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Abstract—An Intelligent Particle Swarm classifier (IPS-
classifier) is proposed in this paper. This classifier is described 
for finding the decision hyperplanes to classify patterns of 
different classes in the feature space using particle swarm 
optimization (PSO) algorithm. An intelligent fuzzy controller 
is designed to improve the performance and efficiency of 
proposed swarm intelligence based classifier by adapting 
three important parameters of PSO (i.e., swarm size, 
neighborhood size, and constriction coefficient). Three pattern 
recognition problems with different feature vector dimensions 
were used to demonstrate the effectiveness of the proposed 
classifier. They are the Iris data classification, the Wine data 
classification, and radar targets classification from 
backscattered signals. 

The experimental results show that the performance of the 
IPS-classifier is comparable to or better than the k-nearest 
neighbor (k-NN) and multi-layer perceptron (MLP) 
classifiers, which are two conventional classifiers.  
 

Index Terms—Decision hyperplanes, fuzzy controller, 
particle swarm optimization, pattern recognition. 

I. INTRODUCTION 
ARTICLE swarm optimization (PSO) is a swarm 
intelligence technique developed by Kennedy and 

Eberhart in 1995 [1]. PSO inspired natural flocking and 
swarm behavior of birds and insects. It has been used in 
several tasks of optimization and engineering problems 
(e.g., [2] and [3]). In pattern recognition tasks some particle 
swarm clustering techniques are proposed (e.g., [4] and 
[5]), but a swarm intelligence based classifier using directly 
PSO to obtain the decision functions in the feature space 
has not been implemented in recent researches. In this 
article the concept of intelligently controlling the search 
process of PSO is integrated with a proposed particle 
swarm classifier to develop an Intelligent Particle Swarm 
classifier (IPS-classifier). 

In fact, an IPS-classifier has an added intelligent 
controller for adaptation of the important parameters of 
PSO to increase its efficiency. It means convergence to 
better hyperplanes with a lower number of iterations. The 
most important parameters that should be controlled are: 
swarm size, neighborhood size, and constriction 
coefficient. Any kinds of intelligent controllers may be 
selected for efficiency of the classifier. In this article, a 
fuzzy structure has been chosen for aforementioned 
purpose and the IPS-classifier with this controller is called 
fuzzy controlled particle swarm classifier (FCPS-
classifier). 

The rules for designing the fuzzy controller have been 
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extracted from logical linguistic descriptions on the effects 
of PSO parameters on its search process, which have been 
reported in previous researches [6]-[8].  

Since PSO is a simple and powerful search technique in 
high dimensional spaces, an IPS-classifier has the 
potentiality to classify different classes successfully in high 
dimensional feature spaces, with a little a priori 
information. 

In fact, the IPS-classifier searches in solution space and 
moves toward hyperplanes in such manner that the 
misclassified points are minimized. 

Two common benchmark problems and a special 
problem in pattern recognition were considered for 
comparative experimental results. The Iris data and the 
Wine data classification are common problems in pattern 
recognition researches with low and medium feature space 
dimensions, and automatic target recognition in continuous 
wave radars is a special pattern recognition problem with 
high feature space dimensions. The performance of an IPS-
classifier has been compared with k-nearest neighbor (k-
NN) and multi-layer perceptron (MLP) classifiers, to show 
that the average of recognition scores of designed IPS-
classifier are better than or comparable to those of the 
traditional classifiers. To see the effective role of intelligent 
fuzzy controller in the search process and correct steering 
the swarm toward the solution, some illustrative figures 
have been included. 

In this paper, Section II explains a Particle Swarm 
classifier (PS-classifier). Intelligent particle swarm 
classifier is described in the next Section. Section IV 
considers implementation of the classifier and experimental 
results on three aforesaid pattern recognition problems. 
Finally, conclusion and discussion is presented in  
Section V. 

II. FUNDAMENTALS OF A PARTICLE SWARM CLASSIFIER 

A. PSO Algorithm 
In the basic PSO proposed by Kennedy and Eberhart [1], 

many particles move around in a multi-dimensional space 
and each particle memorizes the position vector and 
velocity vector as well as the spot at which the particle has 
acquired the best fitness. Furthermore, respective particles 
can share data at the best-fitness spot for all particles.  
The velocity of each particle is updated with the best 
positions acquired for all particles over iterations, and the 
best positions are acquired by the respective particles  
over generations. 

To improve the performance of the basic PSO, some new 
versions of this algorithm were proposed. At first, the 
concept of an inertia weight was developed to better 
control the exploration and exploitation in [9]. Then, the 
research done by Clerc [10] indicated that using a 
constriction factor may be necessary to insure convergence 
of the particle swarm algorithm. After these two important 

Intelligent Particle Swarm Classifier 
Seyed Hamid Zahiri and Seyed Alireza Seyedin

P 

www.SID.ir



Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 4, NO. 1, WINTER-SPRING 2005 64 

modifications in the basic PSO, other researchers reported 
their works on PSO. For example, the multi-phase particle 
swarm optimization (MPSO) was introduced in [11]; in 
[12] the particle swarm optimization with Gaussian 
mutation combined the idea of swarm intelligence with the 
concepts of evolutionary algorithms; the Quantum particle 
swarm optimization was proposed in [13]; a modified PSO 
with increasing inertia weight schedule was proposed in 
[14]; the Gaussian particle swarm optimization (GPSO) 
was developed in [15] and the guaranteed convergence 
PSO (GCPSO)was introduced in [16]. 

In the present paper a PSO with constriction coefficient 
is used. The reason for this decision is that a good 
knowledge about the influence of constriction coefficient 
on the PSO search process is available [8]. Also, "lbest" 
strategy is considered in this paper. In this version, of PSO 
particles have information only of their own and their 
neighbors' bests, rather than of the entire swarm, which is 
called "gbest". 

In this approach updating is executed as follows: 
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where Popi ,...,2,1=  and Pop is the swarm size, q  is the 
generation counter, ),...,,( 21 iniii vvvV =  is the velocity 
vector of the i -th  particle of the swarm, 

),...,,( 21 iniii pppP =  denotes the best position it has ever 
visited by the particle, ),...,,( 21 iniii yyyY =  is the current 
position and ),...,,( 21 gnggg pppP =  is the best particle 
among a neighborhood of the particles in the swarm. 1φ  
and 2φ  are random numbers uniformly distributed in the 
range )2/,0( φ , n  is the dimension of space, and χ  is the 
constriction coefficient. We set 1=κ , meaning that the 
space thoroughly searched before the swarm collapses into 
a point [8]. 

It is noteworthy that the above algorithm requires no 
explicit limitation as upper bound maxV . However, from 
subsequent experiments and applications [17] it has been 
concluded that a better approach is to limit maxV  to maxY , 
which is equal to the dynamic range of the variable. 

B. Particle Swarm Classifier 
A particle swarm classifier (PS-classifier) has three 

major parts including decision hyperplanes, fitness function 
definition, and its structure. 

1) Decision Hyperplanes 
A general hyperplane is in the form 

12211 ....)( +++++= nnn wxwxwxwXd  (4) 

where ( )1,,...,, 21 nxxxX =  and ( )121 ,,...,, += nn wwwwW  
are called the augmented feature and weight vector 
respectively and n  is the feature space dimension. 

In a general case, there are a number of hyperplanes 
( M

2log , is the minimum value, where M  is the number of 
classes) that separate the feature space to different regions, 
which   each   region   distinguishes   an   individual    class 

 
Fig. 1.  Each region can identify an individual class by its code, which 
obtained from the sign of hyperplanes. 
 
(Fig. 1). In Fig. 1 each class belongs to a region, which 
encoded by the sign of three hyperplanes (for two 
dimensional feature space). In this figure, IR denotes the 
indeterminate region. Some especial cases are described 
in [18]. 

The PS–classifier must find jW ),...,2,1( Hj =  in 
solution space, where H is the necessary number of 
decision hyperplanes. 

2) Fitness Function Definition 
Fitness function is defined as 

)()( ii PMissTPfit −=  (5) 

where T  is the size of the total training data set and 
)( iPMiss  is the number of misclassified training points by 

iP . By maximizing the fitness function, minimum error of 
training points classification is achieved. 

3) The Structure of Particle Swarm Classifier 
According to the above descriptions, designing a PS-

classifier has the following steps: 
 

1=q ; 
Swarm =Generate(Swarm_size); 
Define (Neighborhood_ ih ); 
while (termination condition) 

Compute_fitness (Swarm); 
gP =Obtain )( gP ; 
iP =Obtain )( iP ; 
1φ =rand )2/,0( φ ; 
2φ =rand )2/,0( φ ; 

Calculate ( χ ); 
for 1=i , Swarm_size  

Update_velocity )( q
iV ; 

Update_position )( q
iY ; 

end for, 
1+= qq ; 

end while;  
 

In a PS-classifier each particle is selected randomly from 
the solution space and has the form of 

T
Hi WWWWP ],...,,...,,[ 21=  where ),,...,,( 121 += ininiii wwwwW  

is the weight vector of i -th hyperplane, and H  is the pre-
defined number of hyperplanes. Fitness function is defined 
as (5). Termination condition can be the best fitness value 
or a default maximum number of iterations. After enough 
iterations the particles converge to a solution that is the 
decision hyperplanes whose misclassified training points 
are minimized. 
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III. INTELLIGENT PARTICLE SWARM CLASSIFIER 
It should be mentioned that PSO algorithm has some 

important parameters which play major roles in its search 
process (e.g., premature convergence, convergence rate, 
local capturing, exploitation, exploration, etc.). In the 
constriction lbest PSO defined in Section II.A, swarm size, 
neighborhood size, and constriction coefficient are these 
three important factors. In most researches reported on the 
applications of PSO, these parameters were obtained by 
running the PSO for several times with different sets of 
parameter to find a proper set. 

On the other hand, since the search process of the PS-
classifier is non-linear and very complicated, it is hard if 
not impossible, to mathematically model the search process 
to dynamically adjust the PS-classifier parameters. But 
over the years, some understanding of the PSO search 
process has been accumulated, and linguistic description of 
the search process is available. This understanding and 
linguistic description make a fuzzy system a good 
candidate for dynamically controlling the aforesaid PS-
classifier parameters. 

Already, in [19] a fuzzy system has been designed to 
adjust the inertia weight of PSO for the Rosenbrock 
function and in [6] this fuzzy system has been modified to 
fit a wide range of optimization problems. 

In this paper we introduced another fuzzy system to 
control the swarm size, neighborhood size, and constriction 
coefficient to improve the efficiency and performance of 
the proposed PS-classifier. To extract some effective fuzzy 
rules, at first, a linguistic description about the effects of 
the PSO parameters on its search process is presented as 
a subsection.  

A. Linguistic Description on the Effect of PSO 
Parameters on Its Search Process 

1) Swarm Size 
Swarm size has a significant effect on the search process 

of PSO. A large value of swarm size reduces the 
convergence rate considerably and slows down the 
algorithm; whereas a small value of swarm size causes a 
local minimum capturing and reduces the performance of 
PSO. In [7] a mathematical approach like the selection in 
evolutionary algorithms was proposed. We used similar 
approach but with some fuzzy rules in such manner that 
when the algorithm captures in a non-important local, the 
swarm size is increased to escape it from this local solution 
and by receiving a better solution, the swarm size is 
decreased to improve the convergence rate. 

2) Neighborhood Size 
In PSO, particles tend to be influenced by their success 

along their past history and also by the success of any 
particles in their neighborhood, i.e., with which they 
interact. To these “schemes of interactions” between 
particles, the authors termed sociometric principles. 
Particles can interact with each other in a number of ways. 
The simplest way is in the form that the particle interacts 
with its two nearest neighbors. Any number of nearest 
neighbors can be used. As it mentioned in Section II.A, if 
the number of nearest neighbors is less than the total 
number of particles in the swarm, then this sociometric 

principle is called lbest, else it is called gbest. 
Conceptually, gbest connects all the particles together, 
what means that their social interaction is maximal.  
In contrast, lbest results in a local neighborhood for 
the particle.  

Early experiences (mainly by trial and error) led to 
neighborhood sizes about 15 percent of the swarm size 
being used for some applications, but it is not a restrict 
rule. Since the information is exchanged between 
neighboring particles in the topology, selection of the 
smaller neighborhood causes finding the best position more 
slowly. Increasing the neighborhood size increases the 
convergence rate, but in this case PSO might be trapped 
into a local optimum.  

3) Constriction Coefficient 
The constriction coefficient ( χ ) is controlled by the 

parameter φ  using (3). In [8] an exploration was presented 
which indicates how the particle swarm algorithm works. 
Specifically, it has been proved that the application of 
constriction coefficient allows control over the dynamical 
characteristics of the particle swarm, including its 
exploration versus exploitation propensities. In fact, 
constriction coefficient prevents a buildup of velocity 
because of the effect of particle inertia. Without the 
constriction coefficient, particles with buildup velocities 
might explore the search space, but loose the ability to fine-
tune a result. On the other hand, constriction the particle 
speed too much might damage the search space 
exploration. Thus the value of constriction coefficient 
affects the global versus local abilities of the PSO. It can be 
concluded from [8] that φ  determines the value of 
attraction of particles by the best positions found 
previously by itself and by its neighborhood (this 
conclusion also is appeared in [7]). This means that the 
convergence characteristics of PSO can be controlled 
by φ .  

As the fitness value of a particle increases, the part of 
search space, which the particle explores should be 
reduced. It means that φ  should be increased above 4 to 
decrease χ  and χφ . The result is decreasing the inertia of 
the particle to emphasize the local search instead of global. 
A less improvement in the particle fitness causes a wider 
search space for the exploration. This means a decreasing 
should be happen on the value of φ , to increase the inertia 
of the particle. It results in emphasizing the global search 
instead of local. 

B. The Fuzzy Controlled PS-Classifier 
It is known that efficiency and complexity in most 

evolutionary classifiers have direct relationship. Normally, 
higher efficiencies are resulted from classifiers with higher 
complexities and vise versa. Similarly, in a PS-classifier, 
using an additional intelligent controller (herein fuzzy 
controller) increases the computation complexity. On the 
other hand, the use of such combination improves the 
efficiency of PS-classifier, especially in high dimensional 
feature space. The Fuzzy Controlled PS-classifier (FCPS-
classifier) is a kind of IPS-classifiers, whose controller is a 
fuzzy structure with some fuzzy inputs, outputs,  
and IF…THEN fuzzy rules extracted from above  
linguistic descriptions. 
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Fig. 2.  Normalized inputs membership functions. 
 

The fuzzy controller is constructed with three inputs and 
three outputs. The inputs are as follows: 

- if : The fitness value of i -th particle ( )( iPfit ) and is 
calculated from (5).  

- bestf : The maximum fitness value of whole  the 
swarm.  

- iUN : The number of iterations, whose fitness value of 
the neighborhood of ih  is unchanged. 

- )(VAR f : The variance of the fitness of the particles 
in each iteration. 

iUN  is introduced as an input of fuzzy controller to 
know which neighborhood converged (or captured) to a 
local optimum and )(VAR f  is introduced as a metric of 
swarm diversity. Obviously, large values of )(VAR f  
show large swarm diversity and vice versa.  

The three outputs are: 
- Swarm_size:  The size of the swarm. 
- ih :    The size of neighborhood around iP . 
- iCf : The controlling factor of constriction coefficient 

χ  for iP  ( iφ  in (3)). 
The following eight fuzzy rules can be extracted from 

the linguistic description in Section III.A to control the 
search process of PS-classifier intelligently: 

 

1- IF if  is low, THEN ih  is high and iCf  is low. 
2- IF if  is medium and iUN  is low, THEN ih  is 

medium and iCf  is low. 
3- IF if  is medium and iUN  is medium, THEN ih  is 

medium and iCf  is medium. 
4- IF if is high and iUN  is high, THEN ih  is low and 

iCf  is high.  
5- IF bestf  is low and )(VAR f  is low, THEN 

Swarm_size is high and ih is low. 
6- IF bestf  is medium and )(VAR f  is high, THEN 

Swarm_size is high, ih  is low, and iCf  is medium. 
7- IF bestf  is high and )(VAR f  is medium, THEN 

Swarm_size is medium and ih  is medium. 
8- IF bestf  is high and )(VAR f  is high, THEN 

Swarm_size is low, ih  is high, and iCf  is low. 
 

The fuzzy controller were designed with above fuzzy 
rules and its scaled inputs and outputs membership 
functions are shown in Figs. 2 and 3, respectively. 

The increase or decrease of the Swarm_size is 
implemented by removing the worst particles and 
 

 
Fig. 3.  Normalized outputs membership functions. 
 

TABLE I 
TEN TARGETS AS REFERENCE CLASSES 

 

Number Target Application 
1 V.F-3 Training 
2 PC-7 Training 
3 ANTONOV   AN-12 Military 
4 FFA   AS   ZZO118A Training 
5 BAE-248 SERIES 2B Transportation 
6 KJ  500-3S Military 
7 ROLLS ROYCE ALISON Military 
8 KUZNETSORNK-8-2 Transportation 
9 TUMMANSKY  R-11 F2S Military 
10 ROLLS  ROYCE 535 E1  H4 Military 

 
regenerating the best particles to receive a necessary 
swarm  size. 

It must be mentioned that different kinds of inputs, 
outputs, membership function shapes, membership function 
locations, and fuzzy rules may be introduced and even 
these parameters can be optimized by another optimization 
algorithm. In this paper, the membership functions and 
their locations are selected and tuned manually. 

IV. IMPLEMENTATION AND RESULTS 
Three pattern recognition problems with different 

augmented feature vectors dimensions (5,14,129) were 
used to show the performance of the IPS-classifier. A 
description of the data sets is given here: 

A. Data Sets 
Iris data: The Iris data contains 50 measurements of four 

features from each three species Iris setosa, Iris versicolor, 
and Iris virginica [20]. Features are sepal length, sepal 
width, petal length, and petal width. 

Wine Data: The Wine data contains the chemical 
analysis of wines grown in the same region in Italy but 
derived from different cultivars [21]. Thirteen continuous 
attributes are available for classification. The number of 
classes is three and the numbers of instances in each class 
are 59, 71, and 48, respectively. 

Radar Targets: An application of pattern recognition is 
Automatic Target Recognition (ATR) for continuous wave 
radars. In this paper Jet Engine Modulations approach 
(JEM) is used for this purpose. In this way the modulation 
of the radar wave by rotating propellers and jet engine 
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TABLE II 
RECOGNITION SCORES (%) FOR IRIS TEST DATA CLASSIFICATION WITH 3=H  

 

 Total training points=15 Total training points=30 Total training points=45 
 IPS-classifier MLP k-NN IPS-classifier MLP k-NN IPS-classifier MLP k-NN 

Class1 87.5 85.3 88.5 94.2 92.2 92.0 97.1 94.5 97.5 
Class2 83.4 81.6 85.1 97.5 93.3 93.8 95.7 95.2 96.5 
Class3 81.4 79.0 82.1 88.6 86.8 90.1 94.1 91.1 92.0 
Overall 84.10 81.97 85.23 93.43 90.77 91.97 95.63 93.60 95.33 

 
TABLE III 

RECOGNITION SCORES (%) FOR WINE TEST DATA CLASSIFICATION WITH 5=H  
 

 Total training points=25 Total training points=50 Total training points=75 
 IPS-classifier MLP k-NN IPS-classifier MLP k-NN IPS-classifier MLP k-NN 

Class1 72.6 75.3 80.1 91.3 88.2 90.2 93.5 90.5 90.3 
Class2 77.2 78.1 75.2 89.3 83.1 88.4 91.3 87.7 89.2 
Class3 81.7 62.3 83.3 95.1 78.2 93.6 94.0 83.5 93.5 
Class4 79.3 79.2 77.4 95.7 87.1 94.2 94.6 86.2 95.1 
Class5 69.9 63.4 72.1 89.8 78.1 89.0 92.7 88.2 91.5 
Overall 76.14 71.66 77.62 92.24 82.94 91.08 93.22 87.22 91.92 

 
TABLE IV 

AVERAGE RECOGNITION SCORES (%) WITH RESPECT TO DIFFERENT SNRS FOR RADAR TARGETS CLASSIFICATION WITH 10=H  
 

SNR (dB) -15 -10 -5 0 5 10 15 
IPS-classifier 9.9 23.3 35.5 56.3 64.3 89.6 89.7 

MLP 10.3 11.7 14.9 46.5 57.9 66.6 76.2 
k-NN 10.5 7.7 17.0 50.5 62.5 79.0 79.5 

 
blades of targets is considered [22]. Ten different flying 
objects were chosen as introduced in Table I for 
classification in 20º elevation angle. After sampling from 
backscattered signals and data reduction preprocess, we 
took 128 points FFT as feature vectors for each target. 

B. Comparison with Existing Methods 
The performance of proposed IPS-classifier is compared 

with the performance of MLP and k-NN classifiers to show 
that the average recognition scores of the designed PS-
classifier are better than or comparable to those of the 
traditional classifiers. For MLP the [3,5,4] structure for Iris 
data, [8,5,4] for Wine data and [21,19,12,14,8,11] for radar 
targets are used and trained in MATLAB® 7.0. These 
structures were selected experimentally; no optimization 
technique is used because a traditional MLP classifier is 
considered for comparing the results. For these three 
structures the learning rate η  is initially fixed at 2.0. This 
is decreased by a factor of 2, up to a pre-specified 
minimum value, if the mean squared error starts oscillating. 
In case the error decreases very slowly, then the learning 
rate is doubled. The reason is that most likely the algorithm 
has confronted a plateau in the error surface. 

k-NN classifier is executed taking k  equal to T , 
where T  is the number of training samples (it is known 
that as the number of training patterns T goes to infinity if 
the value of k  and Tk /  can be made to approach infinity 
and 0, respectively, then k-NN classifier approaches the 
optimal Bayes classifier [18]. One such value of k  for 
which the limiting conditions are satisfied is T ). 

C. Experimental Results 
The proposed IPS-classifier (i.e., FCPS-classifier), MLP 

and k-NN classifiers are tested on the data sets described in 
Section IV.A. Tables II and III present the results 
corresponding to Iris data and Wine data classifications, 
respectively. Different number of training samples 

)15,10,5( =t  have been considered. The training samples 
were chosen randomly from each class.  These experiments 
have been done using 3 hyperplanes for Iris )3( =H  and 5 
hyperplanes for Wine )5( =H . The total number of 
training points is obtained by t×Number of Classes (e.g., 
for Iris data when 5=t  the total number of training points 
is 15=T ). The remained patterns in each case were 
considered as testing points and the reported results in 
Tables II and III are for testing patterns classification. 
Since the IPS-classifier starts with random initial condition, 
and it is possible to converge to different separating 
hyperplanes, the presented results for IPS-classifier are the 
average on ten times repetition. 

For each problem the initial swarm size is set to 20 and 
the termination condition is considered as a maximum 
value of iterations, which is set to an experimentally 
obtained value of 250. Tables II and III show that as the 
number of training points increases, the performance of the 
IPS-classifier becomes better and better. It is comparable or 
better than MLP and k-NN classifiers. For example, if the 
total number of training points is equal to 30, for Iris data 
classification, the recognition score of class1 for IPS-
classifier is 94.2%, which is better than both MLP and k-
NN. In the case of Wine data classification for 50 training 
points the score is 91.3% that is better than MLP and k-NN 
results. The last rows of these tables show the overall 
recognition scores. 

Although in some cases it can be seen that the 
recognition scores for MLP or k-NN is better than the IPS-
classifier, but the differences between them is not 
significant. The maximum difference, for Iris data 
classification has been appeared for 15 training data points 
for class2, which is equal to 1.7%. The maximum 
difference, for Wine data classification has been appeared 
for 25 training data points of class1, about 7.5%. This is a 
significant difference, but overall recognition scores in this 
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Fig. 4.  )(1 xd  and )(2 xd   are two possible solutions that IPS-classifier 
may find. 
 

 
Fig. 5.  The percent of deviations of normalized obtained weight vectors of 
the first decision hyperplane with respect to different performances of IPS-
classifier on training data classification for Iris data. 
 
number of training points is comparable for both IPS-
classifier and k-NN classifier. 

These values demonstrate the ability of IPS-classifier, as 
a new swarm intelligence based classifier, in comparison 
with two traditional classifiers, i.e., MLP and k-NN. 

Radar targets classification is done by ten hyperplanes 
)10( =H  and for ten training points from each target. In 

this experiment we waited for 300 iterations running for 
IPS-classifier in different signal to noise ratios (changing 
the variances of Gaussian noise produces different powers 
of noise). Table IV shows the results. 

Only at SNR=-15dB the performance of IPS-classifier is 
worse than MLP and k-NN classifiers. Of course, the 
differences between them are such a small value that their 
performance can be considered comparable with others. In 
other SNRs the performance of IPS-classifier is better than 
other classifiers and as the SNR increases the improvement 
becomes more apparent. 

Due to the kind of fitness function definition, IPS-
classifier may obtain different hyperplanes each time it 
runs. For example, each )(1 xd  and )(2 xd  in Fig. 4 may be 
found by IPS-classifier in separate experiments. 

Fig. 5 shows the percentage of deviations of normalized 
obtained weight vectors of the first decision hyperplane on 
training data classification for Iris data in ten repetitions of 
the experiment. By changing the value of )( iPMiss  in 
fitness function definition (5) different values of 
performance on training data classification is obtained.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6.  The average scores of recognition (%) with respect to the number 
of iterations for (a) Iris data, (b) Wine data, and (c)Radar targets 
classification. 
 
In this figure the total number of training data is 50, i.e., 10 
points from each class. 

D. Effectiveness of Fuzzy Controller 
A meaningful concept to see how the designed fuzzy 

controller steers particles to converge toward the solution 
and escaping them from bad local points is the reduction 
values of the number of iterations while running the IPS-
classifier (the number of fitness function evaluations can be 
obtained by: Swarm_size×Number of iterations). 

In some individual experiments a simple PS-classifier, 
which has not any intelligent controller for adapting the 
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swarm size, neighborhood size and constriction factor were 
designed and its performance in three aforesaid 
classification problems were evaluated for different number 
of iterations. Same experiments were done for an IPS-
classifier (here FCPS-classifier). These experiments were 
repeated 10 times and then their average scores of test 
points recognition were compared with another. In setup of 
these experiments, the number of training data from each 
class is 10. The rest points are as test data. The swarm size 
of simple PS-classifier is set to 20 as an initial swarm size 
for FCPS-classifier and the initial value of φ  is set to 4. 
The maximum value of iterations is the same as FCPS-
classifier (250 iterations). 

Fig. 6 shows the results. This figure is a good evidence 
to demonstrate that the designed fuzzy controller helps the 
PS-classifier to converge with lower iterations. This 
reduction is more significant at high recognition scores, 
because at the primary iterations, the designed intelligent 
controller has not enough time for playing its effective role 
in parameters adaptation in IPS-classifier. The iteration 
reduction at 90% average recognition score is about 150 
iterations (60%) for Iris data classification. This 
improvement is approximately 50 iterations (50%) at 80% 
recognition score for Wine data classification. It is about 
170 iterations (68%) reduction for 80% average score of 
recognition for radar targets classification (in this step the 
signal to noise ratio (SNR) is approximately 10 dB). 

On the other hand the effectiveness of fuzzy controller is 
more apparent in more dimensional feature space. The final 
difference between the performances of simple PS-
classifier and FCPS-classifier is low for Iris data 
classification with 4 dimensional feature vectors. It is about 
7% for wine data classification, which has 13 features for 
each pattern and the difference is a significant value of 
10% for radar targets classification. 

Fig. 7 indicates the effects of variations of some of the 
parameters that exist in the fuzzy controller, (especially its 
outputs) for 3P  in Iris data classification. This figure 
clearly shows the effects of fuzzy controller in adaptation 
of the IPS-classifier parameters which improves the fitness 
of 3P . For example, the reduction of swarm size in high 
value of iterations due to a good improvement in fitness 
values is noteworthy. 

V. CONCLUSION AND DISCUSSION 
Powerfulness and effectiveness of PSO algorithm, 

specially in high dimensional spaces, are motivations to 
design a particle swarm based classifier (PS-classifier), 
which can obtain the decision hyperplanes in the feature 
space. Since swam-size, neighborhood size, and 
constriction factor are three important parameters, which 
have a great effects on the search process of PS-classifier, 
designing an intelligent fuzzy controller for adapting these 
parameters has been considered. The fuzzy controlled PS-
classifier (FCPS-classifier) is proposed for this purpose. 
The rules of fuzzy controller were constructed based in a 
linguistic description of the roles of aforesaid parameters 
on the PSO search process. Experimental results on 
different kinds of data (with different dimensions of 4, 13 
and 128) indicate that for a given value of H  (the number 
of hyperplanes), the designed IPS-classifier is able to 
 

 
Fig. 7.  Dynamically variations of

3f , Swarm_size, 3h and 3Cf . 
 
approximate efficiently the decision hyperplanes. The 
performance of the classifier is also found to be 
comparable to, sometimes better than, those of the k-NN 
and MLP classifiers.  

Although in this paper a fuzzy structure has been 
selected as a candidate for development an IPS-classifier, 
but other kinds of intelligent controllers might be used  
to develop more efficient IPS-classifier instead of 
FCPS-classifier. 

With regard to system complexity it may be noted that 
the complexity of an IPS-classifier is more than a k-NN 
classifier. Regarding the timing requirements, it may be 
noted that the IPS-classifier takes a large amount of time 
during training like a MLP classifier; however, the time 
taken during testing is very small, because the decision 
hyperplanes have been already obtained in training phase. 
On the contrary, the k-NN classifier takes significant 
amount of time for testing. In fact the proposed IPS-
classifier is an efficient offline classifier and may be 
applied for offline usages (offline signature recognition, 
face recognition, voice classification, etc.) 

A theoretical analysis of a PS-classifier and designing an 
effective strategy to reach to a performance comparable to 
the Bayes classifier, which is an optimal conventional 
classifier (but with some limitations in usage due to need to 
important priori knowledge), are topic tasks for 
future works. 
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