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Abstract—A high-Q time-variant (TV) band-pass filter 
(BPF) is analyzed in this paper. N parallel identical low-pass 
RC filters make this BPF, in which each of these N filters is 
sequentially switched on for an equal time interval, 
periodically. The resulting BPF provides a stable frequency 
response and is insensitive to element variations. Through 
mathematical analysis, equations are derived for the 
frequency response and the bandwidth of the BPF. Moreover, 
the validity of these equations is confirmed by experimental 
results. These equations make the design of the above high-Q 
BPF an easy task. 
 

Index Terms—N-path Filters, switched capacitor filters, 
high-Q bandpass filters, time-variant filters. 

I. INTRODUCTION 
IGH-Q band-pass filters (BPFs) are required in many 
applications such as tracking signals, SNR (signal to 

noise power ratio) enhancement in frequency modulation 
(FM), and in rejection of power-line signals [1]-[4]. 
Realization of high-Q BPFs, especially for audio signals, is 
quite difficult. High-Q BPFs may be realized by active RC 
filters. However, the frequency response of such filters is 
quite sensitive to element-value variations. Moreover, such 
filters can be unstable for high-Q values. 

Switched capacitor filters (SCFs) are another class of 
filters, which provides a practical method for a fully 
integrated realization of high quality filters. Exact methods 
are available for designing SCFs [1]. Typical sensitivities 
of SCFs are lower than 0.1 dB/1% element-value 
change [2]. However, high-Q SCFs are still sensitive to 
element value variations, which can also make them 
unstable. 

N-path filters are introduced to reduce the sensitivity of 
high-Q band pass SCFs [3]. N-path filters are linear time-
variant (LTV), which make the analysis of the filter a 
difficult task [3]. These filters have N  identical switched 
capacitor filters that each of them is periodically (with a 
period of SNT ) placed between the input and output 
terminals for a time duration of ST . Fig. 1 shows a 
simplified N-path SCF, which employs a first order low 
pass filter for each path. This paper presents a 
mathematical analysis for the N-path filter shown in Fig. 1. 
The novelty of this work is derivation of closed form 
mathematical equations for both the frequency response 
and the bandwidth of the time-variant N -path filter. This 
makes the design procedure of a high-Q BPF as easy as 
designing known analog filters. The analysis is confirmed 
by experimental results. The design procedure of such 
filters is also explained briefly. 
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Fig. 1. A Simplified circuit of an N-path filter. 
 

The remainder of this paper is organized as follows. 
Sections II and III present the mathematical analysis of the 
N-path filter. Closed form mathematical equations are 
derived for the frequency response and bandwidth of the 
filter. In Section IV, the mathematical analysis is verified 
by experimental results. Section V presents conclusions of 
this work. 

II. ANALYSIS OF THE FILTER 
In this section, closed form equations are derived for the 

frequency response and the bandwidth of the N -path filter. 
Each of N  paths is considered to have the same time-
constant 0 RCτ = . The analysis is done by applying a 
single frequency signal 0( ) exp( )iv t j tω= as the filter 
input. The output signal of the filter ( )Ov t  is given by 

( ) ( ) ( )o iv t v h t dττ τ
∞

−∞

= ∫  (1) 

where ( )iv τ  is the input signal at time τ  and ( )h tτ is the 
filter impulse response at time t  to an impulse applied at 
time τ . 
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Fig. 2.  N-path filter impulse response. 
 

Since the N -path filter is linear time variant [3], the filter 
impulse response depends on both τ  and t . 

The filter impulse response ( )h tτ , i.e., the response 
to input )( τδ −t , is shown in Fig. 2, where 

(   1)S SiT i Tτ< < + . At t τ= , only one of N  capacitors 
(say the capacitor of the first path) is connected between 
the input and output terminals. The input impulse charges 
the above capacitor to a maximum voltage of 01/τ  volts 
since the output voltage is ( )00 /)(exp/1 τττ −− t  for 

(   1)S SiT t i T< < + . The capacitor starts discharging for 
(   1) St i Tτ < < + . After this time, the capacitor is opened 

and hence the output voltage remains constant until time 
(   ) St i N T= + . For (   ) (   1)S Si N T t i N T+ < < + + , the 

capacitor restarts discharging. The process of voltage 
discharging for the duration of sT  and zero output voltage 
for the duration of ( -1) SN T  repeats as long as the 
capacitor has any voltage. So, for (   1)S SiT i Tτ< < +  the 
impulse response is given by 

( )

( )( ){
( ) ( ) }

0
0

0
10

1( ) exp( ( ) / ) ( ) ( 1)

1 exp ( 1) /

( ) ( 1)

S

S
n

S S

h t t u t u t i T

t n N T

u t i nN T u t i nN T

τ τ τ τ
τ

τ τ
τ

∞

=

⎡ ⎤= − − − − − +⎣ ⎦

+ − − − −

⎡ ⎤− + − − + +⎣ ⎦

∑ (2) 

In (1), replacing ( )iv t by 0exp( )j tω , and ( )h tτ  by (2), 
the output voltage of the filter becomes 

( 1)

0( ) exp( ) ( )
S

S

i T

o
i iT

v t j h t dτω τ τ
+∞

=−∞

= ∑ ∫  (3) 

Appendix A presents detailed calculation of ( )ov t  
whose final result is given by 

( )

( ) ( )

0

0 0

0 0

0 0
0 0

0 0

1 0

exp( )
( )

1

( 0.5)
1 exp ( 1/ )( )

exp ( 1/ )
1 exp ( 1/ )

1

( 1) ( 0.5)
exp

o
i

s
s

s

s
s

s s

n s

j t
v t

j

t i T
j t iT

T

j iT
j T

j

t n N T t i nN T
T

ω
ωτ

ω τ

ω τ
ω τ

ω τ

τ

∞

=−∞

∞

=

⎧⎪= ⎨ +⎪⎩
⎛ ⎞− +

⎡ ⎤× − − + − ⎜ ⎟⎣ ⎦
⎝ ⎠

+
⎡ ⎤− − +⎣ ⎦+

⎫⎛ ⎞ ⎛ ⎞− − − + + ⎪× −⎜ ⎟ ⎜ ⎟⎬
⎪⎝ ⎠ ⎝ ⎠⎭

∑

∏

∑ ∏

 (4) 

where ( / ) 1St T =∏  for | | / 2St T≤  and is equal to zero for 
other times. 

Fourier transform of ( )ov t , is given by 

( )

( )
( ) ( )

( ) ( )

( )

0

0 0 0 0

0
0

0

0
0

0 0 0

0

2sinh ( 1/ ) / 2
( )

( 1/ )( 1/ )

1 exp ( )
exp ( 1/ ) / 2

1 exp ( 1/ )

exp ( ) / 2
sinc ( )

( 1/ )

( )

s
o

s

s
s

s

s
s

s
i

j T
V j

T j j

j N T
j T

jN T

j T
f f T

j

f f if

ω τ
ω

τ ω τ ω τ

ω ω
ω τ

ω τ

ω ω
τ ω τ

δ
∞

=−∞

⎧ +⎪= −⎨ + +⎪⎩
− − −

× − +
− − +

⎫− − ⎪+ − ⎬+ ⎪⎭

× − +∑

 (5) 

where sinc( ) sin( ) /( )x x xπ π= , /(2 )f ω π= , 0 0 /(2 )f ω π=  
and 1/S Sf T= . 

As it is seen in (5), for the single-tone input signal, i.e., 
0( ) exp( )iv t j tω=  corresponding with 0( ) ( )iV f f fδ= − , 

there are infinite number of tones at the output of the filter. 
Similar results can be obtained for the input signal 

0( ) exp(- )iv t j tω= . So, for the input signal 
0( )  cos( )iv t tω= , the output tones are located around 

0  f±  and are separated by Sif , where 0, 1, 2,...i = ± ± .  
If Sf  is chosen to be very larger than 02f , then undesired 
frequency components, i.e., ( )0 )sf f ifδ ± +  for 0i ≠ , 
can be eliminated by cascading the N-path filter with a 
simple lowpass filter whose bandwidth is smaller than 

0-Sf f . In this case, the resulted filter behaves like a linear 
time invariant (LTI) circuit. 

Considering undesired frequency components are 
eliminated, as explained above, the frequency response of 
the resulted LTI filter (that is ( ) ( ) / ( )O iH j V j V jω ω ω= , 
where 0( ) ( - )iV j f fω δ= ) is obtained from the RHS of (5) 
by removing the terms under the Σ for 0i ≠ . By replacing 

01/τ  by cω and ST  by 2 / sπ ω , ( )H jω  simplifies to 
( )

( )
( ) ( )

0sinh ( 1/ ) /
( )

( ) /

1 exp 2 ( 1) /
exp ( ) / 1

1 exp 2 ( ) /

sc

c c s

s
c s

c s

j
H j

j j

j N
j

jN

ω τ π ωωω
ω ω ω ω π ω

π ω ω
π ω ω ω

π ω ω ω

⎧ +⎪= − ⎨+ +⎪⎩
⎫− − − ⎪× − + − ⎬− − + ⎪⎭

(6) 

If the amplitude and phase of ( )H jω  are plotted, it is 
observed that at frequencies /r Sf mf N= , where 

0,  1,  2,  ...m = , the amplitude has local maximums and the 
value of the phase is zero. The amplitude of the absolute 
maximum is unit, which is at 0ω = . By increasing ω , the 
amplitude of local maximums reduces. To eliminate local 
maximums at frequencies /r Sf mf N=  for 2m ≥ , one 
can cascade another simple filter with the N-path filter. 

III. THE BANDWIDTH OF THE FILTER 
In this section, the bandwidth of the filter is derived at 

frequencies corresponding to the local maximums. Practical 
values for 0 1/ cτ ω= , sω and 0ω  dictate that the relation 

0c Sω ω ω ω<< = <<  must hold. So, | (  ) |H jω  is 
approximated as 

( )
( )

| ( ) | | sinc( / )

1 exp 2 ( 1) /
exp( / ) 1|

1 exp( 2 / )exp( 2 / )

c
s

s
s

c s s

H j

j N
j

j N

ωω ω ω
ω

π ω ω
πω ω

πω ω π ω ω

≅

− − −
× − −

− − −

(7) 

Around the frequencies /r Sm Nω ω ω= = , at which the 
amplitude of frequency response has local maximums,  
the denominator in (7) tends to zero and hence the term  
–1 in (7) can be  neglected.  Therefore,  it can  be written as 
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(8)

 

To find out the filter bandwidth around 
/r Sm Nω ω ω= = , ω    is replaced by ω ω+ ∆  in (8), and 

the amplitude is equated to 2/1  times of that of 
/r Sm Nω ω= . In this case, 

( )
2

1( / ) ( / )
2

1 sinc ( )2
1 exp( 2 / )2

s s

c

s c s

H j m N H jm N

m/N

ω ω ω

ωπ
ω πω ω

+ ∆ =

= ×
− −

. (9) 

Assuming ω∆  is much smaller than  /r Sm Nω ω= , the 
following approximation can be written. 

2 2sinc ( / / ) sinc ( / )sm N m Nω ω+ ∆ ≅  (10) 

Using (7), and (10), (9) is given by 

( ) ( )sin ( / ) / sin /

sinh( / )
s s s

c s

N m N Nπ ω ω ω π ω ω

πω ω

+ ∆ = ∆

=
 (11) 

Hence, the half of the filter bandwidth is obtained as 

0

1c

N N
ωω

τ
∆ ≅ =  (12) 

Replacing 0τ  by RC of each path in the N-path filter, the 
bandwidth BW is given by 

2 1
2

BW
NRC

ω
π π

∆= ≅  (13) 

As it is seen in (13), the filter bandwidth is dependent on 
the value of N, as well as to the time constant 0 RCτ = . 
The bandwidth can be adjusted simply by adjusting the 
values of , ,N R  and C . It is notable that the bandwidth is 
not dependent on the center frequency rf . As was 
mentioned before, sf  and N  are chosen such that 

/r Sf f N= . So for a given N , adjusting the bandwidth 
does not affect the center frequency and vice versa. 

For tracking a signal whose frequency is f , we have to 
design the filter such that /Sf N be equal to 0f . Moreover, 
as mentioned before, Sf  should be chosen to have a large 
value. So for small f , N  must be chosen to be large as 
well. It is also notable that N  times of f  is applied as the 
clock for the filter so that variation in f  results in 
variation of the clock, and therefore, the filter tracks the 
frequency of the input signal. 
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Fig. 3.  The Circuit of an implemented high-Q bandpass filter. 
 

IV. EXPERIMENTAL RESULTS 
For verification of the analysis, an N-path filter was 

implemented whose center frequency and bandwidth are 
170rf =  Hz and BW 0.9= Hz, respectively. The quality 

factor of this filter is / 188.8rQ f BW= = , which is much 
larger than practical values for Q  of conventional time-
invariant filters. The circuit of this high-Q BPF is shown in 
Fig. 3. 

The values for N  and Sf  were chosen to be 12 and 
12×170 Hz, respectively. This makes undesired output 
frequencies quite far from center frequency such that they 
can be eliminated easily by a simple BPF whose center 
frequency is rf  and its higher edge is smaller than s rf f− . 
Each of capacitors C1 to C12 has a capacity of 10 µF. Due 
to having tolerances in the element values, R was chosen to 
be a series of two resistors: R3 (a constant resistor) and P2 
(a variable resistor). This facilitates adjusting the 
bandwidth of the filter to 0.9 Hz at which R=P2+R3 was 
2950 Ω  according to (13). To eliminate undesired 
frequency components (11×170, 13×170, … Hz) and 
undesired local maximums (2×170, 3×170, … Hz), a 
simple BPF with a center frequency of about 170 Hz and a 
bandwidth of smaller than 100 Hz was employed. This 
filter is placed right before the output terminal in Fig. 3. As 
well, a buffer is placed between this BPF and the N-path 
filter to eliminate their loading effects on each other. 

To measure the output amplitude at different 
frequencies, a high resolution signal generator and a 
frequency divider was used as the input to the circuit. The 
frequency step of the input signal was 0.1 Hz. 

The magnitude of the frequency response | ( ) |H jf  
obtained from the measurement, as well as from (6) is 
shown in Fig. 4, over a small frequency span around 

170rf =  Hz so that the experimental and theoretical values  
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Fig. 4.  The amplitude of the frequency response of the implemented filter. 
 
can be compared easily. As shown, the theoretical and 
measured values are quite close, which results in the 
validity of our analysis. Moreover, the measured value for 
the bandwidth was 0.9 Hz, which equals the theoretical 
value obtained from (13). This confirms the validity  
of (13). 

V. CONCLUSIONS 
A high-Q N-path filter was analyzed and mathematical 

equations were derived for the frequency response and 
bandwidth of the filter. These equations can be used to 
design high-Q bandpass filters using N-path filters. The 
validity of these equations was confirmed by experimental 
results. The design procedure for a high-Q bandpass 
tracking filter was also described. 

APPENDIX A 
The output voltage, 0 ( )v t , given by (4) is calculated 

here. Starting from (3), first  ( 1)

0exp( ) ( )S

S

i T

iT
j h t dτω τ τ+

∫  is 
broken into three integrals: 1I , 2I , and 3I , and each of 
them is calculated below 

( )
( 1)

1 0 0
0

1 exp( )exp ( ) / ( )
S

S

i T

iT

I j t u t dω τ τ τ τ τ
τ

+

= − − −∫  (A.1) 

By changing the variable -t τ  to z , 1I  can be calculated 
for three cases of St iT<  , ( 1)S SiT t i T< < +  and 

( 1) St i T> + . By doing so, 1I  is given by 

( ){
( )

( )
( ) ( )}

0
1 0 0

0 0

0 0

0 0
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1 exp ( 1/ )( )

1

( ) ( 1)

1 exp ( 1/ )
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s

s S

s
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I j t iT

j

u t iT u t i T
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j t iT u t i T

ω ω τ
ω τ

ω τ

ω τ

⎡ ⎤= − − + −⎣ ⎦+

⎡ ⎤× − − − +⎣ ⎦
⎡ ⎤− − +⎣ ⎦

× − + − − +

(A.2) 

Now, 2I  is calculated 

( ) ( )

( )

( ) ( )

( 1)

2 0 0
0

0
0 0

0 0

0 0

1 exp( )exp ( ) / ( 1)
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t
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ωτ τ τ τ
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τ ω τ
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+−= − − − +

−
⎡ ⎤= − +⎣ ⎦+

× + − +

∫

(A.3) 

Calculation of 3I  is given below 

( ) ( ) }
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3 0
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⎡ ⎤× − + − − + +⎣ ⎦
⎛ ⎞− −

× −⎜ ⎟
⎝ ⎠

∑ ∫

∑

(A.4) 

Summation of 1 2,  I I and 3I  is the final result, which is 
given in (4). 

APPENDIX B 
Fourier transform of ( )ov t , given by (5), is calculated in 

this section. First, the Fourier transform of 
( )∏ −− sTttat /)()exp( 0  is calculated that is 

( ) ( )

0

0

/ 2

/ 2

0

exp( )exp( )

2 exp ( ) sinh ( ) / 2
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ω ω
ω

+

−

− −

= − + +
+

∫
 (B.1) 

Using the above Fourier transform, then ( )OV j ω  is 
obtained from (4) as follows 
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Knowing 

( ) ( )
( )

0
0

1 0

exp ( 1/ )
exp ( 1/ )

1 exp ( 1/ )
s

s
n s

jN T
n jN T

jN T
ω τ
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ω τ
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=

− +
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 (B.3) 
and the Poisson equation, which is 

1exp( ) ( )s
i is s

ij iT f
T T

ω δ
∞ ∞

=−∞ =−∞
− = −∑ ∑  (B.4) 

( )OV jω  can be simplified as given in (5). 
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