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Discrete Sliding Mode Control for Processes
with Long Dead-Time

D. H. Sha and V. B. Baji¢

Abstract—A new, input-output based discrete sliding mode
control (DSMC) method is proposed for the control of
processes with dead-time. However, it is necessary to
combine DSMC with the Smith predictor for the dead-time
compensation of processes with long dead-time. Because
DSMC is sensitive to apparent dead-time in the process to be
controlled, two Smith predictors were used in the control
schema. One with high order is used to cancel out actual
process output signal as good as possible. Another one with
low order is used in the identification of the controlled
process and in the design of DSMC. When this new DSMC is
compared to the optimally tuned PID controller, it shows
much better overall characteristics. Simulation experiments
are made to illustrate the effectiveness of the new DSMC
both for plants with short and with long dead-times.

Index Terms—Sliding mode control, process control,
Smith predictor.

I. INTRODUCTION

CONTROL of processes with long dead-time is
notoriously difficult [1]-[4]. Some authors like
Shinskey [1] have an opinion that the dead-time is the
greatest problem in process control. Different techniques
are proposed to reduce the problem. One of the best known
is the Smith predictor based control [5]..For control of
processes with long dead-time we will_combine the Smith
predictor with the new discrete sliding ‘mode control
(DSMC) that is developed to cater for such situations.

The Sliding Mode Control (SMC) is characterized by
the existence of a specific operation regime, the so-called
sliding mode, which occurs on a predetermined sliding
surface [6], [7]. The control'is always designed to force
system trajectory to reach:the sliding surface and to slide
along it, or to remain in its vicinity. The SMC is generally
robust to plant parameter variations [6], [8], [9]. However,
there are a number of problems with regard to practical
utilization of the SMC. These motivated different
developments of the SMC. Steady-state performance of the
SMC for continuous systems has been improved by
development of an integral variable structure control
(IVSC), which comprises an integral controller followed
by a variable structure controller (VSC), as proposed in
[10]. IVSC for discrete time systems is developed in [11].
Chattering, which is an inherent problem of the basic
SMC designs, is effectively reduced by solution in [10], as
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well as by other approaches such as via the quasi-sliding
mode [12] and its variation in [13]. Another effective
approach for dealing with chattering is given in [14]. The
SMC for discrete time systems received great attention due
to increased power of computerized control equipment [9],
[11]-[13], [15]-[22]. The SMC, either continuous or
discrete, is not always 1/O based, and requires state
measurements [9], [15], [16]. Practical control engineering
applications in such cases generally demand the use of an
observer in order to provide assessment of the system
states for control implementation. In [17] and [18], an
observer-based SMC for continuous multivariable systems
is proposed. In [19] a version of an observer-based DSMC
is proposed. A number of SMC results that are based on
I/0 measurements only are developed in [23]-[26], [27]. In
[27], discrete-time sliding mode control strategies based on
the multirate output feedback and the quasi-sliding mode
control was discussed. However, all these studies haven't
been applied to the systems with computational time delay
and for systems that have dead-time [28].

In this paper we develop a new VSC for discrete time
systems. Inspired by the results of [10], [11], [20], [21],
[28], [29] and by extending these results further, we
propose an 1/0 based DSMC for single input single output
(SISO) discrete process control systems with dead-time.
The new controller proposed combines: (a) a new
nonlinear output feedback controller designed on the basis
of the Lyapunov's direct method to guarantee the existence
of a sliding mode, (b) an integral control, and (c) a pole
placement procedure, which has been developed for
determining the coefficients of the integral controller gain
and of the sliding mode plane; this procedure is used to
specify the dynamics of controlled system during the
sliding regime. The solution deviates from the one
proposed in [28] and [29] do not suit the need of control of
plants with dead-time. Moreover, the solution presented in
this paper removes restriction of the first order plant model
as required in [28], and thus relates to the arbitrary order
model case. The solution does not require the Smith
predictor in the cases when the apparent dead-time is
relatively small. However, if the dead-time is significant
(as compared to the dominant plant time constant) the use
of the Smith predictor is necessary.

The effectiveness of the proposed solution is verified via
simulation applied to the control two high order processes
with short and long dead-time and subjected to a sudden
external disturbance. The comparison is made with the
results of the control effects obtained by a PID controller
optimally tuned for disturbance rejection [30] and [31].
The results achieved show that the proposed DSMC has
much better overall performance than the optimally tuned
PID controller. The DSMC shows much better tracking

1682-0053/08%20 © 2008 ACECR
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Fig. 1. DSMC block diagram for plant control.

characteristics and retains excellent disturbance rejection
property equal to or better than that obtained by the
conventional optimally tuned PID controller.

I1. DISCRETE SLIDING MODE CONTROL

The proposed configuration of the DSMC, which is
based exclusively on the 1/O data, is shown in Fig. 1 and
consists of three parts: (a) an integral control that is used
to enable tracking of an arbitrary input signal to the system
and to reduce-eliminate chattering, (b) a nonlinear output
feedback control, and (c) an adjustable sliding mode block
(SM) to guarantee the existence of sliding motion. TDL in
Fig. 1 denotes a tapped delay line whose output vector has
as its elements the delayed values of the input signal.

A. System Model in the Controllable Canonical Form

Let us consider a plant model with the transfer function
in the discrete time domain given by

Y (z) 2%z bz P +.4byz ™) 2Bz Y (1)
- -1
)

where, Y and U are the z transforms of the model
output 'y and the input u, respectively. . Also,
g (i=1..,n) and b; (i =1..,m) are time invariant
coefficients and d is the process dead-time:(pure time
delay). Note at this point that in addition to the actual
process dead-time d can also accommodate computational
time delay necessary for the implementation of the control
algorithm. In (1), A and B are the polynomials in z .
The controllable canonical form of the state equations for

plant model is
x(k +1) =Gx (k) +Hu (k) +Qv (k -1),
y (k) =Cx (k)
where the second equation is the plant output equation.
Matrices in (2) have the following structures

X(K)=[x3(k) . Xgun ()]

U@) 1+az '+a,z ?+..+a,z " A(z

)

=[yk-n-d+1) .. yk-1) yK)] eREM
[0 1 0 .. 0 O 0 .. 0]
001 .0 0 0 . 0
000 ..0 0 0

G:
000 0 1 0
000.0 0 0 . 1
000 .0 —-a -a; - —a]

<R ((;+n)x(d +n)

0 .. 0
0 .. 0
0 .. 0
— R(d+n)x(m—1)’
=y . o€
0 .. 0
[P e B2 ]
uk —m+1)
u(k —m +2)
vk -1)= eRMDL
u(k —2)
u(k -2)
H=[0 .. 0 _b] er@™M4
C=[0 ...0 0 .. 1]eR™@™

B. Control Law
We will consider the control law given by

u(k)=-L"x(k) ®3)

We point here that because of the output equation in (2)
and the form of C, the vector x is obtained from
the  process output y . Let us select the switching
hyperplane as

S (x,$)=p x (k) =k S (k) (4)
where p; =const, i =1..,d+n-1 p4,, =1, and Kk,
is an integral controller gain, with

ck)=e(k -D+c(k -1, e(k)=rk)-yk) ()

A nonlinear control law that will ensure global
asymptotic stability of the system is obtained (see
Appendix A) by means of the Lyapunov's direct method as

u(k)=-L" (k)x (k)

1 p' Gx (k)+d\/+;n sgn(b)D" sgn(x )|s, | (6)

by +pT Qv (k —1)—k, ¢ (k +1)

where |D; <1, i=12,..,d+n, and |p|<1.

In (6), ¢(k +1) is known at the moment k , since here
we define ¢(k)=e(k -1)+¢(k -1), instead of
S(k)=e(k)+¢(k-1) as used in [28]. In [28], to get
¢(k +1) at the moment k one has to use ¢(k) to
approximate ¢ (k +1). Although this change seems trivial,
it results in the completely different set of coefficients of
the sliding mode plane and the integral gain (see the next
section) and thus has a crucial effect on the quality of the
algorithm in the presence of the dead-time in the plant.
This is of particular importance as we use the Smith
predictor structure to compensate for the significant dead-
time; this structure relies on the approximate plant models
which introduce errors in the dead-time estimates. Thus
the whole structure operates as possessing some small
dead-time.

The control law given above is discontinuous and needs
to be smoothed for implementation. As usual, we can
replace signum nonlinearity by a saturation nonlinearity,
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which is specified as
sgn(x),
X 1¢,

where ¢ is boundary layer thickness. With this boundary
layer, the SMC control law given by (6) becomes

if|x|> ¢

Sat(x’¢)={ if || <¢

1|p"Gx (k) +O|\/;nsgn(b1)DT sat (x /¢)|sy |
-= +

MpTQu(k —1)—k, S (k +1)

u(k)=

C. Integral Control Gain and Coefficients of the
Switching Hyperplan
During the sliding motion, s, (x,£)=0, i.e,

{pTx(k)—k.ak):o,
Xgn (K)+Z{ Py x5 (k) Kk (k) =0
Using this and (2) the system equations can be reduced
to the following linear equations
{xi (K)=z"9"x, (k) i=Ld+n-1,
Xa.n (K) =k & (K) =28 pix; (k)
Thus, the transfer function of the system described by the
above equations is obtained as
Xgn (K) kz ™t
rk)  kz -z YA Tz )

—d-n+i

=k, Z_l[l+(pd+n—1_1+kl )z _1+"'+(pi —Piw)?
o t(Py —Pga)Z " (P Pp)z T - pyz

It is important to note that because this characteristic
equation is independent of plant parameters, the control
will be robust to the plant parameter variations for. motions
on the switching hyperplane. System can. achieve zero
steady-state error and the eigenvalues. of .its model
describing behavior on the switching hyperplane can be set
arbitrarily. Let the desired eigenvalues of the system on the
switching  hyperplane  be [ 4 ,i=%---d +n or,
equivalently, let the desired characteristic equation on the
switching  hyperplane <be [T%"(z +4)=0 e
29" 4oz a2 T by, =0, Then,
comparison of the coefficients of this equation and the
coefficients of the characteristic equation of the system,
implies that the integral control gain and the switching
hyperplane coefficients ‘can be chosen as follows (for
derivation see Appendix B)

k| =1+ Z?;’lnai,
Pgn =1

Pgina = Pgin +oq—Ky,
Pi =Pinat+&gini, i =0d+n-2,2,

-d=n ]—1

P1=—04n-

I1l. DSMC AND COMPENSATION OF LONG DEAD-TIME BY
THE SMITH PREDICTOR

For process control it is more typical to have process
with significant dead-time. A standard way to compensate
for the presence of dead-time is the use of Smith predictor
[5]. In our simulation, we will utilize a variant of the
Smith predictor as depicted in Fig. 2 [32]. Let the process

u
DSMC satuation
Controller & rate limit

Fig. 2. A variant of the Smith predictor structure.

has the model G(s)e™™ where G(s) is the rational
transfer function and L is the process dead-time. For
processes of higher order or more complex dynamic, we
would first attempt to obtain as good as possible model
G,y (s)e™° to be used for cancellation of the actual
process output signal y . This model can be of relatively
high order. If the order of G,,(s) greater than two is
obtained for good cancellation, then we need the additional
identification of the process by a lower order model
G,(s)e ™

The reason for using these two approximations in the
Smith predictor schema is the sensitivity of the DSMC to
apparent dead-time in the process to be controlled.
Combining DSMC with the Smith predictor, the following
equations hold e=r—(Y=Ymi+Ym2):
Y1 =[Gpi(S)e ™ 1u, Ymz =[Gm2(8)]u,
y =[G (s)e "] +T,), where u is the control signal and
T, “denotes the disturbance that the loop may experience.
The transfer function G,;(s) and the estimated dead-time
L, of the process model act to compensate the actual
process output y . The other model of a lower order
represented by G,,(S) serves as an estimate of the
transfer function G (s) of the process without dead-time in
the Smith predictor schema. This approach gives very
good results when applied to practical situations.

IV. SIMULATION EXPERIMENTS

A. Process with Short Dead-time

The simulation study will be performed to verify the
control performance of the new DSMC. The first
experiment is based on the sixth order model with short
dead-time. The continuous transfer function is of the form

Y (s) _ 64 e 0055
Us) [(s+1(s+2)(s +4)]°

The sampling time is T, =0.01, so the time delay of
this system is five steps, i.e. d =5. Since the dead-time is
relatively small compared to the dominant time constant of
the process, we will not use any dead-time compensation
technique.

The results for the DSMC will be shown simultaneously
with the results for an optimally tuned PID controller
based on the step disturbance rejection. To avoid control
signal jumps with PID control, an additional slew rate
limiter and control magnitude limiter are added to the
control system and used with both the DSMC and the PID
controller. The slew rate limits are selected as [-10, 10]
and the saturation values of the control limiter as [-3, 3] .
The reference PID controller is optimally tuned
to minimize step type disturbances acting at the input of
the process with the rate limiter and control signal limiter
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Fig. 3. Process responses, control signals, error and sliding mode motion
with short dead-time.

L L
[¢] 10 20

active. The performance index function was taken as the
integral (sum) absolute error (IAE) between the achieved
process response and the given reference infit [30], [31].
The tuned parameter vectors for the DSMC  are selected
as A" =[0.993 0.99]eC", D' =[05 -05]eR", and
parameters for PID controller are K, =09, K; =0.7,
K4 =1.8, respectively. The control loop responses for the
process controlled by the DSMC and by the PID controller
are plotted in Fig 3. One can observe the significantly
better performance achieved by using DSMC, than by
using optimized PID, both for setting point tracking and
disturbance rejection properties. It is important to note that
the control signal is smooth - no chattering appears in
DSMC. The sliding motion is close to zero during entire
control process.

B. Process with Long Dead-time

To illustrate the performance of the new DSMC we
consider the process of 6th order with the long dead-time.
Its transfer function is

5) = 64 . o105
[(s +1)(s +2)(s +4)]

For this system we have to use-dead-time compensation
and we will use the one based on the Smith predictor. The
model of the fourth order for the cancellation of the signal
y in the Smith predictor schema is obtained as

0.06395%+0.03488 +1.46565 +0.7597
s* +4.6507s>+5.8618s 2 +3.6052s +0.7597

e—10.7l755

G (s) =

while the second order model in the second parallel
feedback branch in the Smith predictor control structure is
obtained as

0.5135
CRNOE

s2 +1.2608s +0.5135

The control signals, both for PID and DSMC, are set
under the constraints of the slew rate change to [-10, 10]
and the control magnitude range to [-3,3]. The PID
controller is optimally tuned for disturbance rejection,
where the criterion selected was IAE, and disturbance was
of step-type. The values of the controller gains
K, =6.8411, K; =10, K, =6.8799, were limited
in the range of [0, 10]. The reference model for the DSMC
is first order system with time constant 1. Two poles
are respectively selected as 0.93 and 0.99. The process

e—11.0217s .
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Fig. 4. Process with long dead-time.
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Fig. 5. The gain of process has a perturbation by increasing 5%.

response to the step input and disturbance, and the control
signals are plotted in Fig. 4. Simulation results show that
DSMC can improve the set-point response significantly
while maintaining the disturbance rejection property
virtually the same as with the optimally tuned PID
controller. The control signal of the DSMC has
no chattering.

To show the robustness of DMSC to the parameter
perturbation, the gain of process has been increased by 5%.
Fig. 5 shows that the DSMC still gives the best results on
the setting point tracking although the tracking of setting
point changed a little bit both with DSMC and PID
control.

PID control gains (K, =4,K; =0.7, K4 =1.8) have
been manually adjusted to set up the best result for the
setting point tracking which is similar to the result that
DSMC achieved. However, DSMC control gives the best
result on disturbance rejection (see Fig. 6).

V.CONCLUSIONS

The new DSMC based on input-output measurement is
proposed and its application in control of systems with
long dead-time is presented. Simulation studies reveal that
this approach offers an effective solution. Results have
shown that the proposed DSMC performs much better than
conventional (optimally tuned) PID controller. In the
experiment with system having small dead-time, both the
set-point tracking and disturbance rejection are better than
that with the optimally tuned PID controller. In the
experiment with long dead-time, the disturbance rejection
remains virtually the same for the DSMC and the PID
controller, while the set-point tracking is considerably
better with the DSMC. In both cases the control signal
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Fig. 6. The optimal PID was tuned based on setting point.

generated with the DSMC does not have chattering.

In summary, the proposed DSMC has the following
characteristics: (1) it has excellent tracking properties; (2)
the sliding mode motion can be set up arbitrarily via pole
placement technique; (3) DSMC can achieve a zero steady
state error and can track arbitrary input; (4) DSMC is
based only on input and output data and does not need
state measurements or estimates; (5) it has good
disturbance rejection property; (6) it is able to operate
effectively even in the presence of some time delay; (7)
unlike general sliding mode control, the control signal has
no chattering. However, the Lyapunov’s method used in
the derivation of the control law essentially implies that
this type of controller is most suitable when there is only a
small time delay in the process. Thus, in cases when
significant time delay occurs, which is a typical situation
in process control, the dead-time compensation structures
(e.g., Smith predictor) has to be used in combination with
DSMC.

APPENDIX

A. Derivation of Discrete Sliding-Mode Control Law

The following proof is similar-to the method used in
[28] and [29]. Let V, =sZ(x,£) be a Lyapunov function.
For global asymptotic stability of the switching plane
Sk (X,&)=0. We need

AV =V —Vy
=S¢ =Sk <(p <V, =(p-Dsi <0
i.e.,

Se,1— PSf <0 where |p| <1

50 that —/pp Sy [<Sy.1 <+/p |8k | Using (2), (3), and (4)
one gets

Sk =PI X (K +D -k, S (k +1)
=p" [Gx (k)+Hu(k)+Qv (k —1)] -k, ¢ (k +1)

_p [Gx (K)+H (L x (k) +Qu (k —1)}—k, c(k +1)
Seaa =P [ OX (K)=HL x (k) +Qu (k =1) |-k, ¢ (k +1)
=p" G -HL )x (k)+p' Qv (k =) -k, & (k +1)

Letw (k) =p' Qv (k —1) -k, ¢ (k +1) then

s =P (G —HL Jx(K)+p" Qv (k ~D—k £ (k +1)
=p' (G ~HL )x(k)+w(k)
Note that p' H = p,,.b, =b;, and that p"H (p' H)™*
and if we define x (k) as
x" (k)
x" (k)x (k)

then also x*(k)x(k) =1 if |x (k)[=0. With this we can
write
ey =P (G —HLT )x(k)+w(k)

x (k)=

(G —HLT )x(k)+w(k)x’1(k)x(k)

=p" (G —HL" Jx (kK)+p" H (P H)™w (k)x (k)x (k)
= pTGx (k)= p" HL x (k) + p" H (p" H) W (k)x (kK )x (k)
= pTGx () =P H L x (k)= (" H)w (k)x (k)x (k) |
= pTGx (k)= p" H [ LT = (p" H)™w ()x (k) [x (k)

= PG —H [T HY ™ (k)x (0 ] (k)
So, let
LU=l 1, T, =1 =(pTH) M (k)x (k)
T:[fl fo . fd+n]:(pTH)_lpTG:pTG/b1
1
_F[O Pr Pg1 Pg & Pga—a
1
Pa+i —n-i pd+n—1_a1:|

and the expression for s, ., becomes
S =P (G —HL )x (k)
=p' H(p" H)7p"Gx(k)-p HL x (k)
=p"H[(p"H) PTG - [x(K)
=p"H(f" -L")x(k)

d+n

=by(F T —LT)x(k)=b, X (f; —=I;)x; (k),
i=1

Sei =P (G —HL Jx(k)+w (k)
=p" (G —HL Jx (k) +w (k)x ™k )x (k)
=p" (G —HLT Jx(K)+p"H (pTH)™w (k)x (k)x (k)
=pTGx (k)—=p"HL x (k)+p"H (p" H)™w (k )x (k) (k)
=p"Gx (k)= p" H [L"x (k)= (p" H) ™ (k)x " (k)x (k)|
=pTGx (K)=pTH [LT =(p" H)™w (k)x (k) [x (k)

=" (G —H [T =(p" H) A (Ox 20) | x (k)
sothat if I, =f, + D, Jpsi ‘ , then
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d+n _

sk =by ) (Fi =17 )x; ()
\/75k
(d +N)X; (k)p H

Jpsi _
@rmxgoprn|)
J ()

:|Xi(k)

\/75k

Y@ +n)x, (k)b

~ ‘ k‘ bl d+n X (k)
—\/;d+nt)12( D; ‘X (k)j do‘sk"
where
_ Jp by den xi (k)
°d +n@i§1 D [x; ()]
If |D;| <1, i=12,...d+n, then
Vo by ( x-(k)] Jp "*”( x-(k)}
d = 1 = _Di 1
ol = d+n\b1\2 Gl den 2L o)
S I CO TR < )
o|+nZ '\xi(k)H_dm; ‘_Di‘\xi(k)\
P P
_d‘/:n;Disd‘/:n(d+n)_\/;<l,

so that —/p | ¢ |< e <4/p IS¢ |

From LT =L" —(p"H) ™ w(k)x (k) = [fl fz...fd+nl one can
obtain L" =L" +(p"H)w(k)x (k) =[l; lelg.,} which

implies
T Tiy-1 % (k)
l =1+ (pTH) (k) 5o 0x®)
) Vpsi e %K)
= B o] " MO ok
P Josi ] w(k)x; (k)

(b b ()x()”
or

L"=+fT +ésgn(bl)\sk\iT +éw(k)x’1(k)

= é p'G +ésgn(b1)\sk\KT
+é[pTQv(k - -k ¢k +1)]x’1(k)

- é{pTG sgn(b)fse %+ [pTQuk ~1) k¢ (k + DA (o))

Wlth XfT (k)= \/; Dl D2 Dd+n
d+n| k() |xp(k) Xq 1 (K))
.

R PR (I

() X" (K)x(K)

Finally

u(k)=-L" (k)x (k)
=476 +sany)fs [ +[pT QU (k -~k £k +) MK ()
1

=_bi[pTGx (k)+sgn(y)]sy [X7 x () +PT Qv (k =D~k S (k +1) |
1

sgn(x)[s |

_ 1 p' Gx (k)+d\/; sgn(o,)D"
=7, ! +n
+pT Qv (k —D)—k, £ (k +1)
B. Determination of Integral Control Gain and
Coefficients of the Switching Hyperplane
Similar to the methods used in [28] and [29], the sliding
motion satisfies s, (x,£) =0, i.e.
{pTx(k) k¢ (k) =0,
Xgon (K)+Z{ Py % (k) Kk (k) =0
the system described-by (2) and above equation can be
reduced to the following linear equations
Xy (k +1) =x5(k) =2 42, (K),
Xo(k +1)=x5(k) =2 "%y (K),

X (k4D =X, (k) =2 7" k),

Xd+n—1(k +1) =Xg4n (k ):
X0 (K) =K, S () =02 pi x; (k)

i.e., to
Xi (K +1) =x; (k) =2 (K),
i=1--d+n-1,
Xgon (k) =k, (k) =28 pix; (k)
This gives
{x-(k) =779y, (K), i =1 d +n-1, (1)
Xg+n(K) =k § (k) = 25" px (k).
From (5), one can obtain
gk)=e(k -D+4(k -1
=r(k -1 -y (k-1 +c(k -1
=1k -1 —xg.,(k —D)+<(k —1)
Thus
(k)= 1le_l [r(K)=Xg.n ()] (B2)

By substituting (BZ) to the second part of (B1) we get

d+n-1

Xd+n(k)_ [r(k) Xd+n(k)] Zp|x|(k)

:ll ,1[r(k)_xd+n(k)]_ Zpizidinﬂxthrn(k)

The transfer function of the system described by the above
equations is reduced to

Xd+n(k) _ k Z_l
I’(k) k,Z +(1 Z—l)(1+zd+n—1 —d—n+i)
=Ky 2 ML+ (Pgong —1+Kk )z e
+(pi = Pia)2 T b (g — P2 "
+(P1— P2)Z Ao Pz et
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So the characteristic equation of the system is

d+n d+n-2

27" 4 (Pgna —1 k)28 (g ng — Paina)Z
ot (P = Pia)Z o+ (Pg — Pg1)2°
+o+ (P = P)z—pr=0.

Let the desired eigenvalues of the system be

My Agens  OF, equivalently, let the desired
characteristic equation be

@ + 1) +2p) (@ + 26 )@ +7g.1) (@ +Ag40) =0 or
29" 2" 0,292 oy gy, = 0. By comparing
the coefficients of the above equation and those of the
characteristic equation of the system, the integral control
gain and the switching plant coefficients can be chosen to
satisfy the following

= Pgyn-1— Pasn TKis
& = Pg4n-i ~ Pd+n-i+1s

A41n-1= P1-Pa2;

A4n =P

Solving the above simultaneous equations, gives the
desired coefficients in the form

ki =1+ 38" e,
Pasn = 1,

Pasn-1 = Pasn T8 =Ky,
Pi = Pisat+Qgunip 1=d+N=2,-+2,

PL=-Qgn-
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