, THN is assigned a total of 6
hours. It can be seen that the software has avoided
assigning THN more than 4 hours of continuous teaching.
It is also verified that all the subjects allocated to the
staff members has no hard constraint and medium
constraint violations.
From the above discussion, it is clear that a workload
scheduling solution is considered acceptable it must
not only satisfy the intended hours for each individual staff

TABLE IV

BREAKDOWN RESULTS OF TEACHING ASSIGNMENT
Staffs’
Initials

Total
Assigned Hours

Intended
Hours

Difference

CCH 198 198 0
CHC 200 200 0
CPK 183 183 0
DMA 63 63 0
EC 219 219 0
EW 222 222 0
GBH 204 201 3
GWL/1 206 205 1
HDJ 225 222 3
JC 189 190 -1
JCC 174 174 0
LCH 36 36 0
LKT 195 195 0
LMH 219 222 -3
MJG 203 203 0
NLS 192 195 -3
OTH 162 162 0
RG 102 102 0
SKY 212 212 0
SL 172 172 0
TCM 36 36 0
THK 213 213 0
THN 223 223 0
TYC 222 222 0
VO 210 210 0
YKS 170 170 0
YL 205 205 0
ZYP 214 214 0

member but also provide a clash-free timetable for each
staff member. It is not always possible to make all assigned
hours exactly equal to all intended hours for all staff
because certain laboratory hours must be assigned as a
multiple of three. Also, the total assigned teaching hours in

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

38

A break in a busy
day.

Fig. 7. Sample schedule of staff.

the division may not distribute nicely among all staff due to
the teaching hours pre-assigned by the HOD. The true
optimal solution may never be known unless the iterative
solution is allowed to execute without setting an iteration
limit. For all practical purposes, a final cost in the
neighborhood of 20 is considered very good.

C. Comparison with Results from Genetic Algorithms
Since the success implementation of the SA-based

workload scheduling project, there has been an attempt to
implement the same project using genetic algorithms (GA)
[12]. Based on the initial GA runs, the results are in general
inferior to those obtained from the SA algorithm and the
program takes about two days to run.

Nevertheless, the GA-based project did reveal that the
technique might be suitable for the implementation of the
workload scheduling project. The execution time may be
reduced if the length of the DNA array, which stores the
binary genes, can be shortened and the solution process is
fine-tuned for optimal performance.

VII. CONCLUSION
This study uses simulated annealing to solve a staff

workload scheduling problem. It also presented some
possible cooling schedules.

Based on the percent schedules that can be implemented
and the average cost of feasible schedules, the hybrid
geometric function with reheating is selected for the actual
implementation. The execution time although is an
important consideration, is not a major issue since a
savings of couple of hours does not make any difference
when the software is invoked for overnight execution.

Simulated annealing, although requires long
computational time, is still acceptable. More importantly,
simulated annealing has the advantage of high solution
quality and it is easy to implement.

REFERENCES
[1] D. C. Rich, "A Smart Genetic Algorithm for University

Timetabling," in Proc. Int. Conf. on the Practice and Theory of
Automated Timetabling PTAT’95, Selected Papers, pp. 181-197,
Springer-Verlag, 1995.

[2] M. A. S. Elohamed, P. Coddington, and G.,Fox, "A Comparison of
Annealing Techniques for Academic Course Scheduling," in Proc.
Second Int. Conf. on the Practice and Theory of Automated
Timetabling, PTAT’97, pp. 92-112, 1997.

[3] J. Sheung, A. Fan, and A. Tang, “Time tabling using genetic
algorithm and simulated annealing," in Proc. IEEE TECON’93,
pp. 448-451, Beijing, China, 1993.

[4] M. Hasan, T. AlKhamis, and J. Ali, "A comparison between
simulated annealing, genetic algorithm and tabu search methods for
the unconstrained quadratic Pseudo-Boolean function, " Computer &
Industrial Engineering, vol. 38, no. 3, pp323-341, Oct. 2000.

[5] H. Youssef, S. M. Sait, and H. Adiche, "Evolutionary algorithms,
simulated annealing and tabu search: a comparative study,"
Engineering Applications of Artificial Intelligence, vol. 14, no. 2,
pp. 167-181, Apr. 2001.

[6] K. P. Ng, Combinatorial Optimization: Using Hopfield Nets,
Simulated Annealing, Boltzmann Machines and Genetic Algorithms,
NTU Project Q155.NKP, 1994.

[7] P. J. M. Laarhoven, Simulated Annealing: Theory and Applications,
Kluwer Academic Publishers, 1987.

[8] S. M. Sait and H. Youssef, VLSI Physical Design and Automation:
Theory and Practice, McGraw-Hill Book Company, 1995.

[9] H. B. Gooi and A. N. Arunasalam, "Automatic generation of one-line
diagrams, " in Proc. Int. Power Engineering Conf., pp. 26-30,
Singapore 1993.

[10] M. D. Huang, F. Romeo, and A. K. Sangiovanni-Vincentelli, "An
efficient general cooling schedule for simulated annealing," in Proc.
IEEE International Conf. on Computer-Aided Design, pp. 381-384,
Santa Clara, Nov. 1986.

[11] K. Anderson, R. V. V. Vidal, and V. B. Iverson, "Design of a
teleprocessing communication network using simulated annealing",
in Proc. IEEE Int. Conf. on Computer Aided Design, pp. 381-384,
Santa Clara, 1986.

[12] W. K. Tan and K. M. Lee, Development of an Automatic Optimal
Timetable Planning Software for the School of Electrical and
Engineering, B.Eng. Final Year Project Report, School of Electrical
& Electronic Engineering, Nanyang Technological University, 2001.

M. L. Ng received the B.Eng. and M.Eng. degrees in Electrical and
Electronics Engineering from Nanyang Technological University,
Singapore, in 1999 and 2001, respectively.

During his Masters, he researched on various optimization algorithms
such as simulated annealing and genetic algorithm. He had used his
research results to solve the staff workload scheduling problem in the
School of EEE, NTU, Singapore.

Since 2002, he has been with ST Training & Simulation, Singapore, as
a Software Engineer where he was primarily involved in the development
of simulation projects.

H. B. Gooi received his B.Sc. from National Taiwan University, M.Sc.
from University of New Brunswick and Ph.D. from Ohio State University
in 1978, 1980, and 1983, respectively.

From 1983 to 1985, he was an Assistant Professor in the EE
Department at Lafayette College, Pennsylvania. From 1985 to 1991, he
was a Senior Engineer with Empros (now Siemens), Minneapolis.

In 1991, he joined the School of EEE, NTU as a Senior Lecturer. Since
1999, he has been an Associate Professor. His current research interests
are probabilistic reserve assessment and scheduling applications.

C. Lu received his B.Sc. from Tsinghua University, China, M.Sc. and
Ph.D. from University of Manchester Institute of Science and Technology,
UK in 1985, 1987, and 1990, respectively.

He joined the School of EEE, NTU as a Lecturer in 1991. Since 1999,
he has been an Associate Professor. He is also with the Institute for
Infocomm Research, Singapore since 2002. His current research interests
are in the area of optical communication systems and networks. He has
published over 100 journal and conference papers.

www.SID.ir

