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Abstract—Fast Euclidean Direction Search (FEDS) and 
Recursive Adaptive Matching Pursuit (RAMP) are two 
recently introduced algorithms for adaptive filtering 
characterized by low computational complexity, good 
convergence, and numerical robustness. While conceived from 
quite different perspectives, we point out, that both 
algorithms are closely related and can be interpreted as 
different variants of 1) A matching pursuit procedure applied 
to a particular over-determined equation set, 2) A constrained 
Least Squares (LS) optimization problem, and 3) A Gauss-
Seidel like iterative solution procedure applied to a normal 
equation. Both FEDS and RAMP have been demonstrated 
experimentally to possess excellent convergence behavior in 
several application scenarios. However, a tool for predicting 
the convergence of these algorithms based on second order 
statistics is lacking. This paper provides such a tool to study 
the convergence analysis of these adaptive filter algorithms. 
This tool relies on energy conservation arguments and doses 
not restrict to assume specific models for the regression data. 
Finally, we demonstrate through simulations that these results 
are useful in predicting adaptive filter performance. 
 

Index Terms—Adaptive filter, fast Euclidean direction 
search (FEDS), recursive adaptive matching pursuit (RAMP), 
convergence analysis. 

NOMENCLATURE 
.  Norm of a scalar. 
.  Euclidean norm of a vector. 

2t Σ  Σ -weighted Euclidean norm of a column 
vector t  defined as Tt tΣ . 

( )vec T  

Creating an 2 1M × column vector t  through 
stacking the columns of the MM ×  matrix T . 

( )vec t
 

Creating an MM ×  matrix T  from the 
2 1M ×  column vector t . 

 

BA ⊗
 

Kronecker product of matrices A  and B . 
(.)Tr  Trace of a matrix. 

(.)T  Transpose of a vector or a matrix. 
{.}E  Expectation operator. 

⊕  Modulo operator. 
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I. INTRODUCTION 
ast Euclidean Direction Search (FEDS) [1] and 
Recursive Adaptive Matching Pursuit (RAMP) [2] are 

two recently introduced algorithms for adaptive filtering 
characterized by low computational complexity, good 
convergence, and numerical robustness [3]. Both 
algorithms have been demonstrated to be useful in several 
applications [1], [2], [4]-[8]. 

These algorithms were originally derived from very 
different perspectives: The FEDS algorithm was 
formulated [1] as simplified conjugate gradient adaptive 
filter in which the search directions were restricted to the 
Euclidian directions [ ]0, ,0,1,0, ,0 Tg i = … … , where the 1  
appears in the i ’th position. On the other hand, the RAMP 
algorithm was motivated [9], [2] through the application of 
a matching pursuit (MP) procedure to the iterative solution 
of the over determined equation set. 

( ) ( ) ( )TX n h n d n=  (1) 

where 

0 1 1( ) ( ), ( ), , ( ) T
Mh n h n h n h n−= …⎡ ⎤⎣ ⎦  (2) 

is the column vector of M  filter coefficients at time n , 

0 1 1( ) ( ), ( ), , ( )T
MX n x n x n x n−= …⎡ ⎤⎣ ⎦� � �  (3) 

with these columns defined through  

[ ]( ) ( ), ( 1), , ( 1) T
jx n x n j x n j x n j L= − − − … − − +� (4) 

with )(nx  denoting the input signal to the adaptive filter. 
The selection of L M>  determines the memory of the 
adaptive algorithm. Note that the columns of ( )X n , 
denoted by ( )ix n  for 0,1, , 1i L= … − , are 

[ ]( ) ( ), ( 1), , ( 1) T
ix n x n i x n i x n i M= − − − … − − +  (5) 

The vector ( )d n  of desired signal samples is given by 

[ ]( ) ( ), ( 1), , ( 1) Td n d n d n d n L= − … − +  (6) 

Given these seemingly differences in the conception of 
FEDS and RAMP it is important and interesting to observe 
that the algorithms are closely related. In the first part of 
the paper, we summarize and expand results of our 
previous research [9], [10], [2] by first interpreting the 
algorithms as different variants of (a) a matching pursuit 
procedure [11] applied to a particular over- determined 
equation set, (b) a constrained Least Squares (LS) 
optimization problem, and finally (c) a Gauss-Seidel like 
iterative solution procedure applied to a normal equation. 
Based on this, the exact relationship between FEDS and 
RAMP is identified. 
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While strong empirical evidence support the claims 
about good convergence behavior of both FEDS and 
RAMP, a tool for predicting the convergence of these 
algorithms based on second order statistics is lacking. In 
the case of transient analysis, or convergence analysis, 
important recent contributions are the analysis of data 
normalized adaptive algorithms [12] (for example the 
Normalized Least Mean SHVquare (NLMS) algorithm), 
the (family of) Affine Projection Algorithm(s) (APA) [13], 
[14] and Data-Reusing adaptive algorithms [15] where 
excellent agreement between theoretically obtained results 
and simulations are obtained. The convergence analysis of 
these algorithms relies on energy conservation arguments 
and does not restrict the regressors to assume specific 
models for the regression data.  

We also presented in [16], a general framework to 
convergence analysis of adaptive filters. In the next section 
the interpretations of FEDS and RAMP algorithms are 
presented. In the third part of the paper, we provide a tool 
to study the convergence analysis of FEDS and RAMP 
algorithms based on energy conservation arguments. 
Following this, we present the expressions for the learning 
curve, the excess mean square error and the mean square 
coefficient deviation. We conclude the paper by showing a 
comprehensive set of simulations supporting the validity of 
our approach. 

II. INTERPRETATIONS OF FEDS/RAMP 
In the interpretations to be presented here, we shall use 

the objective function 
2

( ) ( ) ( )Td n X n h n−  (2) 

whose minimum with respect to )(nh  is sought. A direct 
solution to this problem, for each time index n , leads to a 
sliding window Recursive Least Squares (RLS) algorithm. 
By slightly modifying the definition of the ( )TX n  and 

)(nd , we can alternatively obtain an exponentially 
weighted RLS algorithm. Both implementation alternatives 
and numerical properties of such algorithms have been 
extensively studied [17], [18]. To summarize, such 
algorithms are characterized by high computational 
complexity and numerical stability problems related to the 
need to recursively compute the inverse of an estimated 
autocorrelation matrix. It is a common experience that the 
more efficient the implementation of an RLS algorithm is, 
the more severe are the attendant numerical problems, see 
for example page 128 of [19]. 

Both FEDS and RAMP can be viewed as attempts at 
devising low complexity adaptive filter algorithms with 
good numerical properties. For both algorithms this is done 
by filter coefficient update equations updating only one 
element of the filter vector at a time. At each time instant, 
n , we can perform one or more such updates. The number 
of such single coefficient updates performed at each time 
instant is denoted by P . With this objective function of (7) 
and a constraint on its recursive minimization given by the 
restriction that only one element of )(nh  is to be updated 
at a time, we can adopt several viewpoints as detailed 
below. For clarity of presentation, we shall now use 
notation ( )prevh  and ( )newh  to denote the filter vector 

before and after an update. Three possible , and in 
retrospect, equivalent points of view related to the problem 
as stated above are as follows. 

A. Matching Pursuit  
Given the filter vector ( )prevh  before an update, the 

residual vector associated with (7) is [2], [9], [11] 
( )( ) ( ) ( ) prevT

ae n d n X n h= −  (8) 

We may interpret ( )ae n  as the error associated with the 
approximation of ( )d n  as a linear combination of columns 
of ( )TX n  where the elements of ( )prevh  are the 
associated weighting coefficients. Updating one element of 

( )prevh , say, corresponds to adding 
i

∆  times column no. 
i  of ( )TX n , i.e. ( )ix n� , to the current approximation of 

)(nd . To obtain maximum improvement to the 
approximation of ( )d n , it is obvious that ( )i ix n∆ �  must 
be selected as the best possible approximation to ( )ae n  
onto each unit length column ( ) / ( )i ix n x n� � , 

0,1, , 1i M= … −  and  identifying the index j  
corresponding to the maximum projection. In other words 

arg max ( ) ( ) ( )T
i iai

j e n x n x n= � �  (9) 

The corresponding approximation to ( )ae n  is the 
projection in the direction of the selected vector  

( )jx n� , i.e. 

2

( ) ( )
( ) .

( ) ( )

( ) ( ) ( ) ( )

j jT
a

j j

T
j j ja

x n x n
e n

x n x n

e n x n x n x n
−

=
� �

� �

� � �

 (10) 

Based on this we identify j  given above as the index of 
the element of ( )prevh  to be updated and the corresponding 
update equation as 

2( ) ( ) ( ) ( ) ( )Tnew prev
j j j jah h e n x n x n

−
= + � � . (11) 

The procedure described above directly corresponds to 
the application of one step pf a Basic Matching Pursuit 
(BMP) procedure to the problem of approximating vector 

)(nd  by a linear combination of dictionary vectors 
{ }0 1 1( ), ( ), , ( )Mx n x n x n−…� � �  [20]. 

B. Constrained LS 
Directly attacking (7) with a postulated update equation 

given by [11] 
( ) ( ) .1new prev

j jh h= + ∆  (12) 

where 1j  denotes a vector of all zeros except element j  
which is a 1, and minimizing with respect to j∆  gives the 
same update equation as (11). In selecting the index of the 
filter coefficient to update, j , this is selected as the index 
for which the update equation gives the maximum 
reduction of the residual norm. Not surprisingly, j  is to be 
selected as in (9). 

C. Gauss-Seidel  
The Gauss-Seidel [2] iterative scheme for the solution of 

sets of linear equations bxA =  is given by the following 
element updates for 0,1, , 1j M= … −  [21] 
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1
( ) ( ) ( )

,
, 0

1 M
new prev prev

j j lj j l
j j l

x x b a x
a

−

=

⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (13) 

where the indexed quantities have obvious definitions. 
Applying this to normal equation associated with (7), i.e. 

( ) ( ) ( ) ( ) ( )TX n X n h n X n d n=  (14) 

the element update equations for 1,,1,0 −= Mj …  are 
given by 

{ }

1
( ) ( ) ( )

2
0

( )( )
2

( )
( ) ( )

( )

( )
( ) ( )

( )

T M
jnew prew prev

j j l l
lj

T
j prevprev T

j

j

x n
h h d n h x n

x n

x n
h d n X n h

x n

−

=

⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

= + −

∑
�

�
�

�

�

 (15) 

In view of (8) we see that this update equation is exactly 
the same as (11). Again the question as the selection of j , 
the index of the element of ( )prevh  to update, surfaces. In 
direct application of the Gauss-Seidel procedure it is 
common practice to start with 0=j  and increment j  by 
one counted modulo M  before each update computation. 
It is also possible to select j , before each update 
computation, such that the update computation has the 
maximum residual reducing effect. This variant of the 
Gauss-Seidel method is referred to as the Southwell 
method. This method enjoyed some popularity among civil 
engineers in conjunction with stress computations before 
the use of computers in the solution of linear equations 
became widespread. Again, it should come as no surprise 
that the maximum residual reducing selection of the 
coefficient to update is given by (9). 

In summary, with three different lines of thought, we 
have established the update equation 

{ }( ) ( )( ) ( )
( ) ( ) 2

( )

( )
. ( ) ( )

( )

T
j n prevnew prev

j n j n

j n

x n
h h d n X n h

x n
= + −

�

�
 (16) 

when coefficient )(nj  has been identified as the one to 
update. We have identified two ways of selecting )(nj : (a) 
incrementing )(nj  sequentially by n  modulo M  

)( Mn ⊕ , and (b) selecting )(nj  in a such a way as to 
maximally reduce the residual of the corresponding update 
computation. 

The former selection in conjunction with (16) results in 
the RAMP algorithm. It is convenient to write the update 
equation as 

( ) ( )

( )( )
( )2

( )

1 ( ) { ( ) ( ) }

new prev

prevT
j n

j n

h h

i X n d n X n h
x

= +

× −
�

(17) 

where ( )j ni  is the M M×  matrix with a 1 in position 
( ( ), ( ))j n j n  and zeros in all other positions, i.e. a matrix 
leaving row no. )(nj  of the matrix with which it is 
premultiplied and zeroing out all the other rows. If more 
than one coefficient update is to be performed for each time 
instant, n , we substitute notation )(nj  by ( )lj n  with 

1,,1,0 −= Pl …  where P  is the number of updates to 
perform at each sample time. 

We close this section by pointing out that efficient 
implementations of FEDS/RAMP are available. For 

exponentially weighted and sliding window versions, it is 
well known that implementations having a multiplicative 
complexity given by (5 )P M+  can be devised [2]. If we 
use a block exponentially weighted version [1], 
implementations with a multiplicative complexity of  
(3 )P M+  are possible. 

III. INTERPRETATIONS OF FEDS/RAMP 
The transient behavior of any adaptive filtering 

algorithm is clearly of interest. The analysis strategy 
adopted below is based on [14] in which the performance 
of the APA was analyzed. However the scope of the 
present analysis is to study the convergence behavior of 
FEDS and RAMP algorithms. 

The convergence behavior of an adaptive filter algorithm 
is determined by the evolution of the expected squared a 
priori error with time n , i.e. 2{ ( )}aE e n . The a priori error 
is defined as 

( ) ( ) ( )T
ae n x n h h nt⎡ ⎤= −⎣ ⎦  (19) 

where th  is the unknown filter vector we are trying to 
estimate. Defining the coefficient deviation vector 

)()( nhthn −=ε , we have ( ) ( ) ( )T
ae n x n nε= . This 

implies that 
22{ ( )} { ( ) ( )} { ( ) }T

a RE e n E n R n E nε ε ε= =  (20) 

where again the definition of the autocorrelation matrix 
{ ( ) ( )}TR E x n x n=  has been used. Thus, to find  

the learning curve, we need to find 2{ ( ) }RE nε as a 
function of n . 

Indeed we can find a recursion for 2{ ( ) }E nε Σ , where 
Σ  is some positive definite symmetric matrix of dimension 
commensurate with that of )(nε . Assuming a linear model 
for the desired signal, )(nd , given by 

( ) ( ) ( )T
td n x n h v n= +  (21) 

which we prefer to express as 
( ) ( ) ( )T

td n X n h v n= +  (22) 

where )(nv  is measurement noise assumed to be zero 
mean, white, Gaussian, and independent of the input signal 
matrix ( )X n . Now we prefer to replace ( )newh  and 

( )prevh  by ( 1)h n +  and )(nh , respectively. Therefore we 
can write (17) in the form of (23) 

( 1) ( ) ( ) ( ) ( )h n h n C n X n e n+ = +  (23) 

where 

( )2
( )

1( )
( )

j n

j n

C n i
x n

=
�

 (24) 

and 

( ) ( ) ( ) ( )Te n d n X n h n= −  (25) 

is the output estimation error vector. If 1P ; , we get 
somewhat more involved expression for ( )C n . Finding the 
general expression for ( )C n , when 1P ; , is explained in 
detail in Appendix. 
Using the ( ) ( )n h h ntε = − , we obtain from (23), 

( 1) ( ) ( ) ( ) ( )n n C n X n e nε ε+ = −  (26) 
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from (25) and (22), the output estimation error vector ( )e n  
can be stated as 

( ) ( ) ( ) ( )Te n X n n v nε= +  (27) 

substitute (27) in (26), we obtain 

( 1) ( ) ( ) ( ) ( ( ) ( ) ( ))Tn n C n X n X n n v nε ε ε+ = − +  (28) 

now taking the Σ -weighted norm from the both  
sides of (28) 

2 2( 1) ( ) ( ) ( ) ( )

{ ( )}

Tn n v n X n v n

Cross terms involving one instance of v n

ε ε Σ
′Σ Σ+ = + +  (29) 

where 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T T T

C n X n X n

X n X n C n X n X n X nΣ

′Σ = Σ − Σ −

Σ +
 (30) 

and 

( ) ( ) ( ) ( ) ( )T TX n X n C n C n X nΣ = Σ  (31) 

taking the expectation from both sides of (29) 
2 2{ ( 1) } { ( ) }

{ ( ) ( ) ( )}T

E n E n

E v n X n v n

ε ε ′Σ Σ
Σ

+ = +
 (32) 

we obtain the time evolution of the weight-error variance. 
The expectation of 2( )nε ′Σ  is difficult to calculate because 
of dependency of ′Σ  on ( )C n , ( )X n , and of ( )nε  on 
prior regressors. To solve this problem we need to use the 
following independent assumptions [14]. 

1) The matrix sequence ( )X n  is independent and 
identically distributed. 

2) ( )nε  is independent of ( ) ( ) ( )TC n X n X n . 
using these independence assumptions, the final result is 

2 2{ ( 1) } { ( ) }

{ ( ) ( ) ( )}T

E n E n

E v n X n v n

ε ε ′Σ Σ
Σ

+ = +  (33) 

where now Σ′  is 

{ ( ) ( ) ( )}

{ ( ) ( ) ( )} { ( ) ( ) ( )}

T

T T T

E C n X n X n

E X n X n C n E X n X n X nΣ

′Σ = Σ − Σ −

Σ +
(34) 

Looking only at the second term of the right hand side of 
(33) we have 

{ ( ) ( ) ( )} { ( ( ) ( ) ( ))}

( { ( ) ( )} { ( )})

T T

T

E v n X n v n E Tr v n v n X n

Tr E v n v n E X n

Σ Σ

Σ

= = (35) 

since 2{ ( ) ( )}T
vE v n v n Iσ= , (33) can be stated as 

2 2 2{ ( 1) } { ( ) } ( { ( )})vE n E n Tr E X nε ε σ Σ
′Σ Σ+ = +  (36) 

Now using the vec  operation in the both sides of (34) 

( ) ( ) ( { ( ) ( ) ( )})

( { ( ) ( ) ( )} )

( { ( ) ( ) ( )})

T

T T

T

vec vec vec E C n X n X n

vec E X n X n C n

vec E X n X n X nΣ

′Σ = Σ − Σ −

Σ +  (37) 

since, in general ( ) ( ) ( )Tvec P Q Q P vecΣ = ⊗ Σ , we find 
that (37) can be written as 

( { ( ) ( ) ( )} ). (

{ ( ) ( ) ( )}). ( {( ( ) ( )

( )) ( ( ) ( ) ( ))}).

T T

T T T

T T T

E X n X n C n I I

E X n X n C n E X n X n

C n X n X n C n

σ σ σ

σ

σ

′ = − ⊗ − ⊗

+

⊗

 (38) 

where ( )vecσ ′ ′= Σ  and ( )vecσ = Σ . With definition of the 
2 2M M×  matrix G  

{ ( ) ( ) ( )}

{ ( ) ( ) ( )} {( ( ) ( ) ( ))

( ( ) ( ) ( ))}

T T

T T T T

T T

G I E X n X n C n I I

E X n X n C n E X n X n C n

X n X n C n

= − ⊗ − ⊗

+

⊗

(39) 

Equation (38) can be stated as 

.Gσ σ′ =  (40) 

Looking at the second term of the right hand side of (36) 

( { ( )}) ( { ( ) ( ) ( ) ( )}. )T TTr E X n Tr E C n X n X n C nΣ = Σ (41) 

and defining γ  through 

( { ( ) ( ) ( ) ( )})T Tvec E C n X n X n C nγ = , (42) 

then 

( { ( ) ( ) ( ) ( )}) .TT TTr E C n X n X n C n γ σ=   . (43) 

With the above considerations, the recursion of (36) can 
now be stated as 

2 2 2{ ( 1) } { ( ) } T
vGE n E nσ σε ε σ γ σ+ = +  . (44) 

Focusing again on the learning curve, we substitute R  for 
Σ , define ( )Rvecr = , and find 

2 22

2 1

{ ( )} { ( ) } { (0) }

{ }

na r G r

T n
v

E e n E n E

I G G r

ε ε

σ γ −

= = +

+ + +…
 (45) 

This expression is easy to compute recursively once we 
have estimates for G  and R . Such estimates are easily 
obtained from a single realization of the signals involved in 
the adaptive filter. From this recursion, we will be able to 
evaluate excess mean square error (EMSE), when n  goes 
to infinity 

2 1( )T
vEMSE I G rσ γ −= −  (46) 

and the mean square coefficient deviation (MSD) is  
given by 

2 1( ) ( )T
vMSD I G vec Iσ γ −= −  (47) 

since )()()()( nvnnTxne += ε , we obtain that 
2 2 2{ ( )} { ( )}a vE e n E e n σ= +  (48) 

According to (48), the expression for the steady state mean 
square error (MSE) is given by 

2 1 2( )T
v vMSE I G rσ γ σ−= − +  (49) 

IV. SIMULATION RESULTS 
In a system identification setup we applied an input 

signal )(nx  generated through ( ) ( 1) ( )x n x n w nρ= − +  
which is a first order autoregressive signal. ( )w n  can be 
either zero mean white Gaussian signal or a zero mean 
uniformly distributed random sequence between -1 and 1. 
In the first case, we set 0.9ρ = , and in the second case, 

0.5ρ = . With 0.9ρ =  and 0.5ρ = , a highly colored and 
a somewhat colored signal will be generated respectively. 
The unknown filter th  was selected at a random length 8 
vector and a initial filter (0)h  was set to the zero vector.  
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Fig. 1.  Simulated and theoretical learning curves for FEDS algorithm with 

32L =  and various selections for P . Highly colored ( 0.9ρ = ) Gaussian 
input. 
 

 
Fig. 2.  Simulated and theoretical learning curves for FEDS algorithm with 

64L =  and various selections for P . Highly colored ( 0.9ρ = ) Gaussian 
input. 
 

 
Fig. 3.  Simulated and theoretical learning curves for FEDS algorithm with 

32L =  and various selections for P . Somewhat colored ( 0.5ρ = )  
uniformly distributed input. 
 

The assumed filter lengths of the FEDS/RAMP 
algorithms were also set to 8 and the window length was 
set to 32L =  and in the other experiment was set to 

64L = . White measurement noise, ( )v n , uncorrelated 
with ( )x n  and with 2 310vσ −=  was added to the noise free 
desired signal generated through ( ) ( )T

td n h x n= .  

 
Fig. 4.  Simulated and theoretical learning curves for FEDS algorithm with 

64L =  and various selections for P . Somewhat colored ( 0.5ρ = )  
uniformly distributed input. 
 

 
Fig. 5.  Simulated and theoretical learning curves for RAMP algorithm 
with 32L =  and various selections for P . Highly colored ( 9.0=ρ ) 
Gaussian input. 
 

 
Fig. 6.  Simulated and theoretical learning curves for RAMP algorithm 
with 64L =  and various selections for P . Highly colored ( 9.0=ρ ) 
Gaussian input. 
 

The simulated learning curves were obtained by 
averaging the estimation error over 200 independent 
realizations. The theoretical learning curves obtained by 
adding a fixed value, 2 310vσ −= , to 2{ ( )}aE e n  found using 
the recursion of (45). Simulated and computed learning 
curves  for  the  FEDS/RAMP  for  various  selections of P  
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Fig. 7.  Simulated and theoretical learning curves for RAMP algorithm 
with 32L =  and various selections for P . Somewhat colored ( 0.5ρ = )  
uniformly distributed input. 
 
and window length L  and for two input signals are given 
in Figs. 1-8. As is readily observed, we have reasonably 
good agreement between actual and computed learning  
curves in all figures. Thus, our claim regarding the 
usefulness of (45) is justified. 

V. CONCLUSIONS 
We have presented three alternative interpretations of the 

recently introduced FEDS and RAMP adaptive filter 
algorithms showing that the two algorithms are essentially 
the same except for the way in which the index of the 
element of the filter vector to be updated is determined. In 
FEDS the coefficients are updated in a sequential manner, 
whereas in RAMP the coefficient update resulting in the 
maximum reduction in the residual norm is determined 
prior to each update. Interestingly, this difference 
corresponds directly to the difference between a “straight” 
Gauss-Seidel approach and the Southwell method to the 
iterative solution of linear equation sets. For both 
algorithms, we have also presented a convergence analysis 
resulting in a recursion for theoretically computing the 
learning curve. Following this we provided the expressions 
for the learning curve, the excess mean square error and the 
mean square coefficient deviation. The value of this 
recursion as a tool in predicting the convergence speed of 
the algorithms has been demonstrated. 

APPENDIX 
In this appendix, we explain how can we find the general 

expression for )(nC , when 1;P . Initialize h  at new 
time instant. 

[0] [ ]( 1) ( )ph n h n+ =  (50) 

Therefore, the output error vector can be stated as 
[0]( ) ( ) ( ) ( 1)0

Te n d n X n h n= − +  (51) 

When 1;P , the following algorithm is performed during 
each new time instant n , 

 
Fig. 8.  Simulated and theoretical learning curves for RAMP algorithm 
with 64L =  and various selections for P . Somewhat colored ( 0.5ρ = ) 
uniformly distributed input. 
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where ( ) ( )
lj nC n  in the last row of this algorithm is 

2
( ) ( ) ( )( ) . ( )

l l lj n j n j nC n i x n
−

= . (52) 

The detail of the last row in this algorithm can be 
explained from the following relations 
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 (53) 

where [ ]( ) ( ) ( ) ( 1)lT
le n d n X n h n= − + . 

From the above considerations, we can write the 
following relation between iteration 1−P and P  

1 1

[ ] [ 1]

2

( ) ( ) 1

( 1) ( 1)

. ( ) ( ) ( )
p p

p p

j n j n p

h n h n

i x n X n e n
− −

−
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+ = + +
 (54) 

which with the definition 
2

( ) ( )( ) . ( )
l ll j n j nC n i x n

−
=  (55) 

gives 
[ ] [ 1]

[ 1] [ 1]

( 1) ( 1)
( ) ( ) ( )

p p

p p

h n h n
C n X n e n

−

− −

+ = +
+

 (56) 

Now by using on (56), we find the following relation 
between iteration P  and 0 

1
[ ] [0]

0
( 1) ( 1) ( ) ( ) ( )

p
p

i i
i

h n h n C n X n e n
−

=
+ = + +∑  . (57) 
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But from (53), )(nie  can be stated as 
1

0
0

( ) { ( ) ( ) ( )}. ( )
i

T
l

l
e n I X n C n X n e ni

−

=
= −∏ . (58) 

Finally, the update equation from iteration 1+n  to n  
and with P  iteration in each new time instant n  is 

{
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Comparing (59) with (23), we find that to evaluate the 
performance of FEDS and RAMP algorithms, when 1;P , 
we need to modify (59) to find the matrix )(nC . Looking 
again at (59), the update equation can be written as in the 
form of (60) 

{
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Therefore, when 1;P , the matrix )(nC  can be found 
from (61). 

1 1

0 0
( ) ( ). [ ( ) ( ) ( )]

p i
T

i l
i l

C n C n I X n X n C n
− −
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= −∑ ∏  (61) 

ACKNOWLEDGMENT 
We would like to express our thanks to ITRC for their 

financial support of this project (TMU 85-12-85).  

REFERENCES 
[1] T. Bose and G. F. Xu, "The euclidean direction search algorithm 

adaptive filtering," IEICE Trans, Fundamentals, vol. E85-A, no. 3, 
pp. 532–539, Mar. 2002. 

[2] J. H. Husøy, "RAMP: An adaptive filter with links to matching 
pursuits and iterative linear equation solver," in Proc. ISCAS, vol. 4, 
pp. 381-384, Bangkok, Thailand, May 2003. 

[3] J. H. Husøy, "A comparative study of some simplified RLS-type 
algorithms," in Proc. First Int. Symp. on Control, Communications 
and Signal Processing, pp. 705-708, Hammamet, Tunisia, Mar. 
2004. 

[4] J. H. Husøy, J. Eilevstjønn, T. Eftestøl, S. O. Aase, H. Myklebust, 
and P. A. Steen, "Removal of cardiopulmonary resuscitation artifacts 
from human ECG using an efficient matching pursuit-like 
algorithm," IEEE Trans. on Biomedical Engineering, vol. 49, no. 11, 
pp. 1287-1298, Nov. 2002. 

[5] M. S. E. Abadi and J. H. Husøy, "Channel equalization using 
recursive adaptive matching pursuit algorithm," in Proc. Iranian 
Conf. on Electrical Engineering, pp. 265-268, Zanjan, Iran, 
May 2005. 

[6] M. S. E. Abadi, A. M. Far, S. Daneshvar, and M. Lotfizad, 
"Recursive adaptive matching pursuit in noise cancellation for 
speech enhancement," in Proc. 2nd Int. Conf. on Information and 
Knowledge Technology, Tehran, Iran, Jun. 2005. 

[7] M. S. E. Abadi, A. M. Far, E. Kabir, and R. Ebrahimpour, "Image 
restoration using two dimensional fast Euclidean direction search 
based adaptive algorithm," in Proc. 4th IEEE Int. Workshop 
WSTST’05, pp. 182-191, Muroran, Japan, May 2005. 

[8] M. S. E. Abadi and A. M. Far, "Two dimensional recursive adaptive 
matching pursuit filter," in Proc. 11th Int. CSI (Computer Society of 
Iran) Computer Conference, pp. 240-246, Tehran, Iran, Jan. 2006. 

[9] J. Ommundsen and J. H. Husøy, "An adaptive filter based on 
matching pursuits," in Proc. NORSIG, pp. 40-44, Trondheim, 
Norway, Oct. 2001. 

[10] J. H. Husøy and J. Ommundsen, "A novel algorithm for adaptive 
filters based on optimum selective update of coefficients," in Proc. 
Applied Electronics, pp.114-121, Plzen, Czech Republic, Sep. 2001. 

[11] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency 
dictionaries," IEEE Trans. Signal Processing, vol. 41, no. 12, 
pp. 3397-3415, Dec. 1993. 

[12] T. Y. Al-Naffouri and A. H. Sayed, "Transient analysis of data-
normalized adaptive filters," IEEE Trans. Signal Processing, vol. 51, 
no. 3, pp. 639-652, Mar. 2003. 

[13] H.-C. Shin and A. H. Sayed, "Transient behavior of affine projection 
algorithms," in Proc. Int. Conf.  Acoustic. Speech. Signal Proc., 
vol. 4, pp.  353-356, Hong Kong, Apr. 2003. 

[14] H.-C. Shin and A. H. Sayed, "Mean-square performance of a family 
of affine projection algorithms," IEEE Trans. Signal Processing, 
vol. 52, pp. 90-102, Jan. 2004. 

[15] H.-C. Shin, W. J. Song, and A. H. Sayed, "Mean-square performance 
of data-reusing adaptive algorithms," IEEE Signal Processing 
Letters, vol. 12, pp. 851-854, Dec. 2005. 

[16] J. H. Husøy and M. S. E. Abadi, "Transient analysis of adaptive 
filters using a general framework," Automatika, Journal for control, 
Measurement, Electronics, Computing and Communications, vol. 45, 
pp. 121-127, 2004. 

[17] S. Haykin, Adaptive Filter Theory, Fourth ed. Upper Saddle River, 
NJ. USA: Prentice Hall, 2002. 

[18] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, 2003. 
[19] J. R. Treichler, C. R. Johnson, and M. G. Larimore, Theory and 

Design of Adaptive Filters. Upper Saddle River, NJ: Prentice Hall, 
2001. 

[20] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado, "Forward 
sequential algorithms for best basis selection," IEE Proc. Vis. Image, 
Signal Processing, vol. 146, no. 5, pp. 235-244, Oct. 1999. 

[21] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS 
Publishing, 1996. 

 
M. Shams Esfand Abadi was was born in Tehran, Iran, on September 18, 
1978. He received the B.S. degree in electrical engineering from 
Mazandaran University, Mazandaran, Iran and the M.S. degree in 
electrical engineering from Tarbiat Modarres University, Tehran, Iran in 
2000 and 2002 respectively, and the Ph.D. degree in biomedical 
engineering from Tarbiat Modarres University, Tehran, Iran in 2007. Since 
2004 he has been with the department of electrical engineering, Shahid 
Rajaee Teacher Training University, Tehran, Iran. During the fall of 2003, 
spring 2005, and again in the spring of 2007, he was a visiting scholar 
with the Signal Processing Group at the University of Stavanger, Norway. 
His research interests include digital filter theory and adaptive signal 
processing algorithms. 
 
John H. Husøy received the M.Sc. and Ph.D. degrees in electrical 
engineering from the Norwegian University of Science and Technology. In 
his early career he was involved in hardware and software development in 
various positions in several companies in Canada and Norway. Since 1992 
he has been a Professor with the Department of Electrical and Computer 
Engineering, University of Stavanger, Norway. His research interests 
include adaptive algorithms, digital filtering, signal representations, image 
compression, bioelectrical signal processing, and image analysis. 
 
A. Mahlooji Far was born in Qom, Iran, on July 1, 1965. He received the 
B.S. degree in electrical engineering from Tehran University, Tehran, Iran 
and the M.S. degree in electrical engineering from Sharif University, 
Tehran, Iran in 1988 and 199, respectively, and the Ph.D. degree in 
biomedical engineering from the University of UMIST, Manchester, UK. 
Since 1997 he has been an Associate Professor with the department of 
electrical engineering, Tarbiat Modarres University, Tehran, Iran. His 
research interests include digital signal processing, medical imaging and 
image analysis. 

 

www.SID.ir


