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Abstract—This paper considers the problem of stabilizing a 
class of linear time-invariant large-scale systems composed of 
a number of subsystems using several local dynamic output 
feedback controllers. For this problem, a sufficient condition 
on each closed-loop individual subsystem is derived under 
which the decentralized controller composed of the local 
controllers designed for individual subsystems, achieves 
stability for the overall system. This condition is used to 
convert the decentralized stabilization problem to a set of the 

∞H  disturbance rejection subproblems. 
 

Index Terms—Decentralized control, ∞H  control, large-
scale systems, linear matrix inequalities. 

I. INTRODUCTION 
HERE has been continuing interest in the study of large-
scale systems consisting of a number of interconnected 

subsystems [1]-[4]. The reason for this interest follows 
since many control problems of modern industrial society 
are associated with the control of complex interconnected 
systems, e.g., electric power systems, transportation 
systems, chemical process control systems, socioeconomic 
systems, network flow problems, etc. In the study of such 
large-scale systems, an important issue is decentralized 
control [5]-[8]. In decentralized control, large-scale system 
has several local controllers such that each local controller 
observes only local subsystem outputs and controls only 
local inputs; all of the local controllers are involved, 
however, in controlling the same large-scale system.  

A decentralized control system exhibits several 
advantages over a centralized control system, i.e., a single 
controller which observes all outputs of the system to 
control all inputs of the system. In the ideal case these 
advantages include: simplified design, simplified tuning, 
flexibility in operation, and failure tolerance [9]. The 
requirement that the control system be decentralized 
introduces the overall stability problem, i.e.; when the 
decentralized controller is applied to the whole system, the 
stability of the closed-loop system are not preserved. As a 
result, the stability achieved with the block diagonal system 
is not guaranteed, and the overall stability is lost in most 
cases. This illustrates the need for a sufficient condition to 
examine the overall stability and alternative ways to design 
the decentralized controllers while they guarantee the 
overall stability. 

There are two main classes of available approaches to 
the overall stability analysis: the Lyapunov methods [10] 
and the input-output methods [11]. In the Lyapunov 
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methods, the overall stability condition is in terms of the 
individual Lyapunov functions and bounds on 
interconnections. Behavior of each isolated subsystem is 
characterized by its own Lyapunov function and the 
characterization does not require the knowledge of other 
subsystems. However, these methods are successful only 
when the coupling among subsystems is weak. In the input-
output methods, the overall stability analysis is based on 
the Small Gain Theorem [12] and the properties of the 
Metzler matrix. In comparing the two classes of methods, 
the input-output methods are often less conservative and 
easier to apply than the Lyapunov methods [13].  

The approaches proposed in [14] and [15] are two 
sample of the input-output methods that are more relevant 
to our approach. In [15], the structured singular value 
interaction measure was proposed as a tool for the design 
of decentralized control. This approach provides a 
sufficient condition for the overall stability in terms of the 
subsystem design constraints, under which an aggregation 
of stable subsystem designs yields an overall stable design. 
However in [15], it is assumed that the initial system is 
square and it also requires very complicated computations 
when the dimensionality of the initial system is high. The 
proposed approach in [14] provides a sufficient condition 
for the overall stability in terms of the ∞H  norm of the 
closed-loop block diagonal transfer function matrix and the 
structured singular value of the interaction matrix. In 
addition in [14], by a simple example, it is shown that the 
proposed stability condition is less conservative than the 
one proposed in [15]. 

In this paper, a combination of the Lyapunov methods 
and input-output methods is used to obtain an overall 
stability condition. This condition is stated in terms of the 

∞H  norm of a transfer function matrix of each closed-loop 
individual subsystem and the Hermitian part of the 
interaction matrix. Our stability condition is both 
straightforward to examine and less conservative than the 
ones proposed in [14] and [15]. In addition, this condition 
is used to convert the decentralized stabilization problem to 
a set of the ∞H  disturbance rejection subproblems.  

The remainder of this paper is organized as follows. 
Section II is devoted to the formulation of control problem 
and statement of preliminary definitions used throughout 
the paper. Section III gives the overall stability condition. 
In Section IV, a comparison example is presented. Section 
V is devoted to the ∞H  formulation for the decentralized 
stabilization problem. Finally, Section VI concludes the 
paper. 

II. PROBLEM STATEMENT 
Consider an input-output decentralized large-scale 

system S , with state-space equations 
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composed of N  subsystems iS , described by 










==

++= ∑
≠
=

,,...,2,1         ,

,
: 1

NixCy

uBxAxAx
S

iiii

N

ij
j

iiijijiiii

i

&
 (2) 

where in
ix R∈  is the state, im

iu R∈  is the control input, 
ip

iy R∈  is the measured output of the i -th subsystem. 
The matrices iiA , iiB , and iiC are real, constant, and of 
appropriate dimensions, which represent the i -th 
subsystem. The subsystems interact each other through the 
interconnections jij xA ’s, where ijA ’s are real constant 
matrices. In this note, we assume that the triple 

),,( iiiiii CBA  is stabilizable and detectable. 
We consider the set of local dynamic output feedback 

controllers )(sK ii ’s, described by 
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where kin
kix R∈  is the state of the i -th local controller . 

kiA , kiB , kiC , and kiD  are constant matrices of 
appropriate dimensions to be determined. The resulting 
decentralized controller )(sK  is given by  

{ } ,,...,2,1     ,)(diag-block)( NisKsK ii ==  (4) 

with state-space equations 
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The problem is to find the decentralized controller )(sK  
composed of N  local dynamic output feedback controllers 

)(sKii  in order to stabilize the large-scale system in (1), as 
shown in Fig. 1. 

When the decentralized controller (5) is applied to 
system (1), the closed-loop system is described by 
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where 
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The matrix H  is also called the interaction matrix. 
Now, we define the matrix  
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which collects the representation for )(sK  into one matrix. 
It is simple to show that the closed-loop state-space 
equations (6) can be represented in terms of the controller 
matrix K

~
 as 









=

=

c

ccc

xCy

xAx

]0[
                       

     ~
&

 (9) 

 
 
 

 
 
 
 

 
 
 

Large-scale system 

Local 
controller 1 

Local 
controller N 

1y 1u  Ny  Nu  

… 

 
Fig. 1.  Decentralized control structure. 
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Therefore, the problem of achieving stability for system 
(1) by a dynamic output feedback controller (5), is reduced 
to the problem of achieving stability for the system with 
state-space realization ]0 ,~ ,~ ,~~[ CBHAd +  by a static output 
feedback controller (8), i.e., all the eigenvalues of cA

~ have 
negative real-part. 

III. OVERALL STABILITY CONDITION 
The following preliminary results are required to state 

the main theorem of this paper. 
Lemma 1: For a square matrix nnM ×∈ R , we have 

,,...,2,1    )],(Herm[)](Re[ max niMMi =≤ λλ  (11) 

where )(Miλ  is the i -th eigenvalue of M  and (.)Herm  
denotes the Hermitian part of (.). 

Proof: Assuming that iv  is the i -th eigenvector of M , 
then we have  

.,...,2,1  ,)](Re[)(Herm nivvMvMv i
H
iii

H
i == λ  (12) 

Since for a symmetric matrix for example )(Herm M  and 
every vector x , we have [16] 

xxMxMx HH )](Herm[)(Herm maxλ≤  (13) 

therefore 
. ,...,2,1  )],(Herm[)](Re[ max niMMi =≤ λλ  (14) 

Lemma 2: The linear matrix inequality 

0
)()(
)()(

<







xRxS

xSxQ
T , (15) 

where TxQxQ )()( = , 0)()( >= TxRxR , and )(xS  depend 
affinely on x , is equivalent to 

0)()()()( 1 <− − TxSxRxSxQ  . (16) 

Proof: See [17] for the proof of this lemma. 
Lemma 3: Consider a continuous-time transfer function 

)(sT  with state-space realization ],,,[ DCBA . The 
following statements are equivalent: 
(i) The matrix A  is Hurwitz and γ<

∞
 )( sT . 

(ii) There exists a symmetric positive definite matrix P  
such that 
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(iii) There exists a symmetric positive definite matrix P  
such that 
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Proof: See [18] for the proof of this lemma. 
Definition 1: The ∞H  norm of a continuous-time 

transfer function )(sT  is defined as 
)]([sup: )( max ωσ

ω
jTsT

R∈
∞

= , (19) 

where )]([max ωσ jT  denotes the maximum singular value 
of )( ωjT  [12]. 

Property 1: Let A  and B  are any matrices with 
appropriate dimensions. Then [12] 

)()()( maxmaxmax BAAB σσσ ≤  . (20) 

The following theorem presents the overall stability 
condition. 

Theorem 1: The decentralized controller )(sK  
composed of N  local controllers )(sKii  with the state-
space representation iK

~  defined as 
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stabilizes the large-scale system (1), if iK
~ stabilizes the 

i -th augmented subsystem with the state-space realization 
]0 ,~ ,~ ,~[ iiiiii CBA  and 

ρα <i , (22) 
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Proof: Let iK
~ ’s are stabilizer local controllers that achieve 

the condition in (22). It can easily be concluded that 
ρα < , (25) 

where 

CKBAAAsI dcdcd
~~~~~ ,)]~Herm([ 1 +=−=

∞

−α . (26) 

Note that 
{ } Ni

i
,...,2,1      , max i == αα . (27) 

From the definitions of the ∞H  norm and 2-norm, the 
condition in (25) can be written as 

{ } 1)]~Herm([ sup )]~([Herm 1
maxmax <−× −

∈
cdAjH ωσσ

ω R
. (28) 

By Property 1, we have 

1.})]~Herm()[~(Herm{sup 1
max <− −

∈
cdAjH ωσ

ω R
 (29) 

From Definition 1, this can be written as  

. 1)]~Herm()[~(Herm  1 <−
∞

−
cdAsIH  (30) 

According to Lemma 3, the above inequality can be 
expressed as the following LMI 

0
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where P  is a symmetric positive-definite matrix. By 
Lemma 2, this is equivalent to 

 0)]~(Herm[)~(Herm)~(Herm 2 <+++ PPHAPPA cdcd  (32) 

Since for any matrix for example ])~(Herm[ PH −  we have 

0])~(Herm[])~(Herm[ ≥−− PHPH T  (33) 

or equivalently, 

)~(Herm)~(Herm)]~([Herm 2 HPPHPPH +≥+ , (34) 

one can easily see that if (32) holds then the following 
inequality holds 

 . 0)~(Herm)~(Herm                              

)~(Herm)~(Herm 

<+

++

HPPH

APPA cdcd  (35) 

Now, by substituting HAA ccd
~~~

−=  into this, we obtain 

0)~(Herm)~(Herm <+ cc APPA . (36) 

Finally, by invoking the Lyapunov stability theorem and 
Lemma 1, it can be concluded that all the eigenvalues of cA

~
 

have negative real-part, i.e., the overall closed-loop system 
(9) is stable. 

Note that the stability condition in (22) is 
straightforward to examine; since H

~  is a constant matrix, 
ρ  is easily computable. Also, iα  is the ∞H  norm of a 
transfer function matrix of each closed-loop individual 
subsystem using its local controller. In addition, this 
condition is less conservative than the ones proposed in 
[14], [15], as illustrated in [19]. 

IV. COMPARISON EXAMPLE 
In this section, the stability condition proposed in the 

previous section is compared with the conditions of [14], 
[15]. 

In [15], the stability of the overall system )(sG , by a 
decentralized controller is guaranteed if 

R∈∀< − ωjEjT          ,)]([)](~[ 1 ωµωσ  (37) 

where 

. )(~)](~)([)( 1 ωωωω jGjGjGjE −−=  (38) 

)(~
ωjT  represents the complementary sensitivity function 

of the block diagonal system )(~
ωjG  and )](~[ ωσ jT  

denotes the maximum singular value of )(~
ωjT . 

In [14], it is proposed that the decentralized controller 
)(sK  stabilizes the overall system )(sG , if )(sK  stabilizes 

the block diagonal system )(~
sG  and 

)(1
max H−< µρ  (39) 

where 
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Note that 0)( =Hµ , if no structured ∆  exists such that 
0)det( =∆+ HI . 

The following example illustrates that the proposed 
stability condition is less conservative than the stability 
conditions of [14], [15]. Consider the system ),,( CBA  and 
the decentralized controller )(sK  where 
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It is simple to show that 

3
1  )]0([    ,

7
3)]0(~[ 1 == − jEjT µσ  (43) 

. 
4
1)(    ,

2
1 1

max == − Hµρ  (44) 

Since )]0([)]0(~[ 1 jEjT −µσ f  and )(1
max H−> µρ , the 

conditions in (37) and (39), respectively, fail to be satisfied 
for this example. Also, it is straightforward to obtain that 

∞== ρα       ,
2
1 . (45) 

It is clear that the stability condition in (22) is satisfied 
for this case. Therefore, it is concluded that the 
decentralized controller stabilizes the overall system. 

V. ∞H  FORMULATION OF PROBLEM 

In this section, we show how the decentralized 
stabilization problem can be converted to a set of the ∞H  
disturbance rejection subproblems. 

Let us consider the new subsystems iŜ ’s, described by 
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where ix̂  is the state, iŵ  is the disturbance input, iû  is the 
control input, iẑ  is the controlled output, and iŷ  is the 
measured output of the i -th subsystem. The state-space 
matrices in (46) are defined as 
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By )(ˆˆ sT
ii wz , we denote the transfer function from iŵ  to 

iẑ  of the i -th closed-loop subsystem obtained by applying 
the output feedback control low iii yKu ˆˆˆ =  to subsystem 
(46) where 
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iẑ  iŵ  

iû  iŷ  

 
Fig. 2.  Standard representation of each closed-loop subsystem. 
 

Theorem 2: If there exists iK̂ such that 

ρ<
∞

 )( ˆˆ sT
iiwz , (49) 

then the decentralized  controller )(sK  composed of N  
local controllers )(sKii  with the state-space representation 

iK
~  stabilizes the system (1). 

Proof: With the plant iŜ  and controller iK̂  defined as 
above, the closed-loop system admits the realization 
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where 

.ˆˆˆˆˆ
22 iiiici CKBAA +=  (51) 

Now, we obtain )(ˆˆ sT
iiwz  as 

.ˆ)ˆ(ˆ)( 1
1

1ˆˆ iciiwz BAsICsT
ii

−−=  (52) 

By substituting the state-space matrices from (47) and (51) 
into this, we have 

1
ˆˆ )]~~~~Herm([)( −+−= iiiiiiiwz CKBAsIsT

ii
 , (53) 

or equivalently, 

.)]~Herm([)( 1
ˆˆ

−−=
iii cdwz AsIsT  (54) 

If iK̂  be a controller that achieves ρ<
∞

)( ˆˆ sT
iiwz , then 

we have  

ρ<−
∞

−  )]~Herm([ 1
icdAsI . 

Finally, by Theorem 1, we can conclude the 
decentralized controller )(sK  stabilizes the overall  
system (1). 

In fact, Theorem 2 states that the interconnections 
between the subsystems of large-scale system (1) can be 
considered as the model uncertainty for the block diagonal 
system composed of N  subsystems iŜ . Then the local 

∞H  controllers iK̂  can be designed to reduce the effect of 
this uncertainty. The final decentralized controller is a 
block diagonal collection of iK

~ ’s. Fig. 2 shows the 
standard representation of each closed-loop individual 
subsystem. 

Remark 1: The subproblems in Theorem 2 are equivalent 
to a set of standard static output feedback ∞H  disturbance 
rejection problems with additional structure constraint on 
the controller. Therefore, any available approaches for 
solving such these problems that it is possible to choose a 
desired structure on the controller, can be used to solve the 
subproblems [20]-[23]. 
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Remark 2: Combining Theorem 2 and Lemma 3, the 
LMI formulation of decentralized stabilization problem can 
be also obtained. Linear matrix inequalities have emerged 
as a powerful formulation and design technique for a 
variety of linear control problems [18]. Since solving the 
LMI problem is a convex optimization problem, such 
formulation offer a numerically tractable means of 
attacking problems that lack an analytical solution. In 
addition, a variety of efficient algorithms are now available 
to solve the generic LMI problems [24], [25]. 
Consequently, reducing a decentralized stabilization 
problem to an LMI problem, can be considered as a 
practical solution to this problem. 

VI. CONCLUSIONS 
In this paper, a sufficient condition on each closed-loop 

individual subsystem of a large-scale system has been 
derived under which, a block diagonal collection of the 
local controllers designed for individual subsystems, 
achieves overall stability. This condition is straightforward 
to examine and is also less conservative than the proposed 
conditions in previous researches. In addition, this 
condition has been used to convert the decentralized 
stabilization problem to a set of the ∞H  disturbance 
rejection subproblems.  
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