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Abstract—Large volumes of fingerprints are collected and 
stored every day in a wide range of applications, including 
forensics, access control etc., and is evident from the database 
of Federal Bureau of Investigation (FBI) which contains more 
than 70 million finger prints. Wavelet based Algorithms for 
image compression are the most successful, which result in 
high compression ratios compared to other compression 
techniques. Even though wavelet bases are providing good 
compression ratios, they are not optimal for representing 
images consisting of different regions of smoothly varying 
grey-values, separated by smooth boundaries. This issue is 
addressed by the directional transforms, known as contourlets 
which have the property of preserving edges. This paper 
focuses mainly on the new fingerprint compression using 
contourlet transform (CT), which includes elaborated 
repositioning algorithm for the CT coefficients, and Modified 
set partitioning in hierarchical trees (SPIHT) which is applied 
to get better quality, i.e., high peak signal to noise ratio 
(PSNR). The results obtained are tabulated and compared 
with those of the wavelet based ones. 
 

Index Terms—Directional filter bank, Laplacian pyramid, 
modified SPIHT, repositioning algorithm. 

I. INTRODUCTION 
INGERPRINTS are the ridge and furrow patterns on the 
tip of the finger and are used for personal identification 

of the people [1]. An automatic recognition of people based 
on fingerprints requires that the input fingerprint be 
matched with candidates within a large number of 
fingerprints. Since large volume of data in a database 
consumes more amount of memory, the information 
contained in fingerprints must, therefore, be compressed by 
extracting only visible elements, which are then encoded. 
The quantity of data involved is thus reduced substantially. 
The fundamental goal of image compression is to reduce 
the bit rate for transmission or storage while maintaining an 
acceptable fidelity or image quality. Fingerprints are 
digitized at a resolution of 500 pixels/inch with 256 grey 
levels [2]. Although there are many image compression 
techniques currently available, there still exists a need to 
develop faster and more robust algorithms adapted to 
fingerprints. One of the main difficulties in developing 
compression algorithms for fingerprints resides preserving 
the ridge endings and bifurcations. Compression can be 
achieved by transforming the data, projecting it on a basis 
[3] of functions, and then encoding this transform. To 
avoid redundancy, which hinders compression, the 
transform must be at least biorthogonal and in order to save 
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CPU time, the corresponding algorithm must be fast [3]. 
The two-dimensional wavelet transform satisfies these 
conditions. Wavelet compression allows the integration of 
various compression techniques into one algorithm. 
Recently there has been a wide interest in image 
representations that efficiently handle geometric structure. 
This comes from the recognition that wavelets essentially 
fail to take the advantage of geometric regularity, a 
common feature in natural images. In 1-D however, 
wavelets are known to be optimal in approximating 
piecewise smooth signals, a feature that is attained by the 
presence of vanishing moments in the transform. It is thus 
natural to ask the question of which equivalent feature 
would be responsible for an optimal approximation of 
piecewise smooth images. The contourlet transform [4] is 
proposed as a mean to fix the failure of wavelets in 
handling geometry by the presence of directional vanishing 
moments in the contourlet frame element. As fingerprints 
mostly contain contoured edges, the transform with 
directional properties are needed to give better PSNR for 
the same compression ratio (CR) obtained using wavelet 
transform. The goal of this paper is the application of 
contourlet transform for fingerprint compression which 
results in superior performance compared to JPEG-2000. 

This paper is organized as follows: Section II deals with 
the motivation for directional transforms. In Section III 
Contourlet transform, the pyramidal decomposition and the 
directional decomposition are explained. Section IV 
describes the modified SPIHT algorithm suitable for CT, 
the parent, child relationship and the repositioning 
procedure are explained. Section V presents experiments 
and the results. Section VI concludes the paper. 

II.  MOTIVATION FOR DIRECTIONAL TRANSFORMS 
The core of sparse signal representation lies at the 

foundation of many signal processing tasks, including 
compression, filtering, and feature extraction. Normal 
interest is on the construction of sparse expansions for two-
dimensional signals which are smooth and free from 
discontinuities across smooth curves. Such signals 
resemble natural images and fingerprints where 
discontinuities are generated by edges – referred to points 
in the image with sharp contrast in the intensity, whereas 
edges are often gathered along smooth contours that are 
created by typically smooth boundaries of physical  
objects [4]. For one-dimensional piecewise smooth signals, 
wavelets provide the right tool. However, in 2-D the 
commonly used separable wavelets obtained by a tensor-
product of 1-D wavelets are only good at capturing the 
discontinuities at edge points, but do not see the 
smoothness along contours. Thus, more powerful schemes 
are needed in higher dimensions. 
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It is known from physiological studies [5] that the 
receptive fields in the visual cortex are characterized as 
being localized, oriented and band pass. Recently, several 
studies were conducted to identify the sparse components 
of natural image patches of small sizes. Strikingly, these 
sparse components resemble closely the aforementioned 
characteristics of the visual cortex. This result supports the 
hypothesis that the human visual system has been tuned so 
as to capture the essential information of a natural scene 
using a least number of visual active cells. More 
importantly, this result suggests that for a computational 
image representation to be efficient, it should be based on a 
local, directional, and multi-resolution expansion. To 
capture smooth contours in images, the representation 
should contain basis functions with variety of shapes, in 
particular with different aspect ratios. This is the anisotropy 
property. A major challenge in capturing geometry and 
directionality in images comes from the discrete nature of 
the data: the input is typically sampled images defined on 
rectangular grids. Because of pixelization, the notion of 
smooth contours on sampled images is not obvious. For 
these reasons, unlike other transforms that were initially 
developed in the continuous-domain and then discretized 
for sampled data, the new approach starts with a discrete-
domain construction and then investigate its convergence 
to an expansion in the continuous-domain. This 
construction results in a flexible multi-resolution, local, and 
directional image expansion using contour segments, and 
thus it is named the contourlet transform [6]-[8]. 

III. CONTOURLET TRANSFORM 
The contourlet transform is a new extension of the 

wavelet transform in two dimensions using multiscale and 
directional filter banks. The contourlet expansion is 
composed of basis images oriented at various directions in 
multiple scales, with flexible aspect ratios. With this rich 
set of basis images, the contourlet transform effectively 
capture smooth contours that are the dominant feature in 
natural images. 

Do and Vetterli proposed the pyramidal directional filter 
bank (PDFB) [9], which overcomes the block-based 
approach of curvelet transform by a directional filter bank, 
applied on the whole scale also known as contourlet 
transform (CT). 

The grouping of wavelet coefficients suggests that one 
can obtain a sparse image expansion by first applying a 
multi-scale transform and then applying a local directional 
transform to gather the nearby basis functions at the same 
scale into linear structures. In essence, first a wavelet-like 
transform is used for edge (points) detection, and then a 
local directional transform for contour segments detection. 
With this insight, one can construct a double filter bank 
structure (Fig. 1(a)) in which at first the Laplacian pyramid 
(LP) is used to capture the point discontinuities, and 
followed by a directional filter bank (DFB) to link point 
discontinuities into linear structures [10]. The overall result 
is an image expansion with basis images as contour 
segments, and thus it is named the contourlet transform. 
The combination of this double filter bank is named 
pyramidal directional filter bank (PDFB). 

 
(a) 

 
(b) 

Fig. 1.  (a) Block diagram of a PDFB, and (b) Supports for Contourlets. 
 

Fig. 1(a) shows the block diagram of a PDFB. First a 
standard multi-scale decomposition into octave bands is 
computed, where the low pass channel is sub-sampled 
while the high pass is not. Then a directional 
decomposition with a DFB is applied to each high pass 
channel. Fig. 1(b) shows the support shapes for contourlets 
implemented by a PDFB that satisfies the anisotropy 
scaling relation. From the upper line to the lower line, the 
scale is reduced by four while the number of directions 
is doubled. 

In general, the contourlet construction allows for any 
number of DFB decomposition levels lj to be applied at 
each LP level j. For the contourlet transform to satisfy the 
anisotropy scaling relation, one simply needs to impose 
that in the PDFB, the number of directions is doubled at 
every other finer scale of the pyramid. Fig. 1(b) graphically 
depicts the supports of the basis functions generated by 
such a PDFB. 

As can be seen from the two shown pyramidal levels, the 
support size of the LP is reduced by four times while the 
number of directions of the DFB is doubled. Combine 
these two steps, the support size of the PDFB basis 
functions are changed from one level to next in accordance 
with the curve scaling relation. In this contourlet scheme, 
each generation doubles the spatial resolution as well as the 
angular resolution. 

The PDFB provides a frame expansion for images with 
frame elements like contour segments, and thus is also 
called the contourlet transform. 

A. Laplacian Pyramid 
One way of achieving a multiscale decomposition is to 

use a Laplacian pyramid (LP) as introduced by Burt and 
Adelson [11]. 

The LP decomposition at each step generates a sampled 
lowpass version of the original and the difference between 
the original and the prediction, resulting in a bandpass 
image as shown in Fig. 2(a). The process can be iterated on 
the coarse version.  
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(a) 

 
(b) 

Fig. 2.  Laplacian pyramid scheme (a) analysis, and (b) reconstruction. 
 

In Fig. 2(a) the outputs are a coarse approximation ‘c’ 
and a difference ‘d’ between the original signal and the 
prediction. The process can be iterated by decomposing the 
coarse version repeatedly. The original image is convolved 
with a Gaussian kernel [7]. The resulting image is a low 
pass filtered version of the original image. The Laplacian is 
then computed as the difference between the original image 
and the low pass filtered image. This process is continued 
to obtain a set of band-pass filtered images (since each one 
is the difference between two levels of the Gaussian 
pyramid). Thus the Laplacian pyramid is a set of band pass 
filters. By repeating these steps several times a sequence of 
images, are obtained. If these images are stacked one above 
another, the result is a tapering pyramid data structure, as 
shown in Fig. 3 and hence the name.  

The Laplacian pyramid can thus be used to represent 
images as a series of band-pass filtered images, each 
sampled at successively sparser densities. It is frequently 
used in image processing and pattern recognition tasks 
because of its ease of computation. A drawback of the LP 
is the implicit oversampling. However, in contrast to the 
critically sampled wavelet scheme, the LP has the 
distinguishing feature that each pyramid level generates 
only one bandpass image (even for multi-dimensional 
cases) which does not have "scrambled" frequencies. This 
frequency scrambling happens in the wavelet filter bank 
when a highpass channel, after downsampling, is folded 
back into the low frequency band, and thus its spectrum is 
reflected. In the LP, this effect is avoided by downsampling 
the lowpass channel only. 

B. Directional Filter Bank 
In 1992, Bamberger and Smith [12] introduced a 2-D 

directional filter bank (DFB) that can be maximally 
decimated while achieving perfect reconstruction. The 
directional filter bank is a critically sampled filter bank that 
can decompose images into any power of two’s number 
of directions. 

The DFB is efficiently implemented via a l-level tree-
structured decomposition that leads to l2  subbands with 
wedge-shaped frequency partition as shown in Fig. 4. 

The original construction of the DFB in [12] involves 
modulating the input signal and using diamond-shaped 
filters. Furthermore, to obtain the desired frequency 
partition, an involved tree expanding rule has to be 
followed. As a result, the frequency regions for the 
resulting subbands do not follow a simple ordering 
as shown in Fig. 4 based on the channel indices. The  
DFB is designed to capture the high frequency components  

 
Fig. 3.  Laplacian pyramid structure. 
 

 
Fig. 4.  DFB frequency partitioning. 
 
(representing directionality) of images [4]. Therefore, low 
frequency components are handled poorly by the DFB. In 
fact, with the frequency partition shown in Fig. 4, low 
frequencies would leak into several directional subbands, 
hence DFB does not provide a sparse representation for 
images. To improve the situation, low frequencies should 
be removed before the DFB. This provides another reason 
to combine the DFB with a multiresolution scheme. 
Therefore, the LP permits further subband decomposition 
to be applied on its bandpass images. Those bandpass 
images can be fed into a DFB so that directional 
information can be captured efficiently. The scheme can be 
iterated repeatedly on the coarse image. The end result is a 
double iterated filter bank structure, named pyramidal 
directional filter bank (PDFB), which decomposes images 
into directional subbands at multiple scales. The scheme is 
flexible since it allows for a different number of directions 
at each scale. 

Fig. 5 shows example contourlet transforms of the 
"Peppers" image. For the visual clarity, only two-scale 
decompositions are shown. Each image is decomposed into 
a lowpass subband and several bandpass directional 
subbands.  
It can be seen that only contourlets that match with both 
location and direction of image contours produce 
significant coefficients. Thus, the contourlet transform 
effectively explores the fact image edges are localized in 
both location and direction. 

Level 0 

Level 1 

Level 2 
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    Level 2 with 4 directions      Level 1 with 8 directions 
Fig. 5.  Contourlet Transform of "Peppers" image. 
 

One can decompose each scale into any arbitrary power 
of two’s number of directions, and different scales can be 
decomposed into different numbers of directions. This 
feature makes contourlets a unique transform that can 
achieve a high level of flexibility in decomposition while 
being close to critically sampled. Other multiscale 
directional transforms have either a fixed number of 
directions or are significantly overcomplete. 

With perfect reconstruction LP and DFB, the PDFB is 
obviously perfect reconstruction, and thus it is a frame 
operator for 2-D signals. The PDFB has the same 
redundancy as the LP: up to 33% when subsampling by 
two in each dimension [4], [10]. 

IV. MODIFIED SPIHT ALGORITHM FOR CONTOURLET 
TRANSFORM 

In this paper, to improve the performance of the 
mentioned contourlet coder, it is used in conjunction with 
SPIHT algorithm [13] to construct an embedded image 
coder. Due to differences in parent-child relationships 
between the CT coefficients and wavelet coefficients, an 
elaborated repositioning algorithm for the CT coefficients 
is developed in such a way that a spatial orientation trees 
[14] (the zero-trees introduced in [13] ) similar to the ones 
used for scanning the wavelet coefficients, is obtained. The 
simulation results show that the proposed coder is 
competitive to the original SPIHT coder, especially for a 
category of images that have a significant amount of 
textures and oscillatory patterns and therefore are not 
"wavelet-friendly" images. 

A. Parent-Child Relationship among Contourlet 
Transform Coefficients 
Similar to the spatial orientation tree (or zero-tree) 

concept of wavelet coefficients in which a parent-child 
relationship exists along wavelet scales, one can find 
parent-child dependencies in other subband systems. In the 
case of the contourlet transform, one can assume two 
different parent-child relationships depending on the 
number of directional decompositions in the contourlet 
subbands [10]. If the two successive scales in which the 
parent and children lie have the same number of directional 
decompositions, then the parent and children would lie in 
the corresponding directional subbands; however if the 
scale in which the children lie has twice as many 
directional subbands as the scale in which the parent lies, 
the four children will be in two adjacent directional 
subbands. These two directional subbands correspond  
to directional subbands as the scale in which the parent lies, 

 
Fig. 6.   Parent-child relationships in the CT. 
 
the four children will be in two adjacent directional 
subbands. These two directional subbands correspond to 
the directional decomposition of the directional subband in 
which the parent is located. Fig. 6 shows the relationship 
when the number of directional subbands in the finer scale 
is twice as many as those in the coarser scale. 

B. Repositioning Procedure 
Due to differences in parent-children dependencies 

between the CT and the wavelet transform, before applying 
the SPIHT algorithm, the transform coefficients in the CT 
are repositioned in such a way to be able to use a similar 
SPIHT algorithm. Fig. 7 shows an example of 
repositioning a radial subband in the CT having 8 
directional decompositions. This example assumes that the 
coarser subband has 4 directional decompositions. In the 
left image of Fig. 7, there are 8 directional subbands 
(separated by dashed lines). 

Each two adjacent horizontal subbands (upper half 
subbands) and each two adjacent vertical subbands (lower 
half subbands) are corresponding to a horizontal subband 
and a vertical subband in the coarser scale, respectively. 
So, if the columns of the horizontal directional subbands 
and the rows of the vertical directional subbands are 
repositioned in a manner to set the children beside each 
other, one can benefit from using a similar tree-based 
wavelet coding algorithm for the CT coefficients. 
However, as one moves forward along the scales, the 
repositioning algorithm becomes more complex and one 
has to interlace sets of 2, 4, or any higher number of 
columns (rows) of the horizontal (vertical) subbands in 
order to maintain the descendent of a CT coefficient 
adjacent to each other similar to the wavelet coefficients.  

Fig. 8 shows the repositioned coefficients which can 
now be used for application of SPIHT algorithm after 
making the changes in the algorithm. This repositioning 
groups all the children in a single scale close to each other, 
similar to that in wavelet transformed image matrix. 

Level 1 with
16 directions 

Level 2 with
8 directions 

Level 3 with 
4 directions 
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Fig. 7.  Example of repositioning a radial subband in the CT. 
 

 
 

Fig. 8.  Repositioning of CT coefficients. 
 

As the scale increases, the size of the lowpass image 
decreases, whereas the size of the bandpass image remains 
same as that of the lowpass in the previous scale. Also, as 
the scale increases, the number of directions applied to the 
bandpass image decreases. In other words, the number of 
directions should increase from coarser scale to finer scale. 
This is done in order to satisfy the anisotropy scaling law.  

As the scale decreases, the coefficients get more 
dispersed due to the increase in the number of directional 
sub-bands. Hence, the repositioning algorithm also gets 
complicated. As explained above, the repositioning is done 
by grouping the rows (columns) of the horizontal (vertical) 
sub-bands. As the scale decreases, the number of sub-bands 
to be considered for grouping increases, thereby, increasing 
the complexity of the repositioning algorithm. It can be 
seen that all the children of a parent are grouped near each 
other, similar to that of the wavelet transformed matrix. 
Now modified SPIHT can be applied to this matrix. 

The reverse of this repositioning has to be done at the 
decoder side after SPIHT decoding, so that the coefficients 
that were grouped on the encoder side are re-distributed 
among the corresponding directional sub-bands. The 
inverse CT can be found only if this reverse procedure 
is done.  

C. Modifications in SPIHT Algorithm 
 In the tree-based wavelet coding algorithms such as 

EZW and SPIHT, considering a threshold T, if a wavelet 
coefficient, ),( jia  is insignificant, i.e., Tjia <),( , due to 
a self-similarity amongst the wavelet coefficients in 
different subbands, it is likely that its descendents at the 
finer wavelet scales are insignificant. A similar observation 
can be made about the CT coefficients; however, the 
definition of the descendants of a CT coefficient needs to  

TABLE I 
PSNR AND CR FOR FINGERPRINT-A USING WT-SPIHT (FINGERPRINT-A) 

 

Levels Rate (bpp) CR PSNR(dB) 

0.2 40.00 13.90 
0.4 20.00 13.90 
0.6 13.33 14.06 
0.8 10.00 14.06 

2 

1 8.00 16.48 
0.2 40.00 14.02 
0.4 20.00 16.85 
0.6 13.33 18.90 
0.8 10.00 20.46 

3 

1 8.00 22.34 
0.2 40.00 17.09 
0.4 20.00 19.40 
0.6 13.33 21.09 
0.8 10.00 22.69 

4 

1 8.00 42.45 
 

be modified. Therefore, using this presumption, and similar 
to the original SPIHT algorithm, a non-significant CT 
coefficient can be assigned to the list of insignificant set 
(LIS) and perform the same set partitioning algorithm as 
done within the SPIHT algorithm for wavelet coding. 
Hence, following the same approach of SPIHT,   three sets 
of LIP (list of insignificant pixels), LIS, and LSP (list of 
significant pixels) are created and set partitioning and 
refining the significant pixels of the CT coefficients are 
done during coding. 

The offspring set in wavelet based SPIHT is given by 

)}12,12(
);2,12();12,2();2,2{(),(

++
++=

ji
jijijijiO

 (1) 

This is modified for CT as 

)2,1)(();12,1)((
);2),(();12),({(),(

jMsizeijMsizei
jMsizeijMsizeijiO
++−++

+−+=
 (2) 

 

where M  is the bandpass coefficient matrix in the 
immediately larger scale. 

The H-set  is initialized with the coordinates of the final 
lowpass coefficient matrix obtained. The other sets are 
same as in wavelet based SPIHT.  The rest of the algorithm 
is unchanged. The same initializations are made on the 
SPIHT decoder side also. 

These are the modifications needed for applying SPIHT 
to the Contourlet coefficients. 

V. RESULTS AND DISCUSSION 
Two fingerprint images are considered for the 

experiment (Fingerprint-A and Fingerprint-B). The images 
taken are of size 256×256. The PSNR results for 
Fingerprint-A using wavelet transform based SPIHT (WT- 
SPIHT) are tabulated in Table I. This WT-SPIHT comes 
under the standard of JPEG-2000 

From the Fig. 9 it is seen that as the level of 
decomposition increases the value of PSNR is also 
increases, i.e., the hidden information available in different 
subbands are exploited properly giving rise to increased 
PSNR value. This is also evident from the rate distortion 
curves available in Fig. 10, which shows for the higher 
level of decomposition there is roughly about 15 dB 
increase in PSNR for the same compression ratio 
available at lower  decomposition level.  In CT-SPIHT,  the  

Level 1 

Level 3 

Level 2 
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Fig. 9.  Rate Vs. PSNR for Fingerprint- A using WT-SPIHT. 
 

 
Fig. 10.  Compression ratio vs. PSNR for Fingerprint-A using WT-SPIHT. 
 

TABLE II 
PSNR VALUES FOR FINGERPRINT-A USING CT-SPIHT (CR IS SAME AS 

THAT OF WT-SPIHT) 
 

Directions 
in each 
Level 

Rate 
(bpp) 

P-filter: 
9/7; 

D-filter: 
PKVA 

P-filter: 
PKVA; 
D-filter: 

9/7 

P-filter: 
PKVA; 
D-filter: 
PKVA 

P-filter: 
9/7; 

D-filter:
9/7 

0.2 5.98 6.03 6.03 5.98 
0.4 15.48 15.58 15.58 15.48 
0.6 19.78 19.69 19.93 19.72 
0.8 21.40 20.91 21.24 21.13 

4,8 

1.0 23.09 22.29 22.67 22.72 
0.2 18.67 17.55 18.18 18.31 
0.4 21.08 20.20 20.71 20.66 
0.6 22.59 21.57 22.06 22.12 
0.8 23.63 22.56 23.01 23.15 

4,8,16 

1.0 24.44 23.34 23.77 23.99 
0.2 19.69 18.96 19.61 19.21 
0.4 21.56 20.70 21.26 21.07 
0.6 22.94 22.00 22.47 22.43 
0.8 23.85 22.88 23.29 23.35 

4,8,16, 
32 

1.0 24.64 23.62 23.97 24.10 
 
experiment consists of two stages, namely Laplacian 
decomposition followed by directional decomposition for 
the given fingerprints. The two filters chosen for the two 
stages of decomposition are 9/7 filter and PKVA filter. The 
9/7 filter is a bi-orthogonal filter and PKVA filter is coined 
from the first names of the four authors who proposed it, 
i.e., Phoong, Kim, Vaidyanathan, and Ansari [15]. It 
is of quincunx/fan filters type. The different combinations 
between  9/7  and  PKVA  are tried  and the corresponding 

 
Fig. 11.  Rate vs. PSNR for Fingerprint- A using CT-SPIHT for 4 direction 
levels (4, 8, 16, 32). 
 

 
Fig. 12.  Comparison of rate vs. PSNR between CT-SPIHT and WT-
SPIHT for  Fingerprint- A under 3 levels of decomposition.  
 

 
Fig. 13.  Comparison of Compression ratio vs. PSNR between CT-SPIHT 
and WT-SPIHT for   Fingerprint- A under 3 levels of decomposition.  
 
PSNR values are tabulated in Table II. It is evident from 
Fig. 11 that the level of directional decomposition increases 
the PSNR value also increases. 

The results for WT-SPIHT and CT-SPIHT are compared 
and the comparative results are shown in Figs. 12 and 13. 
From these figures, it is seen that for the same compression 
ratio the PSNR value of CT-SPIHT is roughly 5 dB more 
than that of WT-SPIHT.  This implies  that the user can get 
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(a)         (b) 

Fig. 14.  Fingerprint-A reconstructed using 4 levels of decomposition for 
bpp=1 by (a) WT SPIHT.  (b) CT- SPIHT. 
 

TABLE III 
PSNR AND CR FOR FINGERPRINT-B USING WT-SPIHT (FINGERPRINT-B) 

 

Levels Rate (bpp) CR PSNR(dB) 
0.2 40.00 10.81 
0.4 20.00 10.81 
0.6 13.33 13.22 
0.8 10.00 13.26 

2 

1 8.00 14.99 
0..2 40.00 12.37 
0.4 20.00 14.56 
0.6 13.33 16.21 
0.8 10.00 17.73 

3 

1 8.00 18.87 
0.2 40.00 14.77 
0.4 20.00 16.53 
0.6 13.33 18.00 
0.8 10.00 19.30 

4 

1 8.00 20.45 
 

TABLE IV 
PSNR  VALUES  FOR FINGERPRINT-B  USING  CT-SPIHT (CR  IS SAME  AS 

THAT OF   WT-SPIHT) 
 

Directions  
in each 
Level 

Rate 
(bpp ) 

P-filter: 
9/7; 

D-filter: 
PKVA 

P-filter: 
PKVA; 
D-filter: 

9 /7 

P-filter: 
PKVA;  
D-filter: 
PKVA 

P-filter: 
9/7;  

D-filter: 
9/7 

0.2 6.97 6.93 6.93 6.97 
0.4 13.82 13.56 13.69 13.80 
0.6 16.80 16.38 16.64 16.56 
0.8 18.60 18.31 18.56 18.37 

4,8 

1.0 19.52 19.18 19.43 19.35 
0.2 15.71 15.34 15.81 15.33 
0.4 17.89 17.49 17.94 17.63 
0.6 19.04 18.65 19.03 18.84 
0.8 19.98 19.54 19.81 19.85 

4,8,16 

1.0 20.94 20.58 20.83 20.80 
0.2 16.42 16.01 16.39 16.09 
0.4 18.20 17.86 18.13 18.00 
0.6 19.24 18.86 19.08 19.08 
0.8 20.09 19.79 19.93 20.04 

4,8,16, 
32 

1.0 20.96 20.69 20.83 20.90 

 
extra quality of image at the reconstruction end using CT-
SPIHT in comparison with WT-SPIHT. 

This is achieved because of the directional basis 
available for CT-SPIHT not in the case of WT-SPIHT. The 
reconstructed Fingerprint-A using both WT-SPIHT and 
CT-SPIHT is shown in Fig. 14. The process is repeated for 
the second fingerprint, Fingerprint-B. The WT-SPIHT 
results are tabulated in Table III. The corresponding CT-
SPIHT results are tabulated in Table IV. 

From Figs. 15 and 16, once again it is seen that CT-
SPIHT is superior to WT-SPIHT (JPEG-2000). The 
reconstructed Fingerprint-B using both WT-SPIHT and 
CT-SPIHT is shown in Fig. 17. 

 
Fig. 15.  Comparison of rate vs. PSNR between CT-SPIHT and WT-
SPIHT for Fingerprint-B under 3 levels of decomposition.  
 

 
Fig. 16.  Comparison of compression ratio vs. PSNR between CT-SPIHT 
and WT-SPIHT for Fingerprint- B under 3 levels of decomposition. 
 

 
Fig. 17.  Fingerprint-B reconstructed using 3 levels of decomposition for 
bpp=1 by (a) WT SPIHT. (b) CT- SPIHT. 
 

VI. CONCLUSIONS 
It can be seen that the PSNR obtained by CT is higher 

than that of WT for the same CR. Hence, a better image 
reconstruction is possible with less number of bits, by 
using CT. Here, only four filter combinations are 
considered. We are currently pursuing with other filter 
combinations. This is a potential method for efficient 
fingerprint storage and transmission. As the finger prints, 
are mostly having higher amount of contoured and repeated 
patterns, CT performs superior than WT as shown in which 
the conducted experiments. 
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