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Abstract—Stark broadening of the Si II doublet at 504.1 nm 
and 505.6 nm has been used to estimate the electron density in 
two model silica-sand-filled high-voltage, high breaking 
capacity fuses. For a 240 mm long fuse which successfully 
interrupted a test circuit set up to deliver a 4.5 kA prospective 
current, the electron density fell from ~ 2× 1018 cm-3 shortly 
after arc initiation to ~ 1× 1018 cm-3 just before current zero; 
for a 112 mm long fuse and a prospective current of 1.25 kA 
the electron density was ≤  1× 1017 cm-3 for the duration of 
the arc. 

 
Index Terms—High breaking capacity fuse, spectral lines, 

Stark broadening, the fuse’ arc. 

I. INTRODUCTION 
 HIGH-VOLTAGE, high breaking capacity (HBC) fuse is 
an important component of modern electrical energy 

distribution system. It is considered superior to the 
equivalent circuit-breaker for interrupting short-circuit 
currents because of its short operating time, cost-
effectiveness, and self-fault-sensing characteristics [1], [2]. 
The pre-arcing behavior of these fuses is now well-
understood, but a lack of information as to the 
characteristics of the fuse arc has prevented researchers 
developing a model which will quantify the behavior of 
this phase of the operation of the fuses. Although empirical 
models of the arc have been developed [3] and have been 
used for some calculations, it is necessary to know the arc 
temperature and electrical conductivity, which depend on 
the electron density and temperature of the arc, to model 
the arc [4]. The lack of knowledge of the arc parameters 
such as electron density and temperature is particularly 
acute in the case of HBC fuses which are packed with sand 
- usually silica sand - to absorb the arc energy. 

Although there have been a number of studies to 
determine plasma temperatures during fuse arcing, there 
have been few measurements of electron density in the arc. 
Chikata et al. [5] replaced an opaque fuse holder with a 
Pyrex glass tube in order to observe the visible radiation 
from the sand-filled fuse arc, and from Stark broadening of 
silicon lines obtained electron densities of the order of 
1018 cm-3. Cao [6] used an arc in ice to provide access to 
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the radiation emitted, and measured densities of the order 
of 1018 cm-3 from the Stark broadening of the hydrogen 
Balmer lines. The drawback of this already reported work 
is that it does not reflect the actual situation in sand-filled 
high-voltage fuses in which the burning arcs are constricted 
by the surrounding silica sand and enclosed by opaque fuse 
cartridges. The reported measurements [5], [6] are also 
integrated over the duration of the arc, and do not provide 
any indication about their variation in the arcing period. 
This study reports the investigation of the arc, which is 
produced inside the model fuses and is surrounded by SiO2 
in opaque fuse cartridges just like in actual fuses. The light 
from the arc is carried to a monochromator by an optical 
fibre which is then analysed to make an estimate of the 
electron density using the Stark-broadening parameters of 
Si II spectral lines. The model fuses are tested at 6 kV 
(50 Hz) for 1.25 and 4.5 kA prospective fault currents, 
conditions likely to be encountered in power distribution 
networks. The study reports the time-resolved 
measurements of electron density during the evolution of 
the arc. 

II. STARK BROADENING OF SPECTRAL LINES 
As a consequence of the long range of the Coulomb 

force the collisional broadening of spectral lines from 
moderately ionized plasmas such as the fuse arc is 
dominated by the collisions of charged particles with the 
emitting atoms. This Stark broadening is given for singly 
ionized atoms by [7, 8] 

  16-10  2/16/111.014/141075.1 +12.0 enwTen en ×−−×=∆ 











αλ  (1) 

where λ∆  half width of the Stark broadened line in nm 
=en  electron density in cm-3 

=T plasma temperature in Kelvin. 
The constants α  and w  are characteristic of the 

transition of interest, and depend weakly on the plasma 
temperature. They are tabulated by Griem [9]. 

III. THE EXPERIMENT 
The experimental set-up for these measurements was 

identical to that used for the fuse arc electron temperature 
measurements discussed in [10]. Indeed, the data from 
which the electron density was deduced were obtained 
from the spectra which had been taken primarily for these 
electron temperature measurements. It must be clarified 
here that reference [10] discusses about the time-resolved 
measurements of arc temperature for a model fuse when it 
was tested at 1.25 kA fault current whereas the temporal 
estimation of electron density for two model fuses – of 
different dimensions – at two fault currents – 1.25 kA and 
4.5 kA – is the subject of this paper. 
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Fig. 1.  The long fuse; 240 mm long with inside diameter of 43.7 mm. 
 

 
Fig. 2.  The short fuse, 112 mm long with inside diameter of 59.5 mm. 
 

Two experimental versions of a silica-sand-filled fuse, 
cylindrical in shape with a 0.55 mm diameter uniform 
silver wire stretched inside the middle of the fuse barrel 
along its axis, were constructed for these measurements. 
One was 240 mm long with an inside diameter of 43.7 mm 
(the long fuse, Fig. 1), the other 112 mm long with an 
inside diameter of 59.5 mm (the short fuse, Fig. 2). 
(Commercial fuses use a somewhat different design to 
ensure the current goes to zero well before reaching its 
maximum value and that reignition does not occur.) A 
6 kV, 50 Hz waveform was applied to the fuse by closing 
the pneumatically-driven mechanical make switch MS1 in 
the synthetic test circuit shown in Fig. 3, the values of L 
and C in this circuit were set to give a prospective current 
of 1.25 kA for the short fuse, and 4.5 kA for the long fuse. 
The make switch MS2 in this circuit is switched to crowbar 
the fuse in the test circuit at current zero in case the fuse 
malfunctions. The voltage across the fuse was measured 
with a Tektronix P6015, 20 kV, 1,000× attenuation high-
voltage probe; the current with a 190.8 A/V shunt. A 
Nicolet Pro 42C digital oscilloscope [11] was used to 
record these signals, as well as a reference pulse to indicate 
the time at which the arc spectra were recorded. 

The arc spectra were recorded with a Princeton Applied 
Research Model 1460 Optical Multichannel Analyzer 
(OMA), a spectroscopic system in which the spectrum is 
recorded by a linear photodiode detector array which is 
coupled to the exit plane of the monochromator by an 
image intensifier which can be gated "on" by a high-
voltage pulse. An optical fiber, inserted in the fuse body to 
touch the fuse element, was used to transfer light from the 
arc to the OMA [12]. A 62.5 µm core diameter multimode 
silica fiber was used as this material should have negligible 
effect on the arc characteristics. The other end of the fiber 
was located at the centre of the 25 µm entrance slit of a 
Jarrell-Ash MonoSpec 27 Monochromator [13], which 
spectrally dispersed the arc radiation.  
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Fig. 3.  Synthetic test circuit. 
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Fig. 4.  Triggering circuit for time-resolved spectroscopy. 
 

The OMA was run in the gated mode, synchronized to 
the triggering of the fuse test circuit. The experiment is 
initiated by a pulse provided by the OMA, which triggers 
the closing of the pneumatically operated make switch 
MS1 (Fig. 3). This pulse is delayed to trigger the high-
voltage pulser which gates "on" the image intensifier for a 
few microseconds at an appropriate time during the arc. 
This procedure is necessary to synchronize the "read" cycle 
of the OMA with the operation of the test circuit. The 
timing circuitry for this experiment is shown in Fig 4. (The 
switch MS1 closes around 65 ms after activation, and there 
is a further delay of 1-6 ms before the arc is initiated, 
depending on the fuse used and the prospective current.) 

IV. AN ESTIMATE OF THE ELECTRON DENSITY 
The width of the spectral lines recorded in the course of 

the electron temperature measurements which we are 
reporting in another paper [10] is such that we should be 
able to estimate an upper limit to the contribution of Stark 
broadening to the line width. This should, in turn permit 
the estimation of an upper limit to the electron density in 
the plasma. Observation of the width of the individual 
spectral lines acquired at earlier times during the arcing of 
the long fuse, which were significantly broader than those 
observed for the short fuse, confirm that the line width is, 
at least in some cases, broader than the instrumental 
resolution of the monochromator used. The Doppler 
broadening corresponding to the electron temperatures we 
have measured from the relative intensity of Si II spectral 
lines [10] is < 0.01 nm, and will not contribute significantly 
to the line width. Thus a deconvolution of the instrumental 
width of the monochromator used from the measured  
line width should enable the contribution of Stark 
broadening to be determined and an estimate made of the 
electron density.  
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Fig. 5.  Spectrum of the arc of a silica-sand-filled HBC fuse 1.2 ms  
after arc initiation. 
 

 
Fig. 6.  Expanded view of the region of the spectrum shown in Fig. 5 
around the Si II doublet at 504.6 and 506.1 nm. 
 

Fig. 5 shows the arc spectrum recorded 1.2 ms after arc 
initiation for the long fuse, and Fig. 6 an expanded view of 
the region of the spectrum around the Si II doublet at 
504.1 nm and 505.6 nm for which the line width 
measurements were made. (This doublet was chosen for the 
line width measurements as its components had the 
minimum separation of the Si II doublets in the spectrum 
shown in Fig. 5.) Note the intense continuum emission in 
Fig. 5, which is presumably due to thermal emission from 
the heated fulgurite surrounding the fuse arc. Calculating 
the contribution of the Stark broadening to the measured 
line width is complicated as we observe not a single line, 
but two Si lines separated by 1.5 nm which were not 
resolved.  The following procedure was adopted to estimate 
the Stark broadening: the sum of the instrumental half 
width and the separation of the lines was subtracted from 
the measured width of the Si II doublet. The instrumental 
profile of the OMA was determined from the spectrum of a 
low-pressure Hg discharge lamp. This conservative 
approach is valid when deconvolving lines which exhibit a 
Lorentzian line profile [14], which is a good approximation 
for Stark broadening [7]. The noisy signals, the strong 
continuum emission and the broad effective instrumental 
profile for these measurements justify this simple 
approximation. 

TABLE I 
ESTIMATED ELECTRON DENSITY AT VARIOUS TIMES FOR THE LONG FUSE 

AT 4.5 KA PROSPECTIVE CURRENT 
 

Arcing time 
(ms) 

Half width 
(nm) 

Corrected half 
width (nm) 

Electron 
density×1018 

cm-3 
0.83 6.7 2.8 2.0 
0.99 5.7 1.8 1.3 
1.20 5.0 1.1 0.7 
1.44 5.3 1.4 0.9 

 

V. RESULTS AND CONCLUSION 
Electron densities estimated using the above procedure 

on our data for the long fuse at 4.5 kA prospective current 
are shown in Table I. These results demonstrate that, 
shortly after arc ignition the density is greater than  
1018 cm-3, and decreases during the arc to ~ 1018 cm-3. The 
density was so low for the short fuse at 1.25 kA 
prospective current that it was possible only to show that 
the electron density was ≤ 1017 cm-3. 

These results confirm that it should be possible to make 
reliable measurements of the electron density of the arc in a 
silica-filled HBC fuse from the Stark broadening of Si II 
spectral lines provided a grating of higher resolution is 
installed in the monochromator for the line width 
measurements. 
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