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Abstract—A genetic based algorithm for deconvolution of 
Printed Circuit Board (PCB) thermal images is presented. 
The deconvolution of thermal images is modeled as an 
optimization problem, whose cost function is to be minimized 
based on mechanics of natural selection and genetics. The 
proposed algorithm can be configured with all available a-
priori information to speedup the solution computation. The 
paper presents the results for deconvolution using the 
proposed genetic algorithm and its utility in PCB infrared 
thermal testing.  
 

Index Terms—Blind deconvolution, image deconvolution, 
genetic algorithm, thermal image. 

I. INTRODUCTION 
HERMAL images are very useful in the process of 
design and testing of Printed Circuit Boards (PCBs). 

Thermal image analysis relies on the power dissipation of 
each Integrated Circuit (IC) on the PCB. The energy 
dissipation associated with the passage of electrons through 
the junctions in a semiconductor device gives rise to 
thermal characteristic of each IC [1]. This thermal 
characteristic of electronic components is captured by an 
infrared camera and thus the thermal image is achieved.  

There are three ways of heat dissipation: conduction, 
convection and radiation [1], [2], each having its own heat 
transfer set of equations. The overall dissipation of point-
like heat source in homogeneous medium can be viewed as 
a Gaussian-like dispersion function [3] 
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An ideal thermal image can be achieved, or a real 
thermal image can be approximated with convolution of 
two images f  and g  as shown in (2) [3]. The first image, 
f , which simulates the heat sources, contains spikes 

which are placed in the middle of each IC and have the 
amplitudes proportionally with the dissipated power 

),(),(),( yxgyxfyxh o= . (2) 

Thermal images are constrained by infrared camera 
position and sensitivity. Therefore, the observed image h′  
results from the convolution of the heat sources f  and the 
heat dissipation function g  and blurring function g ′ , plus 
noise due to image acquisition process (3) [4]. Function 
g ′′  in (3) is ),(),(),( yxgyxgyxg ′=′′ o . Function n is 
assumed to be additive noise randomly generated. 
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The convolution of two functions ),( yxf  and ),( yxg , 
denoted by ),(),( yxgyxf o , is defined by 
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We denote by deconvolution the process inverse to 
convolution. The thermal image deconvolution is to 
recover the original image h  from the observed image h′ . 
Also in the process of testing function f  can be used as 
we’ll see in this paper. If the heat dissipation function g  
and the blurring function g ′  are known, the function f  
can be easily computed using either deconvolution theorem 
or some linear deconvolution filters [5]-[7]. In reality the 
blurring function is not known therefore these methods 
cannot be applied in order to obtain the original image. 

Blind deconvolution was first introduced to the imaging 
community by Ayers and Dainty [8]. Blind image 
deconvolution is the process of identifying both images f  
and g  from the degraded of image h′ . Using a-priori 
information about f  and g , the speed of deconvolution 
process can be significantly increased. 

The main objective of this article is to show the 
applicability of blind deconvolution to thermal images and 
how can be used in PCB thermal testing. There is no 
previous work in trying to apply blind deconvolution to 
thermal images of PCBs. The single article we found about 
thermal image reconstruction is [4]. It uses Wiener filter for 
image reconstruction due to infrared camera angle. 

Deconvolution of thermal images is useful in eliminating 
camera constraints and reducing the thermal influences 
between integrated circuits on the PCB. 

The basis of the genetic algorithm (GA) for thermal 
image blind deconvolution is given in the next section. 
Simulation results and real data results are presented in 
Sections III and IV. Conclusions and perspectives are 
presented in Section V. 

II. THE GENETIC ALGORITHM 
Genetic Algorithm (GA) is an iterative random search 

algorithm for nonlinear problem based on mechanics of 
natural selection and natural genetics [9], [10]. It uses 
probabilistic transition rules to guide the computation 
process toward the optimum solution. This kind of 
approach is particularly suited for the interpretation of 
poorly defined data [9]. Using a GA based algorithm, the 
thermal image deconvolution is modeled as an optimization 
problem, whose cost function is to be minimized. The 
typical flowchart of GA for blind deconvolution is shown 
in Fig. 1 [9]. 
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Fig. 1.  GA for blind deconvolution [9]. 
 

A. Image Coding 

Function f  represents the original image with spikes 
placed in the middle of each integrated circuit (IC) on the 
PBC as shown in Fig. 2(a). The first a-priori information 
used by the algorithm is circuits’ coordinates on the PCB. 
This algorithm can be configured to search also the spikes’ 
locations, but with high increasing of processing time. The 
image f  is encoded as a matrix ][ nm×A  of real values, 
each element in the matrix containing the corresponding 
spike amplitude in the image. There is one element in the 
matrix A  for each IC on the PCB, element which is 
proportional with power consumed by the IC. 

Function g  describes both the Gaussian-like heat 
dissipation function and process acquisition blurring 
function as depicted in Fig. 2(b). This function is encoded 
by w  and h  parameters in (1), considering 1=a  and 

00 =g . Therefore image g  will be encoded as a vector 
]2[G  or for convenience as a matrix ]21[ ×G .  

B. Initial Population 

First of all the initial f  and g  populations are to be 
created. The encodings of these two functions (the 
chromosomes) are randomly created in the initialization 
step. The population size is another parameter of the 
deconvolution algorithm.  

The second a-priori information available to use in the 
algorithm is about function g . Significant speedup can be 
achieved when hw,  or hw /  are known. 

C. Fitness Measure 

In the second step of the GA algorithm, convolution of 
each pair of chromosomes is calculated. The fitness of each 

   
 (a)          (b)         (c) 

Fig. 2.  Thermal image convolution sample (a) function f , (b) function 
g , and (c) function gfh o= . 
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Fig. 3.  Chromosomal encoding samples. 
 
pair of chromosomes is evaluated by comparing the 
calculated convolution image with the image h . The cost 
function of two chromosomes if  and jg  is given by (5): 

jiji gfgE o−=,  (5) 

The optimum solution can be obtained by minimizing 
the costs of f and g. The costs of if  and jg  are given by 
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where p  is the population size. 

D. Selection 

In the selection process the best chromosomes are 
selected for the new generation of population. The others 
are randomly selected for the new population according 
with their cost functions. Some chromosomes with low cost 
functions will be selected more than once for the new 
population, therefore the best chromosomes get more 
copies, the average ones stay the same and the worst 
ones die.  

The selection step of the GA algorithm was improved 
with a local iterative adaptive search for the best 
chromosomes. This local search algorithm applied to the 
best chromosomes also copies its neighbors to the 
new population. 

E. Crossover 

Crossover combines the values of two parent 
chromosomes to form two similar offspring by applying 
some swapping rules. The intention of crossover step of 
GA algorithm is information exchange between different 
potential solutions [9]. There are three types of crossover 
rules implemented by the algorithm, (see Fig. 4): 
• Row switching - two selected parents exchange a 

randomly selected line (Fig. 4(a)); 
• Column switching - two selected parents exchange a 

randomly selected column (Fig. 4(b)); 
• Pivot or point switching - two selected parents randomly 

exchange the neighbors of a randomly selected point 
(Fig. 4(c)). 
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Fig. 4.  Crossover switching rules, (a) row switching, (b) column 
switching, and (c) pivot switching. 
 

In order to improve the search speed, the crossover step 
of the algorithm presented in [9] was improved with 
introduction of a switching function c . In an original GA 
algorithm c is the copy (identity) function, which randomly 
exchanges selected parts of two parents’ chromosomes. 
Four functions were implemented in the algorithm: 
identity, average, minimum and maximum. The applied 
function is also randomly selected. 

F. Mutation 

The mutation process adds some extra variability into the 
new population. In order to add new type of solutions, a 
randomly selected chromosome item is increased or 
decreased by a random value. 

G. Exit Conditions 

The algorithm in Fig. 1 exits when a certain configurable 
error is reached or when the error is no longer changed in a 
certain number of generations or a certain programmable 
number of generations has elapsed. 

III. SIMULATION RESULTS 
These kind of simulation tests have been carried out in 

order to validate this deconvolution algorithm: in the first 
test  deconvolution  was  applied  to the  original  distortion  

 
Fig. 5.  Convolution image ( gf o ). 
 

 
Fig. 6.  Error vs. generation. 
 

TABLE I 
ALGORITHM EVOLUTION 

 

Generation A Error [%] Time [s] 
1 51.28, 69.98, 43.21 1.02318 36 
5 43.63, 99.42, 40.61 0.66938 188 

10 31.28, 89.98, 33.21 0.01051 355 
15 31.10, 89.98, 33.15 0.00663 535 
20 30.10, 89.22, 32.58 0.00125 729 
25 30.10, 89.22, 32.54 0.00109 895 
30 30.10, 89.34, 32.58 0.00085 1000 
40 30.10, 89.36, 32.60 0.00069 1304 

 
free image in order to show the convergence of the 
algorithm to the desired solution; in the second test the 
algorithm was applied to images of different sizes in order 
to emphasize its computing time; the last simulation test 
tries to show the algorithm recover capacity and how a-
priory information influence the speed of calculations. 

A. Ideal Image Deconvolution Convergence 

First of all, the deconvolution algorithm was applied on 
an image obtained by convolution of two images ( f  and 
g ). Neither blurring nor noise was applied. The original 
image was obtained by convolution between images f  and 
g  (Fig. 5). Image f  contains three spikes of heights 
randomly generated: 30.10, 89.38 and 32.64. Image g  is a 
Gaussian-like dispersion function (1) with 1=a , 12=w , 

15=h , and 00 =g . 
The population size used in all tests was 100. Probability 

of mutation was 20% and all crossover modes (Fig. 4) had 
the same probability.  

The evolution of the deconvolution algorithm for the 
original image in Fig. 5 is presented in Table I. The error 
variation with population generation is shown in Fig. 6. 
Error in Table I and Fig. 6 is computed using (6) and is 
defined as difference between original image and the 
computed one. Matrix A  in Table I represents the 
codification of function f (Fig. 3). It can be seen that  
both functions f  and g  are improved as the generation 
increases and the error decreases below 1% in 
15 generations. 
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Fig. 7.  Time vs. generation. 
 

TABLE II 
TIME VS. IMAGE SIZE 

 

ICs Generations Time[min] Error[%] Image size 
1 20 1:58 0.1613 2416×  
2 20 6:43 0.1320 2441×  
3 20 13:53 0.0667 2767 ×  
4 20 45:45 0.2880 6567 ×  
5 20 35:43 0.4061 25116×  
8 20 2:14:24 0.4900 64116×  

 
TABLE III 

TIME AND ERROR VS. IMAGE QUALITY 
 

Test description Generations Time 
[min] 

Error 
[%] 

Function g is known 
( 12=w , 15=h ) 20 00:08 0.066 

Function g is partially known 
( 4/5wh = ) 26 17:57 0.067 

Convolution image  40 21:44 0.069 
Convolution image with 5% 

noise  40 22:48 2.247 

Convolution image with 10% 
noise  40 22:44 3.386 

Convolution image with 10% 
noise and blur 40 22:46 4.842 

 
On the other hand, time is the main drawback of this 

algorithm (Fig. 7). Each generation takes a constant amount 
of time. Usually the number of generations needed to 
achieve the goal is around 100, so the calculation time is 
around three hours for a 2767×  image. 

B. Ideal Image Deconvolution Time 

The second test tried to emphasis the relation between 
image size and deconvolution time and error. Different 
thermal images, each having its own size, were used in 
order to show how image size influence the deconvolution 
time. The deconvolution results are presented in Table II. 

For each test case, the algorithm was let to evolve a 
constant number of generations. The evolution time and 
error are presented in Table II. Error in Table II is 
computed using (6) and is defined as difference between 
original image and the computed one. 

As easily can be observed (Fig. 8), the evolution time 
increase with image size and also with the number of 
circuits composing the image.  

 
Fig. 8.  Time vs. image size. 
 

 
Fig. 9.  Deconvolution application screenshot. 
 

C. Ideal Image Deconvolution Time 

Further, the third test was designed for image quality 
influence over the deconvolution algorithm. Different kinds 
of image distortions were applied in order to show how the 
algorithm is able to restore the image. 

Deconvolution time is constant with image quality but 
error increase with the image degradation. A-priori 
information about original images can decrease 
dramatically the evolution time, but the accuracy of the 
results is not influenced very much. Error in Table III is 
computed using (6) and is defined as difference between 
original image and the computed one. We assumed that the 
noise is additive and randomly generated. 

D. Testing Environment 

The hardware configuration of the machine used for tests 
is: processor 1.20 GHz AMD Athlon, 256 MB memory, 
running Windows XP operating system. 

A Windows application was implemented in order to test 
the deconvolution algorithm. The user can select an area in 
the original image for deconvolution. The dialog window 
in Fig. 9 is used to track the evolution of the deconvolution 
algorithm.  The application  was implemented  in Microsoft  
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Fig. 10.  PCB infrared image. 
 

 
Fig. 11.  Processed PCB infrared image. 
 
Visual C++ 6.0 and contains around 50 classes and 16000 
lines of code. 

IV. REAL DATA RESULTS 
Image degradation is the main source of temperature 

inaccuracies in infrared testing. Temperature noise and 
spatial image degradation due to optical diffraction  
and lens influence; are the main ways of thermal 
image distortion [4]. 

The deconvolution algorithm was further used for real 
infrared PCB images. The image used in deconvolution is 
an infrared picture of a PCB with 66 ICs (Fig. 10). [2], [3], 
[11]. The images in Figs. 10 and 11 are printed with 
inversed colors. The processed image is printed in Fig. 11. 

The image in Fig. 11 can be further used in the process 
of thermal testing. Table IV contains the values of 
matrix A  (see Fig. 3) for the 12 ICs in the left of the 
image. These values are plotted related to measured ICs’ 
current (Fig. 12). 

Drawing the results in Table IV the plot in Fig. 12 is 
obtained. The error level of this solution is: 

Average error: 5.72 % 
Maximum error: 14.96 % 
The other method used to recover the original image and 

to achieve a direct relation between image and power 
consumption of ICs was through image processing. We 
tried different filters in order to remove noise and enhance 
the image. The best relation we could obtain through image 
processing method was: 

Average error: 10.10 % 
Maximum error: 25.72 % 
This algorithm can be further used in thermal testing of 

PCBs. In the process of testing, matrix A is obtained for the 
PCB under test and is compared with PCB defect free 
matrix. In case there are differences between the two 
matrixes the PCB is considered to be defect, also the 
defected circuit is detected.  

 

 
Fig. 12.  Real infrared image deconvolution results. 
 

TABLE IV 
REAL INFRARED IMAGE DECONVOLUTION RESULTS 

 

Circuit No. Current [mA] A 
1 10.80 55.98 
2 31.90 209.82 
3 5.00 41.15 
11 3.00 33.11 
12 10.25 46.61 
13 44.80 312.04 
14 21.75 140.40 
15 27.50 212.00 
28 19.75 79.22 
41 11.80 49.43 
42 35.05 223.86 
43 12.80 66.52 

V. CONCLUSION 
Blind deconvolution is not a new issue in the image 

processing community. It was used in image restoration 
since 1988, mainly in astronomy. This article introduced 
for the first time blind deconvolution for thermal images. 
Deconvolution of thermal images is useful in eliminating 
infrared image acquisition errors and reducing the 
influences between integrated circuits on the PCB.  

Infrared PCB images deconvolution can be used in the 
process of PCB testing and power consumption estimation 
for ICs mounted on the PCB.  

The main drawback of this approach is the time of 
solution achievement, therefore further work will try to 
reduce the time and cost of calculations.  
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