
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 5, NO. 1, WINTER-SPRING 2006 

1682-0053/06$10  © 2006 JD 

45

  

Abstract—A method for estimating cardiac dynamic 
performance through temporal sequences of X-ray coronary 
angiograms is proposed. The given data are 3D vessel 
skeletons, reconstructed from angiogram sequences on two 
approximately orthogonal views, and correspondences of 
these skeleton points over consecutive instants. 3D cardiac 
surface in terms of an extended superquadrics (ESQ) is 
constructed from vascular skeletons to estimate cardiac 
deformation. According to actual characteristic of cardiac 
dynamics that have been confirmed by medical observations 
and non-rigid motion theory, complex cardiac performances 
are decomposed into global and local components. Parameters 
of all components are estimated through motion 
decomposition as well as compensation. Experimental results 
on clinical data are illustrated and discussed in terms of 
expected benefits and potential limitations. 
 

Index Terms—Coronary angiography, extended 
superquadrics, motion estimation, non-rigid motion. 

I. INTRODUCTION 
ARDIAC motion analysis is fundamental to diagnose 
certain coronary artery diseases, related to circulation 

deficits or myocardial anomalies. This complex task is 
commonly performed by highly qualified specialists 
through comparing the end-systolic contour with end-
diastolic contour of the ventricle and measuring the 
ventricular volume from ventriculograms. Since coronary 
arteries are spatially distributed over the myocardial surface 
and follow cardiac dynamics, their displacements are the 
same as those of the associated epicardium. The cardiac 
dynamic information extracted from coronary vessels has 
attracted increasing attention in cardiac research in recent 
years. 

X-ray coronary angiogram is the main clinical modality 
to record the morphology and performances of arteries 
during cardiac cycles. According to 3D structure of the 
vascular tree reconstructed from a pair of simultaneous 
images acquired on left and right views, details of vessels 
can be observed from different views assisting doctors to 
make accurate diagnosis. Since in clinic LCA (left 
coronary artery) and RCA (right coronary artery) are 
always imaged separately and the morphology of LCA, 
covering the left ventricle (LV) is complex than RCA, LV 

 
Manuscript received April 14, 2005; revised October 4, 2005.  
This work was supported in part by the Chinese Post-doctoral 

Foundation under Grant No. 2004036361 and Chinese National Nature 
Science Foundation under Grant No.30500129. 

The authors are with the School of Precision Instrument and Opto-
Electronic Engineering, Tianjin Universtiy, Tianjin 300072, P. R. China 
(e-mail: sunzheng@tju.edu.cn, dyyu@tju.edu.cn). 

Publisher Item Identifier S 1682-0053(06)0363 

surface model can be recovered from 3D LCA data. 
Deformation of LV can be estimated and the geometrical 
and topological relationships among arteries and 
epicardium can be acquired based on the model. 

Since late 1980’s, coronary arterial and cardiac 
morphology and dynamics analysis in 3D from 
angiographic data have been carried out by cardiac 
researchers. Several cardiac shape models based on simple 
surface primitives have been presented, such as sphere and 
cylinder [1]. But they are too simple to describe complex 
cardiac performances. Coppini [2] recovered the cardiac 
surface based on spherical harmonic functions. A 3D 
kinetic description of heart was obtained by comparing 
cardiac configurations at end-diastole and end-systole. But 
estimation of deformation parameters, such as expansion, 
contraction, and twisting, is rather difficult due to the 
nature of representations with spherical harmonic 
functions. Chen and Huang [3]-[5] presented a 
hierarchical-decomposition based approach to model, 
analyze, and visualize cardiac motion using angiographic 
data. They suggested that both global and local motion and 
deformation of beating heart should be considered 
simultaneously to depict cardiac performance 
comprehensively. 3D coordinates of coronary arterial 
bifurcation points, reconstructed from biplane angiogram 
sequences, were input data. However, since the number of 
bifurcation points extracted from clinical angiographic 
images is rather limited and they are sparsely distributed 
over the cardiac surface, motion estimation results from 
such limited data are not absolutely accurate. 

In this paper, a scheme for reconstructing 3D structure 
and dynamics of LV from sequences of 3D LCA axes is 
proposed. 3D vessel skeleton points are fitted onto a 
deformable model based on extended superquadrics (ESQ) 
surface to estimate cardiac deformation. Local 
performances are quantitatively estimated through non-
rigid motion decomposition. 

II.  METHODOLOGY 
Philips Integris CV single-plane X-ray cardiovascular 

cineangiography system was used to acquire data on two 
common used view angles in clinic, Lao46°Cran21° and 
Rao30°Caud24°, with a video rate of 15 frames per second 
throughout the cardiac cycle. The patients were asked to 
hold their breath immediately before each contrast 
injection. Parameters of the imaging device system like 
view angles and  perpendicular distance between the  X-ray  
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Fig. 1.  Local reference system for estimating global motion. 
 
focal spot and image planes, were recorded to characterize 
the imaging system. Roughly synchronous image pairs 
were selected with the aid of superimposed ECG signals. 
Original images were preprocessed to enhance the contrast. 
The snake based method was adopted to track main vessel 
branch skeletons in successive frames. The real position of 
the 3D vascular axis is located through snake deforming 
from its initial plan by minimizing an energy function that 
is a combination of the characteristics of two  
projections [6]. 

A. Local Reference System 
Firstly, a local reference system (LRS) is built with its 

origin defined as the centroid of LCA skeleton data and 
orientation as the principal axis. As shown in Fig. 1, 

wwww zyxO  is the fixed coordinate system for imaging 
system with X-ray source as the origin wO  and wz - axis 
perpendicular to the imaging plane; oooo zyxO  is the LRS.  
Suppose there are N vessel skeleton points, ( )iii zyx ,, , 

1, 2,...,i N= ; then the geometrical center of these points is 
approximated as the centroid. The principal axis is defined 
as an axis that goes through the centroid and the sum of the 
squared distance between the axis and the individual points 
is minimal [3]. 

The global translation vector T over successive instants 
is the difference between centroids, and the global rotation 
matrix R is the transformation matrix for LRS from one 
instant to another. 

B. Modeling LV Surface 
Human heart as a whole is believed to be an elastic body 

and its shape changes periodically over every cardiac cycle. 
Shape models are built at different instants from 3D 
coronary vessel skeletons to estimate deformations. 
The use of a 3D deformable surface model can result in a 
faster, more robust segmentation technique which ensures a 
globally smooth and coherent surface [7]. Many 
researchers have since explored the use of deformable 
surface models for segmenting structures in medical image 
volumes. In recent years, superquadrics (SQ) have received 
significant attention due to compact representation and 
robust method for recovering 3D objects. However, the 
intrinsic symmetry leads to fail in modeling numerous real-
world objects. Terzopoulos and Metaxas [8] formulated 
deformable SQ incorporating global deformations 
representing prominent shape features, and local 
deformations capturing surface details. As a result, 

deformable SQ is capable of modeling non-symmetrical 
objects. Chen [3] used a SQ surface with tapering and 
twisting deformation to model LV. However, since 
deformable SQs are physics-based models with internal 
deformation energies and do not have closed form 
equations, they may have problems in generating an object 
knowledge database for object recognition. SQ surface 
with such simple deformations is still too simple to 
represent the complex shape of the heart. Zhou [9] 
proposed a new approach called extend superquadrics to 
extend SQ with exponent functions. An ESQ surface is 
defined as: 
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The implicit equation of ESQ is: 

( ) 2 1
2 2 1

( ) ( )2 ( ) 2 ( ) 2 ( )( ) ( ) ( ) 1
f ff f f

x y zx a y a z a
φ φφ φ φ+ + =  (2) 

where, θ and φ  are longitude and latitude angles, with 
22 πθπ ≤≤− , πφπ ≤≤− ; zyx aaa ,, determine the size 

of the surface in zyx ,, directions (in object-centered 
coordinate system); sign(x) is a sign function; exponents 

( )θ1f , ( )φ2f  are functions of θ and φ , which are 
squareness parameters along z- axis and in x-y plane, 
respectively. ESQ can deform in any direction to model 
non-symmetric objects because they extend the exponents 
of SQ to functions of θ and φ . The size of coefficient set 
can be chosen and generally speaking, the number of 
coefficients is comparably smaller than that of other forms 
of surface primitives for describing complex shapes.  

Based on features of ESQ and the complex characteristic 
of LV shape and deformation, an ESQ is adopted to model 
LV with exponent functions represented by a Bezier curve 
of degree three [9],  

( )
3

3 3 2 2 3
0 1 2 3
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where 10 ≤≤ t , )(3 tBi is the Bernstein polynomials of 
degree three, and Pi are control points. 

After transformed to the LRS, vessel skeleton points are 
fitted to an ESQ surface through minimizing an error-of-fit 
function[9] 
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where ( )zyxF ,,  is the inside-outside function, 
( )
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where ⎟
⎠
⎞⎜

⎝
⎛ += 22 yxzarctgθ  and ( )xyarctg=φ . This 

function determines the position of a given point ( )zyx ,,  
relative to the surface: if ( ) 1,, >zyxF , the point is outside 
the surface; if ( ) 1,, =zyxF , it is on the surface; if 

( ) 1,, <zyxF , it is inside the surface. The problem of 
fitting ESQ has to be formulated as a non-linear least-
square problem. Levenberg-Marquardt non-linear 
optimization method is then utilized to accomplish 
the minimization. 
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Fig. 2.  Twisting deformation around z- axis. 
 

 
Fig. 3.  Relationship of spherical coordinates for points before and after 
twisting. 
 

C. Estimating Global Deformation 
Among various deformations, such as expansion, 

contraction, twisting, bending and local stretching, the  
deformation due to expansion or contraction accounts for a 
commanding high percentage. Parameters, depicting 
expansion or contraction in three orthogonal directions, can 
be estimated through comparing size coefficients of ESQ 
models at consecutive instants. The transformation 
equation for expansion/contraction deformation is: 

, ,x y zX x Y y Z zλ λ λ= = =   (6) 

where ( , , )x y z  and ( , , )X Y Z  are coordinates of a point 
before and after deformation defined in the LRS; 

xλ , yλ , zλ  are expansion/contraction scale factors in three 
orthogonal directions. Suppose that size parameters of 
ESQs at two instants are 1 1 1( , , )x y za a a  and 2 2 2( , , )x y za a a ; 
then the scale factors are: 

2 1 2 1 2 1, ,x x x y y y z z za a a a a aλ λ λ= = =  (7) 

Twisting deformation can be expressed as a non-uniform 
rotation with one coordinate component invariant and 
others rotating about that one (Fig. 2). For example, 
twisting around z- axis can be considered as [10]: 

⎩
⎨
⎧

=+=−=
===

zZycxsYysxcX
sczK

,,
sincos,

αααα

ααω ααα
 (8) 

where α  is the rotation angle around z- axis and ωK  is 
the twisting parameter. Since global twisting deformation 
over consecutive instants is approximately uniform, the 
twisting parameter should approximately be a constant.  

Suppose that the Cartesian coordinate of a point P on the 
surface at instant t is 1 1 1 1 1 1 1 1 1( ( , ), ( , ), ( , ))x y zθ φ θ φ θ φ , and 

at t+1 it moves to 2 2 2 2 2 2 2 2 2'( ( , ), ( , ), ( , ))P x y zθ φ θ φ θ φ . 
Expansion or contraction deformation should be 
compensated before estimating twisting parameters. After 
such compensation, the position of 'P  is  

2 2 2 2 2 2 2 2 2"( ( , ) , ( , ) , ( , ) )x y zP x y zθ φ λ θ φ λ θ φ λ  

As shown in Fig. 3, the relationship between ( )11,φθP  
and 2 2"( , )P θ φ  in the spherical coordinate system can be 
deduced: 

12 θθ = , αφφ += 12  (9) 

According to (1), (8) and (9), the twisting 
parameter ωK can be calculated. 

D. Estimating Local Motion 
Correspondences of 3D vessel skeleton points over 

consecutive instants can be acquired by estimating their 
motion between consecutive instants[11]. After global 
motion and deformation are compensated according to 
estimated parameters, the difference between 
corresponding points at consecutive instants is local 
displacement without considering computation errors. 

As known, coronary vessel points are sparely and 
biasedly distributed over the epicardial surface. In order to 
analyze local deformations, local displacements are 
interpolated over their neighborhood [3]. Suppose that the 
spherical coordinate of a given point on the model surface 
at instant t is ( , , )t t tr ϑ ϕ and its position at 

tt ∆+ , ( , , )t t t t t tr ϑ ϕ+∆ +∆ +∆ , is to be estimated. r  
is the radius of a point on the ESQ surface obtained in 
Section II.B: 
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The local displacement field at each instant is also 
expressed as the spherical coordinate variation, ϑ∆ , ϕ∆ . 

( , )
( , )

t t t t t

t t t t t

ϑ ϑ ϑ θ φ
ϕ ϕ ϕ θ φ

+∆

+∆

= + ∆⎧
⎨ = + ∆⎩

 (11) 

The functions, ( , )ϑ ϑ ϕ∆  and ( , )ϕ ϑ ϕ∆ , are 
approximated by spherical harmonic functions, where the 
sample data are local displacements of given vessel 
skeleton points. This problem can be solved by applying 
linear least-squares method. As a result, for any given point 
on the ESQ surface, the coordinate of the correspondent 
point at the next instant can be calculated.  

Helmholtz Theorem states that locally, the motion of a 
sufficiently small volumetric element of a deformable body 
can be decomposed into the sum of a translation, a rotation, 
and a deformation in three orthogonal directions and the 
motion is uniform in the volumetric element [12]. The 
mathematical expression for the motion field of a 
volumetric element belonging to the non-rigid body is:  

[ ] [ ]Tiii
T

iii zyxERTzyx ⋅⋅+='''  (12) 

where ( , , )i i i iP x y z  is a point within the volumetric 
element at instant t and '( ', ', ')i i i iP x y z is its 
correspondence at t+1. [ ]TcbaT =  is the translation 
vector in three orthogonal directions. R is the product of 
the rotation matrices around x-, y-, z-axis 
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Errors in given data

Errors in fitting ESQ

Errors in interpolation of
radial residue distance

Errors in fitting local
displacement field

Errors in estimation of local
motion and deformation

Errors in estimation of
global rigid motion

Errors in estimation of
global deformation

 
Fig. 4.  Possible errors produced in the estimation algorithm and the 
transferring relation. 
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where α , β , γ  are rotation angles around x-, y-, z- axis, 
respectively. For simplification, small angle rotation can be 
assumed to obtain the approximate representation of R :  

⎥
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][ ijeE = ,( 3,2,1;3,2,1 == ji ) is a deformation matrix 
which is symmetric with 2112 ee = ， 3113 ee = ， 2332 ee = . 
So among all nine components of E , there are six 
independent ones, 332322131211 ,,,,, eeeeee . In summary, 
there are totally twelve unknowns in (12), 

),,,,,,,,,,,( 332322131211 eeeeeecba γβα . For each pair of 
correspondences, three equations can be established: 

1 11 12 13

1 21 22 23

1 31 32 33

(1 ) ( ) ( )
( ) (1 ) ( )
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i i i i

i i i i

i i i i
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+

= + + + − + + +⎧
⎪ = + + + + + − +⎨
⎪ = + − + + + + +⎩

(15) 

Hence, in order to determine all twelve unknowns, at least 
four point correspondences within the local volumetric 
element are required. 

III. EXPERIMENT RESULTS AND DISCUSSION 

A. Error Analysis 
Errors are analyzed and calculated in this section to 

evaluate the method. Through analyzing the overall 
calculating process, possible errors existing in every step 
and the transferring relation are shown in Fig. 4.  

Suppose that coordinates of skeleton points at the first 
instant are T

iii zyxX ][ 111
1 =  and those at the second 

instant are T
iii zyxX ][ 222

2 = . Upon compensation of 
global rigid motion for 2X and then transformation of it to 
the LRS at the first instant, global deformation is 
compensated to obtain T

iii mzmymxmX ][ 222
2 = . 

Transforming 1X  to its LRS to obtain 
T

iii mzmymxmX ][ 111
1 = , differences between 

correspondences in x, y, z directions are:  

 
(a) 

 

 
(b) 

Lao46° Cran21°      Rao30° Caud24° 
Fig. 5.  Original image pairs of LCA at two consecutive instants, 
 (a) Instant 1, and (b) Instant 2. 
 

 
Fig. 6.  3D vessel skeletons and motion vectors at consecutive instants 
reconstructed from Fig. 5. 
 

TABLE I 
STATISTIC RESULTS OF DISPLACEMENTS FOR 3D VESSEL SKELETON 

POINTS SHOWN IN FIG. 6 
 

Statistic results of displacements  Value (mm) 
Maximum displacement 14.6227 
Minimum displacement 0 
Average displacement 5.0829 
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−=∆
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−=∆
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12

12
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iii
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 (16) 

The distance between correspondences is  

( ) ( ) ( )222
iiii zyxd ∆+∆+∆=∆  (17) 

where Ni ,...,2,1= . 
Differences described by (16) and (17) are totally due to 

local motion and deformation without considering 
computation errors. However, in the actual estimation 
process, there are inevitable errors in each step and given 
vessel skeleton points due to 3D reconstruction. Under 
such condition, differences in (16) and (17) include two 
parts: local displacements and computation errors. Both 
cannot be completely separated from each other. 
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Fig. 7.  3D view of the LV model estimated from vessel skeletons shown 
in Fig. 6. 

 
(a) 

 
(b) 

Fig. 8.  3D view of the LV shape models estimated from the 3D vessel 
skeletons at (a) ED, and (b) ES.  
 

TABLE II 
MEASUREMENT OF ERRORS (IN MM) IN MOTION ESTIMATION FROM 

VESSEL SKELETON DATA SHOWN IN FIG. 6 
 

Statistic results of errors  Value (mm) 
Maximum error 9.8252 
Minimum error 0.2011 
Average error 5.1391 

Root mean squared error 0.0978 
Standard deviation error 2.2118 

 

B. Results of Real Data 
In this section the experimental results of the proposed 

method applied to real data is presented. Fig. 5 shows two 
image pairs of LCA at consecutive instants acquired on 
view angles of RAO30°CAUD24° and LAO46°CRAN21°, 
which were synchronized with ECG gating signal. 

 
Fig. 9.  3D view of the estimated centroid trajectory (numbers on the 
trajectory represent instants). 
 

Two different views of the 3D vessel skeletons 
reconstructed from Fig. 5 are shown in Fig. 6, where  
the corresponding points were connected with lines 
representing displacement vectors. In Table I, statistic  
results of displacements for total 3372 points on the 3D 
skeletons shown in Fig. 6 are listed. 

The skeleton points at instant 1 were fitted to an ESQ 
surface, shown in Fig. 7. Fig. 8 shows the 3D view of the 
estimated LV global shape from the vessel skeletons at 
end-systole (ES) and end-diastole (ED). 

After estimating cardiac motion and deformation 
parameters over the two instants, original skeleton points at 
the second instant are transformed according to estimated 
dynamic parameters. Then, estimation errors are computed 
by calculating differences between these transformed 
points and corresponding original points at the first instant, 
results listed in Table II. 

The estimated 3D trajectory of the LV centroid along ten 
successive instants is shown in Fig. 9. From the trajectory it 
can be noticed that when one cardiac cycle ends (at the 
tenth instant) the centroid has a tendency to move back to 
its starting position (at the third instant), corresponding 
well to the supposed periodic motion of the heart. 

IV. CONCLUSIONS 
Since inadequacy of myocardial perfusion is frequently 

caused by coronary aterosclerosis leading to vessel lumen 
reduction and regional underperfusion, the estimation of 
the myocardial regions at risk of ischemia or infarction 
provides an important descriptor of the functional status of 
the heart and has prognostic relevance. In this paper we 
have presented an approach to exploit cardiac motion 
through estimating relevant quantitative parameters from 
X-ray coronary angiographic sequences. As coronary 
vessels are natural descriptors of cardiac surface, 3D LCA 
skeletons are adopted in LV surface recovering using 3D 
deformable surface model based on ESQ. From such a 
shape model, the global deformation, such as expansion, 
contraction, twisting, are quantitatively estimated by 
analyzing the variations of model coefficients over 
consecutive instants. The local displacement fields of 
points on the model surface are acquired by interpolating 
the local displacements of coronary vessel skeleton points. 
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We estimate the dynamic components of every small 
volumetric element belonging to the model through 
decomposing the local displacement field based on the 
well-known Helmholtz non-rigid motion theory. 

In the further related work we will use color encoding 
technique in the description of epicardial regions at risk 
and corresponding deformations. 
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