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Abstract—Outliers are data values that lie away from the 
general cluster of other data values. Detecting the outliers of a 
dataset is an important research topic for data cleaning and 
finding new useful knowledge in many research areas, i.e. 
data mining, pattern recognition, etc. In the past decades, 
many useful algorithms were proposed in the literature. In 
this paper, a new fuzzy kernel-clustering algorithm with 
outliers (FKCO) is presented to locate critical areas that are 
often represented by only a few outliers. Theoretic analysis 
also shows that FKCO can converge to a local minimum of the 
objective function. Finally, based on the information theory, a 
new criterion for finding outliers is also proposed. Simulations 
of different types of datasets demonstrate the feasibility of this 
new method. 
 

Index Terms—Fuzzy clustering analysis, kernel function, 
feature space, outliers. 

I. INTRODUCTION 
UTLIERS are data values that lie away from the general 
cluster of other data values. Each outlier needs to be 

examined carefully to determine if it represents a possible 
value from the population being studied, in which case it 
should be retained, or if it is non-representative (or an 
error) in which case it can be excluded. There is a true 
story that the ozone hole above the South Pole had been 
detected by a satellite years before it was detected by 
ground-based observations, but the values were tossed out 
by a computer program because they were smaller than 
thought possible. The damage to our atmosphere caused by 
chloroflourocarbons went undetected and untreated for up 
to nine years because outliers were discarded without being 
examined [1]. So in recent years, how to locate outliers 
have attracted more and more attention. In past decades, 
several different methods have been proposed to attain this 
goal. Generally speaking, outliers can be found through 
subjective and objective measures. In a subjective case, a 
user directly applies their own knowledge or belief to 
determine the parameters like “very far away” and “low 
frequency”. From that perspective, subjective methods may 
be unreliable, low scalability and may vary with users [2]. 
Furthermore, manual detection of outliers is also a very 
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time-assuming task, not suitable for large datasets. For 
objective measures, no prior knowledge is needed to find 
the outliers. This type of measure is likely to be more 
reliable since no user’s biased preference is given while 
locating outliers. In [3]-[4], the author proposed objective 
methods to find outliers based on graphical measure of 
constructing a box plot, which is a type of graph used to 
show the shape of the distribution, its central value, and 
variability. The picture produced consists of the most 
extreme values in the data set (maximum and minimum 
values), the lower and upper quartiles and the median.  

In fact, other pattern recognition technology based 
objective ways to identify outliers have been proposed 
recently, such as the method based on fuzzy clustering 
techniques [5]. The author modified the objective function 
of Fuzzy C-means (FCM) clustering algorithm [6]-[14] of 
adding an additional weighting factor for each datum. The 
modified objective function to be optimized is shown as 
follows 
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where 1>m  is the fuzzy coefficient; ikµ  represents the 
membership degree of sample kx

v  belonging to the i -th 
cluster, C  is the number of clusters and K  denotes the 
number of data points in the dataset. Often, we take 
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where 0>w  is a user-defined real number of the total 
weight factor to be distributed. The obtained weights 
determine a kind of representativeness of each datum for 
the data distribution, which can be interpreted as the 
importance of the corresponding datum and more important 
datum will have larger weight. When the algorithm 
converges, outliers will hold higher weight value than other 
data values which can be used to construct a criteria for 
finding outliers described in the following section. 

The methods of [5] can have a good result for linear 
separable dataset, but if the separation boundary between 
clusters is nonlinear, then the conventional methods 
discussed above will fail. An alternative method is to 
perform clustering in the kernel feature space. Mapping the 
observed data to a higher dimensional space in a nonlinear 
manner forms the basis for nonlinear classification 
techniques such as radial basis function networks, support 
vector machines (SVM), and certain forms of nonlinear 
discriminant analysis [15]-[18]. In this paper, we present a 
new algorithm denoted as FKCO (fuzzy kernel clustering 
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with outliers), tending to locate the outliers of a dataset in 
the corresponding feature space. Firstly, the observed data 
is mapped to a higher-dimensional feature space with some 
proper kernel functions, and then assign a weight to each 
datum in the feature space while clustering in the feature 
space. By iterative function derived below, weight for each 
datum will be obtained, which finally can be used to 
construct a new criteria for finding the outlier information 
in the dataset. Different kinds of simulations including 
linear inseparable dataset and an image dataset demonstrate 
the feasibility of the method proposed in this paper.  

II. FUZZY KERNEL CLUSTERING ALGORITHM WITH 
OUTLIERS 

A. Mercer Kernel Functions 

Let ),...,2,1( KkRx N
k =∈v denotes the samples of the 

observed space. We can map the dataset to a higher 
dimensional space H through a nonlinear mapping 
function φ , denoted as )( 1x

v
φ , )( 2x

v
φ ,…, )( Kx

v
φ . Then the 

dot product of vectors in feature space will be represented 
as Mercer kernel in the original space 
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All these samples will form a kernel function matrix 
),( jiij xxKK

vv
=  [16]. This is the basis for non-linear 

classification techniques such as radial basis function 
networks, support vector machines, and certain forms of 
nonlinear discriminant analysis [15]-[18].  

In the literature, the following three kernel functions are 
the most frequently used [16] 

• Polynomial kernel function 
dyxyxK )1(),( +⋅=

vvvv  (4) 

where d is a user-defined parameter. 
• Gaussian kernel function 
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where σ is the width of the Gaussian function.  
• Two-level sigmoid kernel function 

))(tanh(),( cyxbyxK −⋅−=
vvvv  (6) 

where b  and c are user-defined parameters.  
Up to now, there is no criterion for choosing the kernel 

functions. In most cases, gaussian kernel function is a 
better choice than the other two kernel functions, because 
an infinite-dimensional feature space will be obtained when 
it serves as the mapping function. In other words, any 
linear inseparable dataset in the observation space can be 
clustered linearly in the feature space. 

B. Kernel Clustering Algorithm 

Girolami introduced Mercer kernel-based clustering in 
feature space and the objective function was defined 
as [17] 
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=  and ∑
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µ  denotes the kernel 
function.  

Numerous work have shown that performing clustering 
technique in the feature space will solve the linear 
inseparable problem which is a obstacle of the conventional 
clustering analysis. 

C. Fuzzy Kernel Clustering Algorithm with Outliers  

As stated in [6], the topographic order will be preserved 
in the feature space, if the dataset is mapped to the feature 
space H  by a Mercer kernel function φ , and φ  will 
provide linear separation of classes. Considering then a 
smooth, continuous nonlinear mapping φ  from data space 
to feature space H  such that 

XxHR N vv
→→:φ  

Then we can rewrite the objective function of (1) in 
H as follows 
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where φ
im
v  denotes the center of the i -th cluster in the 

feature space.  
We should notice that HJ  takes the form of a series of 

inner products in feature space. As stated in previous 
section, the inner product can be easily computed through 
Mercer kernel. Through a specific kernel function, the 
inner product which it returns implicitly defines the 
nonlinear mapping φ  to feature space [5]. So the objective 
function (17) can be rewritten solely with respect to the 
elements of the symmetric KK ×  kernel matrix as follows 

∑∑
= =

=
C

i

K

k
ikq

k

m
ikH Q

w
J

1 1

1
µ  (10) 

where 

∑∑∑
= ==

+−=
K

j

K

l
jlilij

K

j i
kjij

i
kkik K

N
K

N
KQ

1 11
2

12
µµµ  (11) 

where iN , ijK , ijµ  have the same meaning as before.  
Thus, function (10) is considered as the objective to be 

optimized by FKCO, and ikQ  is the distance of the k -th 
sample to the i -th cluster center. The aim of FKCO is to 
add a small weighting value kw  (large value for q

kw/1 ) to 
the datum that belongs to at least one of the classes. 
Generally speaking, outliers are far away from all the 
clusters, in this case, we will assign a large value kw  to 
each outlier (small value for q

kw/1 ). The parameter q  
plays an important role in the clustering process. When q  
is large enough, then the weight value of each datum is 
almost equal to kw / , in other words, the weight plays the 
same influence on all the data samples; and if 0→q , then 
the influence of the weight will reach the maximum.  

Considering the constraint of (2), we have the following 
Lagrange function 
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differentiating (12) with respect to kw , we obtain the 
following partial differentiation equation 
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with 0/ =∂∂ kH wJ , we will obtain  
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resolving (14) for kw  
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with constraint (3) 
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according to (15), we obtain the following equation 
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from (14) and (18), we can finally obtain the iterative 
function of kw  as follows 
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Similar to the famous fuzzy clustering algorithm FCM, 
the iterative function of the membership degree can be 
easily derived according to the distance tolerance Q  
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Based on the above derivations, the fuzzy kernel 
clustering algorithm with outliers (FKCO) can be described 
as follows: 
Fuzzy Kernel Clustering Algorithm with Outliers (FKCO) 

 

Step1. Initialize the parameters such as mqC ,,  for 
the algorithm and set the loop counter 1=t . 
Initialize the membership of each datum 
randomly. 

Step2. Compute the distance )(t
ikQ  of each datum to 

the cluster center according to (11). 

Step3. Compute the membership )(t
ikµ  of each data to 

the i -th cluster. 
Step4. Obtain the weight )(t

kw for each datum 
according to (19). 

Step5. IF )))()1(( ε>−+ tJtJabs HH , increment t  
and go to Step 3, ELSE stop. 

 

Theorem I: FKCO algorithm will finally converge to a 
locally minimum of the objective function (10) see 
appendix for the detailed proof. 

III. CRITERIA FOR FINDING OUTLIERS 
Here, we present a new fuzzy measurement of each 

datum in a dataset based on the fuzzy memberships 
obtained by FKCO. Suppose there is only one model in a 
given dataset, then obviously the membership 1=kµ  for 
points which overlap with the center of the model, while 

10 <≤ kµ  for other member datum, apparently, the farer 
from the center, the smaller the membership kµ . So similar 
to the famous Hartley tolerance method of information 
theory [19], we can define a new monotonous descending 
function as the representation of the datum 
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where 1≥α  is the fuzzy coefficient, e.g., let α  equals to 1 
for simplicity in this paper.  

This new fuzzy representation can be extended to multi-
models easily as follows 
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It is clear that the smaller kµ , the larger )(kF . Usually, 
outliers which lie away from the general cluster of other 
data values will have much smaller membership, so they 
hold much higher information index )(kF  for outliers may 
be the most important feature of a dataset as discussed 
above and this character conforms to the basic information 
theory.  

When FKCO finally converges, two attributes of each 
datum will be obtained in the dataset, one is the fuzzy 
representation derived from the membership and the other 
is the weight allocated to each data value which can be 
interpreted as the importance of the datum. Because 
outliers usually contain some important information and 
may be the most important feature of the dataset, i.e., 
outliers will have much higher weights than other data 
values and this also conforms to the results of Keller [5]. 
So each datum can be represented by a vector 

[ ]Tk kFw )(,=v , then we will take the inner product of the 
corresponding attribute vector as the new criteria for 
finding outlier information in the dataset: 

( ) 2
1

22 ))(( kFwS k
T

k +== vv  (23) 

Just as discussed above, the farer away the datum, the 
larger kS  and we will demonstrate below that the criteria 
for finding outliers of (23) should be more reliable and 
interpretable than the single weight factor in [5] which 
outlines the outliers only according to the weight factor and 
neglect  the membership  attribute of  each datum  with kS , 
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Fig. 1  The constructed two-dimensional iris data.  
 

 
Fig. 2  The clustering result of FCM on the two-dimensional iris dataset. 
 
we can easily find the outlier information when ℜ>kS , 
where ℜ  is the threshold given by experts. 

IV. SIMULATIONS 
In this section, four different datasets are used to 

illustrate the performance of FKCO. Experiment results 
will show the better behavior than the conventional 
methods, especially for the linear inseparable dataset, on 
which the conventional algorithms fail clustering. In our 
experiments, we suppose the parameters 2,1 == mq  and 

200=W  during clustering process. 

A. Test on IRIS Dataset 

Firstly, we use the famous iris dataset to investigate how 
FKCO behaves and performs on the clustering and finding 
out the outlier information of a linear separable and high 
dimensional datasets. 

Case 1: For simplicity, we firstly select the first 2 
dimensions of the IRIS data [10] in the first 2 groups as the 
testing dataset, and the dataset displays the attribute of 
linear separable as shown in Fig. 1. Three algorithms are 
tested on this simple iris dataset, Fig. 2 illustrates the 
clustering result of FCM; Figs. 3 and 4 show the 
performances of clustering and identifying outliers of 
algorithm in [5] and FKCO algorithm, respectively. As can 
be seen from Fig. 4, FKCO can obtain rational clustering 
results on this dataset. Based on kS  defined above, we can 
easily identify the outlier information according to the 
given threshold. Comparing the results of Fig. 3 with 
Fig. 4, it is not difficult for us to realize that FKCO with 
the new defined criteria deals with the outlier information 
more cautiously, e.g., we will get more outlier points in [5] 

 
Fig. 3  Results of algorithm in [5] identifying outliers with the weights 
 

 
Fig. 4  Results of FKCO algorithm identifying outliers with kS . 
 

TABLE I 
CLUSTERING PERFORMANCE OF FKCO AND OTHER CLUSTERING 

ALGORITHMS ON 4-DIMENSIONAL IRIS DATASET 
 

Algorithms Number of samples clustered 
wrongly 

FKCO 14 
FCM 15 

Algorithm in [5] 16 
 

more cautiously, e.g., we will get more outlier points in [5] 
(Fig. 3) than that of FKCO (Fig. 4) under the same 
threshold such as 3. This is in accordance with the 
viewpoints of dealing with outlier information by human 
and it is careful for us to accept the outlier information and 
surely will pay more attention.  

Case 2: We employ the complete iris dataset to test the 
performance of FKCO. Table I illustrates the clustering 
performance of FKCO and other algorithms. 
From Table I, we can see clearly that FKCO has better 
clustering performance on IRIS dataset than that of the 
algorithm of [5] and FCM because of the more explicit 
features of IRIS dataset in the feature space.  

To compare the importance index w  and kS , Figs. 5 
and 6 show the weights of the 150 4-dimensional datum 
obtained by the algorithm in [5] and the new index kS  
obtained by FKCO, respectively. 

It has been generally accepted that there are no obvious 
outliers in the iris dataset, hence, the smaller of the interval 
scope for w  or kS , the better. For the weight vector 

T
Nwww ],......,,[ 21=w  of [5] and the new criteria vector 

[ ]TNSSS ,......,, 21=S of FKCO respectively, we  
compute the interval )(max

,
ji

ji
W WWV −=  and )(max

,
ji

ji
S SSV −=   

respectively, and the results are shown in Table II.  
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Fig. 5  weight factor of the 150 data of iris dataset of the algorithm in [5]. 
 

 
Fig. 6  kS factor of the 150 data of iris dataset of FKCO 
 

TABLE II 
INTERVAL SCOPE COMPARISON OF DIFFERENT CRITERIA 

 

Different Criteria Interval Scope 
S  for FKCO 3.1661 ( SV ) 

Weight factor w in [5] 3.3654 ( WV ) 

 
Since S  holds smaller change scope than that of w , so 

we can believe that FKCO algorithm and the newly defined 
criteria in (23) should be more reliable. 

B. Test on Linear Inseparable Dataset 

In the real word, the case of dataset with nonspherical 
boundaries occurs frequently. In such a case, the 
conventional sum-of-squares methods such as K-means 
will not work well. Recently, some new methods are 
proposed to solve this problem, such as maximum-certainty 
portioning. Another alternative method is to map the datum 
from original observation space into high-dimensional 
feature space with a nonlinear kernel function such as 
Guassian kernel function and then performing the 
clustering in the feature space. As stated above, we can 
perform linear clustering for such datasets in the mapped 
feature space.  

Fig. 7 illustrates the linear inseparable dataset used in 
this example. As expected, FCM algorithm and the 
algorithm in [5] which work in the observation space, fails 
to perform the clustering properly on this dataset as 
illustrated in Figs. 8 and 9, whereas, FKCO algorithm 
works well as demonstrated in Fig. 10. It is worth to point 
out that FKCO can also identify the outliers more reliably 
with the additional constructed criteria of the datum. 

 
Fig. 7  Linear inseparable but nonlinear separable dataset. 
 

 
Fig. 8  Clustering performance of FCM on the third nonlinear separable 
sample.  
 

 
Fig. 9  Clustering performance of the algorithm of [5] on the third 
nonlinear separable sample. 
 

C. Test on Image Processing 

Finally, a test image is used here to illustrate the power 
of FKCO algorithm. We selected a satellite image of size 
864×1024 and tried to find the outlier information in the 
image while obtain a good segmentation result. Fig. 11 is 
the satellite image of a city of China. Based on the 
histogram, we obtain the pixel number )(kh  in accordance 
with a particular gray value k )2550( ≤≤ k . Histogram 
represents a specialist character of an image and is 
regarded as the clustering dataset of FKCO in this paper.  

While assuming the number of cluster 2=C , we will 
consider the gray value corresponding to the smaller cluster 
center as the segmentation threshold when FKCO finally 
converges, and the segmentation result is shown in Fig. 12.  
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Fig. 10  Performance of the clustering and identifying the outliers with S  
of FKCO. 
 

 
Fig. 11  Satellite image of a city in China. 
 

 
Fig. 12  Segmentation result of the satellite image. 
 

Experiment results show that the criteria kS  of lower 
gray level is larger than that of higher gray level 
demonstrated in Fig. 13, in other words, FKCO algorithm 
has considered some lower gray level as the outlier 
information because there are much more pixels of such 
gray levels than that of lighter pixels which is shown in the 
original image. So we will perform a NOT operation while 
finding the outlier pixels in the image. That is to say  
when experts decide a threshold criteria T , we can find the  

 
Fig. 13  criteria 

kS  for the histogram dataset of the image. 
 

 
Fig. 14  Outlier information found by FKCO algorithm. 
 
outlier pixels with TSk <  and such an example is 
demonstrated by Fig. 14 and it also conforms to the 
reality well.  

V. CONCLUSION 
In this paper, we present a new algorithm FKCO to find 

the outlier information. An outstanding property of FKCO 
is that it cannot only obtain a satisfying clustering 
performance, but also can identify the outliers easily with 
the newly defined criteria. Different from the conventional 
algorithms for identifying outliers, FKCO works in the 
feature space instead of the original observation space, so it 
can work well for the linear inseparable dataset when the 
conventional methods fail. Our theoretic analysis shows 
that FKCO can converge to a local minimum of the 
objective function. Several experiments are also performed 
to show the validity and effectiveness of our FKCO. It is 
believed that FKCO can have applications in many 
research areas, e.g., economic analysis, data mining, etc. 

APPENDIX 
Now, let us prove the convergence properties of the new 

FKCO algorithm.  
Lemma 1: In FKCO, ),...,2,1,,...,2,1( KjCiij ==µ  and 

),...,2,1( Kjwj =  is a local minimum for HJ  only if 

∑
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subject to ∑ =
=

C

i ij1
1µ   and jw  is a solution of (19)  with the  

constraint ∑ =
=

K

j j ww
1

, where 0>ijµ for all ji, . 
Proof: First, we assume that jw is fixed. Then  

the problem is to minimize HJ  with respect to ijµ under the  
constraint  ∑ =

=
C

i ij1
1µ .  Using  Lagrange multiplier method,  

we find that the problem is equivalent to minimizing  
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without constraints. The necessary condition of this 
problem is 
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from (A-3), we have 
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substituting (A-5) into (A-4), we have 
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substituting (A-6) into (A-5), we obtain (A-1). 
To show jw  is a solution of (19) with the constraint 

∑
=

=
K

j
j ww

1

, the proof is similar to the process of deriving 
the iterative function of jw . 

Lemma 2: Let HJU =)(φ , where KCijU ×= ][µ , 
),...,2,1( Kjw j =  is fixed, and 0≠ijQ , for all 
KjCi ≤≤≤≤ 1,1 , then U  is a local minimum of )(Uφ  if 

and only if jw  ),...,2,1( Kj =  is computed via (19). 
Proof: The only-if part has been proved where is in 

Theorem 3. To show the sufficiency, we examine )(φH , 
the CKCK ×  Hessian of the Lagrangian of )(Uφ  
evaluated at the U  given by (20) or (A-1). From (A-2), we 
have 
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where stµ  is computed from (20). Thus, )](,[)( UhUH ijst=  
is a diagonal matrix. Since 1>m , and 0,0 >> jij wQ for 
all KjCi ≤≤≤≤ 1,1 , we know from the above formula 
that Hessian )(UH  is positive definite and consequently, 
(20) is also a sufficient condition for minimizing )(Uφ . 

Lemma 3: Let HJW =)(φ , where KCijU ×= ][µ  is fixed, 
and 0≠ijQ , for all Ci ≤≤1 , Kj ≤≤1 , 1>m . Then 

),...,2,1( Kjw j =  is a local minimum of )(Wφ  if and only 
if ),...,2,1( Kjw j =  is computed via (19). 

Proof: The necessity was proved in Lemma 1. To show 
the sufficiency, we have from (12) that 
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i.e., the Hessian is positive definite and consequently (19) 
is a sufficient condition for minimizing )(wφ . 

With Lemma 2 and Lemma 3, similar to the proof of [9], 
we can prove that 

),(),( 11 tt

H

tt

H WUJWUJ ≤++  (A-9) 

In other words, HJ  is a decreasing function with the 
increase of t . So, the FKCO algorithm will finally 
converge. 
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