
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

1682-0053/04$10 © 2004 JD

28

Abstract—The main objective of this paper is to construct a
distributed environment through which the load flow
solutions of multi-area power systems can be monitored and
controlled. A single-server/multi-client architecture which
enables the neighboring power systems to access the remote
load flow server at any time, with their respective data and to
get the load flow solutions from the remote server has been
proposed. An RMI (Remote Method Invocation) based
distributed environment has been implemented in such a way
that for every specific period of time, the remote server
obtains the system data simultaneously from the neighboring
power systems which are the clients registered with the
remote load flow server and the load flow solutions from the
server have been sent back to the respective clients. The load
flow server creates a new thread of control for every client’s
request and hence complete distributed environment is
exploited.

Index Terms—Distributed computing, power systems, load
flow, RMI, client-server model.

I. INTRODUCTION
HE POWER system load flow solution obtained through
conventional client-server architecture is complicated,

memory management is difficult, source code is bulky, and
exception-handling mechanism is not so easy. In the
conventional power system operation and control, it is
assumed that the information required for monitoring and
controlling of power systems is centrally available and all
computations are to be done sequentially at a single
location [1]. With respect to sequential computation, the
server has to be loaded every time for each client’s request
and the time taken to deliver the load flow solution is also
comparatively high [2]-[4].

This paper outlines a new approach to develop a solution
for load flow analysis by way of distributed computing.
RMI based client-server architecture overcomes the
difficulties associated with sequential computation and it
can be easily implemented.

RMI uses built-in java security mechanism and hence the
distributed load flow monitoring through an applet
definitely secures the safety of the server as well as power
system data transfer.

The structure of this paper is as follows. Section II
presents the RMI based architecture for automated load
flow solutions. In Section III an algorithm is described for
load flow monitoring based on RMI. The results of

Manuscript received December 31, 2002; revised November 25, 2003.
K. Nithiyananthan is with The Department of Electrical and Electronics

Engineering, College of Engineering, Guindy, Anna University, Chennai-
25, India (e-mail: knithiyananthan@hotmail.com).

Dr.V.Ramachandran is with The Department of Computer Science and
Engineering, College of Engineering, Guindy, Anna University,
Chennai-25, India (e-mail: rama@annauniv.edu).

Publisher Item Identifier S 1682-0053(04)0194

 Client n

 Client 2

 Client 1

Data stream

Receiver (skeleton)

Load flow Result

Load flow Stub

Remote method call

Marshall
Data

Load flow Result

Load flow Request

Load flow Result

Load flow request

Load flow
Result

Load flow
request

Load flow Result

Load
Flow
Server

Fig. 1. RMI based client-server architecture.

software implementation are presented in Section IV.
Finally, Section V concludes the paper.

II. RMI BASED ARCHITECTURE FOR AUTOMATED LOAD
FLOW SOLUTIONS

In the present work, a distributed environment has been
set up using RMI to estimate and to monitor load flow
solutions for different sub-systems of an integrated power
system. Each subsystem has been considered as a power
system client and hence multi power system clients-single
load flow server model is implemented. These power
system clients are interconnected with a load flow server as
shown in Fig. 1. When there is a call for a method located
in a remote object, Fig. 1 shows the flow of remote method
invocation.

A client computer basically does the distributed power
system monitoring through an applet for every specific
period of time and frequently exchanges data with the
server. The server does the load flow computation and then
distributes the results. Chronologically the server process
should be started first, so that it can take the initiative to set
up a connection link. It then waits until it receives a
connection request from the client. A client can register
itself with the remote object (server object), just by
invoking the registration procedure on the server object,
when it needs a service from it. The remote object obtains
the necessary data from the registered client objects and
responds back to them respectively with the results. The
total process can be automated by making the server get the
input data for every specific period of time. Transaction of
data among clients and server takes place several times and
so the possibilities of the occurrence of errors may be high.
Hence it must be handled properly.

RMI Based Multi-Area Power System
Load Flow Monitoring

K. Nithiyananthan and V. Ramachandran

T

www.SID.ir

Arc
hi

ve
 o

f S
ID

NITHIYANANTHAN AND RAMACHANDRAN: RMI BASED MULTI-AREA POWER SYSTEM LOAD FLOW MONITORING

29

Send m arshaled
return value or
Exception

Send m arshaled
Param eters

Load f low
Stub

Receiver
(Skeleton)

Pow er
System
client

Load
Flow
Server

Call load flow stu b
m ethod locally

Call server
m ethod locally

Return value or
throw E xcep tion

Fig 2. Invoking a load flow method on a remote object.

A. RMI Data Flow Model
In the proposed model, each neighboring power system

is considered as a client remote object. The power system
client calls a method on an object that represents the remote
object, which is called a stub. The stub contains a method
for each of the methods in the remote object. Load flow
stub always resides on the client’s side and it packages the
power system data into a block of bytes that can be
communicated through the network. The process of
marshalling [5] presents the entire load flow data in a
suitable format for transporting one virtual machine to
another. The load flow stub on the client’s side builds the
information block that consists of an identifier of the
remote object to be used, a description of the method to be
called and the marshalled load flow data. When the load
flow stub sends the information to the load flow server, a
receiver object (skeleton) on the server side receives and
unmarshals the parameters. This receiver locates the object
to be called and then calls the desired method with those
parameters. When the method returns, the receiver object
captures, marshals the return value and sends the
marshalled load flow results as packets on to a marshal
stream and thus sends the load flow result to the stub. The
stub unmarshals the return value and returns it to the
original caller. This data flow model is shown in Fig. 2.

B. Load Flow Server’s Self Registry Service and
Dynamic Class Loading
RMI provides bootstrap registry service to locate remote

server objects. Server program registers remote objects
with the bootstrap registry service and the clients retrieve
stubs to those objects. In this proposed method, the load
flow server creates its own registry and it maintains the
stubs for the remote objects on its own and hence the server
no longer needs to depend on the bootstrap registry service
provided by RMI protocol.

In RMI client-server architecture, clients can
communicate with the remote object only when the server
side stub is available with the client. The stub can be
loaded on the client’s side dynamically by an external web
server as shown in Fig. 3. The steps involved in
downloading RMI stubs are as follows:

i. The remote object’s codebase is specified by the remote
object’s server by setting the java.rmi.server.codebase
property. The RMI load flow server registers a remote
power system client object, bound to a name, with the
RMI registry.

 Load flow server
registers a remote
object, bound to a
name

Power system client
makes a Naming
lookup call

The HTTP server returns
remote object’s load flow stub

Makes a remote method call

Remote object
Instance

The registry returns an
instance of the remote
object’s stub

 Power
system client

RMI
Registry

Tomcat Web
server

(HTTP)

Server that
 exported
 a remote
 object

Client requests the stub
class from the code base

Fig. 3. Dynamic class loading.

ii. The power system client makes a request for a reference

to a named remote object. The reference to the remote
object’s stub instance is what the client will use to make
remote method calls to the load flow server object.

iii. The RMI registry returns the stub instance reference to
the requested class.

iv. The codebase which the power system client uses, is the
URL that is annotated to the stub instance when the
stub class was loaded by the registry.

v. The class definition for the stub is downloaded to the
client dynamically.

vi. Now the power system client has all the information
that it needs to invoke remote method on the load flow
server object. The stub instance acts as a proxy to the
remote object that exists on the server.

III. RMI BASED LOAD FLOW MONITORING ALGORITHM
Any changes in the implementation of the server side

results in the modification of the stub and it will be made
available for clients by dynamic class loading through an
external server.

When a client’s remote object registers with load flow
server’s remote object, the server uses the remote client
reference to invoke its method to obtain the load flow data
from that client and then provides the service through its
methods. Both client and server objects are considered as
remote objects and this is how inter-remote object
communication is achieved. The server object uses a single
thread of control to distribute the load flow solution
simultaneously to the clients registered with it. The
proposed model is dynamic which allows a new power
system client to register with the load flow server object at
run-time and to get serviced. A kind of multicasting has
been achieved through this multi-client/single-server
model. Load flow server and clients have to store, the
necessary object codes required for load flow calculations.
Stubs for both client and server must be kept at a common
location like web server for distribution. Subsequently, the
following steps are to be carried out:

i. Start load flow server.

ii. Load flow server should invoke its own registry
service.

iii. Start power system client by dynamically loading the
server’s stub from the common location.

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 3, NO. 1, WINTER-SPRING 2004

30

Fig. 4. Applet with load flow solution.

iv. Client registers with the server by invoking the

appropriate method at the remote object.
v. Server uses the client’s reference to receive the power

system data from the client.
vi. Server computes the load flow result and returns it to

the client.
vii. Client obtains the result from the server through load

flow stub and provides a view of the result through an
applet.

viii. For every specific period of time, server automatically
receives system data from the client, thereby providing
an automatic load flow monitoring.

IV. RESULTS
The above distributed algorithm has been implemented

in Windows NT based HP workstations connected in an
Ethernet LAN. The results are shown in a client applet as
given in Fig. 4.

The above applet shows the load flow solution for a
specific 10-bus power system client. When each power
system client applet is loaded, it registers with the load
flow server, the server stub will be downloaded
dynamically and through it, the client sends the request and
receives the output. Using this approach, different power
system clients can monitor continuous updated load flow
solutions at regular time intervals.

The major factors that influence the performance of
on-line load flow monitoring in a distributed environment
are Round Trip Time (RTT), scalability, reliability and
security. The round trip time without overheads for the
load flow analysis for different power system are
measured, compared with the client/server technique and
the result are shown in Fig. 5. RMI has the best
performance in all the cases. It is clear that conventional
client/server model is comparatively slower than RMI. The
time taken by the clients increases steadily during the initial
stages and increases slowly as the convergence time and
the number of clients increases.

Client/Server Vs RMI

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5
No of Clients

RTT
 (ms)

13Bus (C/S)

13 Bus (RMI)

 8 Bus (C/S)

8 Bus (RMI)

15 Bus (C/S)

15 Bus (RMI)

Fig. 5. RTT vs. no of clients.

V. CONCLUSION
An effective RMI based distributed model has been

developed to monitor the load flow of multiple power
systems. It has been tried out in overcoming the overheads
associated with sequential power system load flow
computation through this model. Although, client-server
architecture for load flow solution is very well established,
the value of this study lies in that it emphasizes a unique
methodology based on remote method invocation to serve a
large number of clients in a distributed power system
environment, across various platforms based on
communication between virtual machines. A practical
implementation of this approach suggested in this paper
was assessed based on 6, 8, 9, 10, 13 and 15 bus sample
systems. Accordingly the proposed model can be
implemented for large power systems network spread over
geographically apart.

REFERENCES
[1] G. Bandyopandhyay, I. Senguptha, and T. N. Saha, "Use of client-

server model in power system load flow computation," IE(I) Journal-
Electrical, vol. 79, no. 1, pp 199-203, Feb. 1999.

[2] D. G. Hart, D. Uy, J. Northcote-Green, C. Laplace, and D. Novosel,
"Automated solutions for distribution feeders," IEEE Trans. on
Computer Applications in Power, vol. 15, no. 4, pp 25-30, Oct. 2000.

[3] B. Qiu and H. B. Gooi "Web based SCADA display systems
(WSDS) for access via Internet," IEEE Trans. on Power Systems,
vol. 15, no. 2, pp 681-686, May 2000.

[4] G. P. Azevedo, B. Feijo, and M. Costa "Control centers evolve with
agent technology," IEEE Trans. on Computer Applications in Power,
vol. 15, no. 3, pp 48-53, Jul. 2000.

[5] C. S. Horstmann and G. Cornell, Core Java Volume II Advanced
Features, The Sun Microsystem Press Java Series, 2000.

[6] Dynamic Code Downloading Using Remote Method Invocation,
http://java.sun.com/j2se/1.3/docs/gulde/rmi/codebase.html

K. Nithiyananthan received the B.E. degree in Electrical and Electronics
Engineering and the M.E. degree in Power System Engineering from the
Faculty of Engineering and Technology, Annamalai University,
Chidambaram, India, in 1998 and 2000, respectively. He is currently
working as a Teaching\Research Associate in the Department of Electrical
and Electronics Engineering, College of Engineering, Guindy, Anna
University, India. His research interests include power systems analysis
and modeling, distributed computing and Internet technologies.

V. Ramachandran received his M.E. and Ph.D. in Electrical Engineering
from College of Engineering, Guindy, Anna University, Chennai, India.
He is currently a Professor of Computer Science and Engineering in
College of Engineering, Guindy, Anna University, India. His research
interests include power systems reliability engineering, network security,
component technologies and soft computing.

www.SID.ir

