
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 8, NO. 1, WINTER-SPRING 2009 

1682-0053/09$10  © 2009 ACECR 

9

  

Abstract—A novel method for ferroresonance detection is 
presented in this paper. Using this method ferroresonance can 
be discriminate from other transients such as capacitor 
switching, load switching, transformer switching. Wavelet 
transform is used for decomposition of signals and Multi 
Layer Perceptron (MLP) neural network used for 
classification. Ferroresonance data and other transients are 
obtained by simulation using EMTP program. Results show 
that the MLPNN trained with the Levenberg–Marquardt 
algorithm is effective for discriminating Ferroresonance from 
other transients. 
 

Index Terms—MLP neural network, ferroresonance, 
EMTP program, wavelet transform, Levenberg–Marquardt 
algorithm. 

I. INTRODUCTION 
ISTURBANCE due to ferroresonance is a common 
phenomenon in electric power distribution system 

operation. Depending on circuit conditions, its effect may 
be a random over voltage that could be either a short 
transient for few cycles, a continuous over voltage or even 
a jump resonance. It causes both phase-to-phase and phase-
to-ground high sustained oscillating over voltages and over 
currents with sustained levels of distortion to the current 
and voltage waveforms, leading to transformer heating 
together with excessively loud noise due to 
magnetostriction, electrical equipment damage, thermal or 
insulation breakdown and mal-operation of the protective 
devices. Detection of ferroresonance presents still 
important and unsolved protection problem, especially in 
distribution networks. In the area of power quality several 
studies have been carried out to detect and locate 
disturbances, for example, Kalman Filter System [1], Short 
time-filter Fourier Transform [2], Fuzzy Expert Systems 
for classification of Power Quality disturbances [3], 
automatic classification based on extraction of 
characteristics of wavelets [4], Bayesian classification [5], 
Neural Networks [6], and Hidden Markov Model [7]. The 
wavelet transform has been used to detect and locate 
various types of power quality disturbances, decomposing 
a disturbance into its wavelet coefficients using a Multi-
Resolution Analysis (MRA) technique. Santoso et al. set 
up an investigation line on this area with the work 
presented in [8], then the authors in [9] make the proposal 

 
Manuscript received November 8, 2007; revised June 8, 2008. 
G. Mokryani is with Islamic Azad University, Soofian Branch, Soofian, 

I. R. Iran (e-mail: gmokryani@gmail.com). 
M. R. Haghifam is with Tarbiat Modares University, Tehran, I. R. Iran 

(e-mail: haghifam@modares.ac.ir). 
Publisher Item Identifier S 1682-0053(09)1663 

that, based on uniqueness of squared WT coefficients at 
each scale of the power quality disturbance, a classification 
tool such as neural network may be employed for the 
classification of disturbances [10], [11]. In high 
frequencies, wavelet transform has a good time resolution 
and a weak frequency resolution. 

On the contrary, in low frequencies, it has a good 
frequency resolution and a weak time resolution. In this 
paper a new ferroresonance detection method that uses 
wavelet transform and MLP neural network is presented. In 
high frequencies, wavelet transform has a good time 
resolution and a weak frequency resolution. Ferroresonance 
data was gathered from a 20 kV radial distribution feeder 
in a real network. Transient state data was produced by 
simulation using EMTP program. The ferroresonance 
phenomenon and theory are introduced in Sections II and 
III, a case study and data collection are explained in 
Section IV. Wavelet transform and MLP neural network 
are introduced in Sections V and VI, respectively. 
Simulation results are shown in Section VII. 

II. FERRORESONANCE PHENOMENON 
Ferroresonance is a particular type of oscillation, which 

can occur when a non-linear inductance is connected in 
series or parallel with a capacitance. Power networks are 
made up of a large number of saturable inductances (power 
transformers, voltage measurement inductive transformers 
(VT), shunt reactors), as well as capacitors (cables, long 
lines, capacitor voltage transformers, series or shunt 
capacitor banks, voltage grading capacitors in circuit-
breakers). Therefore, ferroresonance may occur in any 
power system. The main feature of this phenomenon is that 
more than one stable steady state response is possible for 
the same set of the network parameters [12]. Inductive 
voltage transformers (VTs) are widely used to measure 
power system voltages. These equipments are highly 
favorable to ferroresonance in vicinity of capacitive 
sources. VTs are connected between phases or between 
phase and ground. One form of ferroresonance involving 
VTs can occur in a three-phase system as the result of an 
unbalanced switching operation when the VT is connected 
between two phases. In this condition, the capacitance of 
the open phase is energized through the magnetizing 
inductance of the VT. Another example is energization of a 
VT through grading capacitors of an open circuit breaker 
while the VT is connected between phase and ground. 
Since in these cases the inductance and capacitance are in 
series, this type of ferroresonance is sometimes referred to 
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Fig. 1.  Proposed algorithm. 

 
Fig. 2.  Ferroresonance circuit. 
 
as series ferroresonance. When a VT is connected between 
phase and ground, the magnetizing inductance of the VT is 
in parallel with the zero sequence capacitance of the 
system. With such VT, a second type of ferroresonance can 
occur during a temporary overvoltage due to an islanding 
condition with insufficient voltage regulation or a single 
phase to ground fault in an isolated neutral system. In these 
conditions, as the VT saturates, there is an exchange of 
energy between the zero sequence capacitance of the 
system and the highly nonlinear magnetizing inductance of 
the VT. The rapid changes in VT core flux during this 
period can produce high overvoltages. Since in this case 
the inductance and capacitance are in parallel, this second 
type of ferroresonance is sometimes referred to as parallel 
ferroresonance. The probability of both types of 
ferroresonance occurring is somewhat unpredictable as 
both depend on such factors as the cable lengths, the 
amount of system capacitance, the connection and 
saturation characteristics of the transformers, the amount of 
load or burden, etc. Numerous articles have been written on 
various aspects of ferroresonance phenomenon, from 
recording actual cases of ferroresonance or qualitative 
analysis of ferroresonance cases to computer aided 
modeling [13]. Most solutions use a simple mathematical 
expression to represent the non-linear B-H characteristic of 
the transformer core. Using the proposed algorithm that 
shown in Fig. 1, we can predict some possibilities in 
happening ferroresonance and so we can face it with 
making some relays. 

III. FERRORESONANCE THEORY 
Consider the circuit of Fig. 2, in which the linear 

inductance has been replaced with a nonlinear inductor. 
When the series resistance is ignored, the sum of the 

voltages around the only mesh of the circuit can be 
rewritten as 

( ) ( ) ( ) 0s c lV t V t V t− − =  (1) 

The value of cV  can be replaced by its time-integral 
expression and lV  as the total derivative of ( ) ( )L i i t . Then 
(1) can be written as 

1( ) ( ) [ ( ) ( )] 0s
dV t i t dt L i i t

C dt
− − =∫  (2) 

Evaluating (2) and substituting ( ) ( )q t i t dt= ∫  will 
result in 
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Fig. 3.  Graphical solution of ferroresonance circuit. 
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From (3) it is evident that finding a closed-form solution 
for this nonlinear circuit will be quite difficult. This would 
be made more evident by adding a source impedance and 
by proving a complete equivalent of the transformer. 
Historically, methods of graphical solution for the circuit of 
Fig. 2, including the series resistance, can be obtained from 
two independent relationship for the voltage across the 
inductance and the capacitance. The voltage across the 
inductor is proportional to the frequency, and the voltage 
across the capacitance is proportional to the current and 
inversely proportional to the frequency and capacitance. 

( )l

c

V f I
IV
C

ω

ω

=

= −
 (4) 

The total magnitude of voltage for the circuit is 
2 2( ) ( )s l cV V V RI= + +  (5) 

From (4) and (5), the voltage across the nonlinear 
inductor can be written as 

2 2( )l s
IV V RI
Cω

= − +  (6) 

The first term in the right-hand side of (6) 
( 2 2( )sV RI− ) represents an ellipse whose main axes 
have the magnitude of sV  and /sV R , and the second term 
is a straight line having slope of /I Cω . Adding these two 
quantities represents an oblique ellipse, whose intersection 
with the characteristic of lV  presents the three possible 
states of the oscillation of the circuit. Fig. 3 shows the 
graphical solution for the ferroresonance circuit of Fig. 2. 
Points 1 and 2 in Fig. 3. represent the stable solution, 
whereas point 3 represents an unstable solution. 

To show this, rewrite (6) as 

2 2 2( ) [ ( ) ]s
IRI V f I
Cω

= − −  (7) 

If the quantity [ ( ) / ]f I I Cω−  increases in magnitude 
with an increase in current, then according to (7), 2( )RI  
tends to decrease, and this suppresses any further increase 
in current. Thus stability is achieved. However, if  
the quantity [ ( ) / ]f I I Cω−  decreases in magnitude, with 
an  increase  of  current,  the magnitude  of  2( )RI   tends to  
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Fig. 4.  20 kV feeder.  
 

 
Fig. 5.  Magnetizing curve. 
 

  
Fig. 6.  An example of ferroresonance. 
 
increase and under this condition, the current continues to 
increase and the solution is unstable. The dashed area in the 
Fig. 3 shows the variation of the magnitude of 
[ ( ) / ]f I I Cω− . Point 3 in Fig. 3 corresponds to an 
unstable solution since [ ( ) / ]f I I Cω− decrease with an 
increase of current. In the same figure points 1 and 2 
represent the stable solution. 

IV. DATA COLLECTION 
In order to obtain the signals, a part of a 20kV feeder has 
been selected in Qeshm Island which is illustrated in  Fig. 4  

 
Fig. 7.  An example of capacitor switching. 
 
[14]. These signals include: ferroresonance, capacitor 
switching, load switching, and transformer switching 
signals. The models determined to be simulated by the 
EMTP software are, π  and load frequency model 
(CIGRE), for line and load respectively, saturable model is 
used for all transformers. The inductor with hystersis loop 
of TYPE 96 was used for modeling hystersis loop in 
EMTP, which was connected to the outlet magnetizing 
branch of the transformer. The magnetization curve of the 
transformers is illustrated in Fig. 5. Feeder information is 
provided in the appendix. Load data and transformers data 
is provided in Tables I and II, respectively. All kind of 
ferroresonance that different parameters such as switching 
types, transformer connection type, hystersis phenomenon, 
line capacitance feature, line length and load impact which 
can be influential in the occurrence of this phenomenon 
have been simulated. Fig. 6 illustrates a type of 
ferroresonance which has been simulated by the EMTP. 
Different types of capacitor switching have been obtained 
through the switching of the two capacitor banks of the 
feeder in various forms. For simulating different types of 
load switching, we switch the loads in different 
arrangements. For example, we firstly switch them one at a 
time, then two at a time, and other arrangements can be 
achieved by switching one or two of the loads with a part 
of the feeder. Thus, different signals are obtained. An 
example of which is provided in Fig. 8. For simulating the 
transformer switching signals, we switch the transformers 
in different orders. For example, we switch the 
transformers one at a time, then two at a time, and different 
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TABLE I  
CONSTANT PARAMETERS OF THE CIGRE LOAD MODEL USUALLY 

CONSIDERED IN THE EMTP PROGRAM 
 

Capacity of connected 
transformers (kVA) 

nI  
(A) 

cI  
(A) 

bI  
(A) 

aI  
(A) 

No. 

630 90 110 78 115 1 
800 165 220 200 295 2 
500 0 55 60 40 3 
1250 0 220 250 200 4 
315 8 40 40 40 5 
250 10 25 25 20 6 
100 0 40 50 80 7 
500 40 70 40 85 8 
315 40 120 130 145 9 
500 65 205 180 205 10 
630 25 105 100 125 11 
800 20 50 60 30 12 
315 25 55 55 65 13 
630 99 105 140 155 14 
250 17 55 55 60 15 
315 32 45 57 33 16 
100 15 20 20 5 17 
500 25 75 65 60 18 
250 35 60 65 25 19 
315 28 75 85 80 20 
100 5 15 15 15 21 
315 45 145 130 175 22 
800 55 150 175 165 23 
1250 45 150 150 125 24 

 
types can be achieved by switching one or two of the 
transformers with a part of the feeder. Thus, different 
signals are obtained. An example of which is provided in 
Fig. 9. This way, for each group of signals, 100 types can 
be obtained. Then we normalize (scale) them in the max-
min range (0 to 1). This is very influential in the exact 
determination of the features and every pattern. 

V. WAVELET TRANSFORM 
Wavelet Transform (WT) was introduced by Morlet at 

the beginning of 1985 and has attracted much interest in 
the fields of speech and image processing. Applications of 
DWT in power systems are reported for: 

• Power system transients [15]. 
• Power quality assessment [16]. 
• Modeling of system component in wavelet domain [17]. 

In this section an introduction to wavelet transform is 
presented. More details can be found in [18], [19]. The WT 
was developed as an alternative to the short time Fourier 
Transform (STFT) to overcome problems related to its 
frequency and time resolution properties. More 
specifically, unlike the STFT that provides uniform time 
resolution for all frequencies, the DWT provides high time 
resolution and low frequency resolution for high 
frequencies and high frequency resolution and low time 
resolution for low frequencies. The DWT is a special case 
of the WT that provides a compact representation of a 
signal in time and frequency that can be computed 
efficiently. The DWT is defined by the following equation 

/ 2( , ) ( )2 (2 )j j

j k
W j K x k n kϕ− −= −∑∑  (8) 

where (t)ϕ  is a time function with finite energy and fast 
decay called the mother wavelet. The DWT analysis can be 
performed using a fast, pyramidal algorithm related to 
multi-rate filter banks. As a multi-rate filter bank DWT can 

 
Fig. 8.  An example of Load switching. 
 

 
Fig. 9.  An example of Transformer switching. 
 

 
Fig. 10.  Decomposition of ferrosonance by Daubechies mother wavelet. 
 
be viewed as a constant Q  filter bank with octave spacing 
between the centers of the filters. Each sub band contains 
half the samples of the neighboring higher frequency sub 
band. In the pyramidal algorithm the signal is analyzed at 
different frequency bands with different resolution by 
decomposing the signal into a coarse approximation and 
detail information. The coarse approximation is then 
further decomposed using the same wavelet decomposition 
step. This is achieved by successive high pass and low pass 
filtering of the time domain signal and is defined by the 
following equations:  

∑ −=
k

high nkgnxky ]2[][][  (9) 

∑ −=
k

low nkhnxky ]2[][][  (10) 

where [ ]y k  high and [ ]y k  low are the outputs of the 
high pass ( g )  and low pass ( h )  filters,  respectively after  
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TABLE II  
TRANSFORMER DATA 

 

scP  (W) 1In  % ocP  (W) UK% 1 2/N N  Connection S (kVA) No. 

151247 2.83 22410 14 63/20 kV Yd1 3000 1 
16400 1.4 2100 6 20/0.4 kV Dy5 1250 2 
13500 1.4 1750 6 20/0.4 kV Dy5 1000 3 
11000 1.5 1450 6 20/0.4 kV Dy5 800 4 
9300 1.6 1200 6 20/0.4 kV Dy5 630 5 
7800 1.7 1000 6 20/0.4 kV Dy5 500 6 
6450 1.8 850 6 20/0.4 kV Dy5 400 7 
5400 2 720 6 20/0.4 kV Dy5 315 8 
4450 2.3 650 6 20/0.4 kV Dy5 250 9 
2150 2.6 340 6 20/0.4 kV Dy5 100 10 
1250 2.8 210 6 20/0.4 kV Dy5 50 11 

 

 
Fig. 11.  MLP neural network topology. 
 
sub sampling by 2. Down sampling the number of resulting 
wavelet coefficients becomes exactly the same as the 
number of input points. A variety of different wavelet 
families have been proposed in the literature. The choice of 
mother wavelet plays a significant role in time frequency 
analysis. It also depends on a particular application. In this 
work all wavelets available in the Wavelet Toolbox of 
MATLAB program [20] were used for the decomposition 
of the signals and the best answer was obtained with 
Daubechies mother wavelet. It was found to have the most 
correlation with the decomposed signals and was selected 
for this procedure. 

A. Applying Wavelet Transform and Feature Extraction 
The decomposition is done by modifying the wavelet 

transform through passing the signal via a digital half band 
low pass filter. This digital half band low pass filter 
excludes all the signals which are higher than the half of 
the value of the largest signal frequency. If a signal having 
Nyquist rate(which is twice the largest frequency in the 
signal) was taken as a sample, the largest frequency present 
in the signal would be π radian. That is, Nyquist frequency 
in the range of discrete frequency corresponds π  (rad/s). 
After a signal passes through a digital half band low pass 
filter, according to the theory of nyquist, half of the signals 
can be excluded, for now the signal has the maximum 
frequency of  / 2π  (rad/s). Thus the obtained signal has a 
length half of that of the original one. This procedure is 
repeated for 6 times and the signals omitted by the low pass 
filter at each time, are considered as detail signals. The 
energies of these detail signals are the features extracted 
from the patterns to feed into the neural network. In Fig. 10 
a pattern of 4 signals with 6 detail signals and an 
approximation signal obtained by applying the Db wavelet 
transform up to six levels is illustrated. According to the 
definition, the energy of every discreet signal such as 

( )x n  is defined as follows: ( N  equals the length of the 
signal) 

2( ) ( )
n N

E x x n
=< >

= ∑ . (11) 

VI. MLP NEURAL NETWORK 
ANNs may be defined as structures comprised of 

densely interconnected adaptive simple processing 
elements (neurons) that are capable of performing 
massively parallel computations for data processing and 
knowledge representation. ANNs can be trained to 
recognize patterns and the non-linear models developed 
during training allow neural networks to generalize their 
conclusions and to make applications to patterns not 
previously encountered. The MLPNNs, which have 
features such as the ability to learn and generalize, smaller 
training set requirements, fast operation, ease of 
implementation and are, therefore, the most commonly 
used neural network architectures, have been adapted for 
describing the alertness level of an arbitrary subject. 
Presently the most widely used ANN type is a MLP neural 
network which has been playing a central role in 
applications of neural networks. The MLP neural network 
shown in Fig. 11 is a nonparametric technique for 
performing a wide variety of detection and estimation tasks 
[21]-[23]. In the MLPNN, each neuron j in the hidden layer 
sums its input signals ix  after multiplying them by the 
strengths of the respective connection weights jiw  and 
computes its output jy  as a function of the sum 

)(∑= ijij xwfy  (12) 

where f  is activation function that is necessary to 
transform the weighted sum of all signals impinging onto a 
neuron. The activation function ( f ) can be a simple 
threshold function, or a sigmoidal, hyperbolic tangent, or 
radial basis function. The sum of squared differences 
between the desired and actual values of the output neurons 
E is defined as 

21 ( )
2 dj j

i

E y y= −∑  (13) 

where is djy  is the desired value of output neuron j  and 
jy  is the actual output of that neuron. Each weight jiw is 

adjusted to reduce E  as rapidly as possible. How jiw is 
adjusted depends on the training algorithm adopted. 
Training algorithms are an integral part of ANN model 
development. An appropriate topology may still fail to  
give a better model, unless trained by a suitable training 
algorithm.   A   good   training   algorithm   will   shorten  the  
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TABLE III 
IDENTIFICATION PERCENTAGE OF MLP NN  

 

Percentage of 
NN identification WT Signal 

85% Db1 First phase current 
85% Db2 First phase current 
92% Db3 First phase current 
90% Db2 Third phase current 

85.66% Db1 Second phase current 
80.33% Db2 Second phase current 
90.33% Db3 Second phase current 
95.33% Db6 Second phase voltage 
95.65% Db4 Third phase voltage 

97% Db3 Third phase voltage 
95% Db5 Third phase voltage 

Overall             90.11% 
 
training time, while achieving a better accuracy. Therefore, 
training process is an important characteristic of the ANNs, 
whereby representative examples of the knowledge are 
iteratively presented to the network, so that it can integrate 
this knowledge within its structure. There are a number of 
training algorithms used to train a MLP neural network and 
a frequently used one is called the backpropagation training 
algorithm [21]-[23]. The backpropagation algorithm, which 
is based on searching an error surface using gradient 
descent for points with minimum error, is relatively easy to 
implement. However, backpropagation has some problems 
for many applications. The algorithm is not guaranteed to 
find the global minimum of the error function since 
gradient descent may get stuck in local minima, where it 
may remain indefinitely. In addition to this, long training 
sessions are often required in order to find an acceptable 
weight solution because of the well known difficulties 
inherent in gradient descent optimization. Therefore, a lot 
of variations to improve the convergence of the 
backpropagation were proposed. Optimization methods 
such as second-order methods (conjugate gradient, quasi-
Newton, Levenberg–Marquardt) have also been used for 
ANN training in recent years. The Levenberg–Marquardt 
algorithm combines the best features of the Gauss–Newton 
technique and the steepest-descent algorithm, but avoids 
many of their limitations. In particular, it generally does not 
suffer from the problem of slow convergence [24], [25]. 
Therefore, in this study the MLP neural network was 
trained with the Levenberg–Marquardt algorithm. 

A. Levenberg–Marquardt algorithm 
ANN training is usually formulated as a nonlinear least 

squares problem. Essentially, the Levenberg–Marquardt 
algorithm is a least-squares estimation algorithm based on 
the maximum neighborhood idea. Let ( )E w  be an 
objective error function made up of m individual error 
terms 2 ( )ie w  as follows 

22

1
( ) ( ) ( )

m

i
i

E w e w f w
=

= =∑  (14) 

where 2 2( ) ( )i di ie w y y= − and diy  is the desired value of 
output neuron ,  ii y  is the actual output of that neuron. It 
is assumed that function (·)f  and its Jacobian J  are 
known at point w . The aim of the Levenberg–Marquardt 
algorithm is to compute the weight vector w  such that 

( )E w  is minimum. Using the Levenberg–Marquardt 
algorithm, a new weight vector 1kw +  can be obtained  from 

the previous weight vector kw  as follows 

kkk www δ+=+1 , (15) 

where kwδ  is defined as 
1( ( ))( )T T

k k k k kw J f w J J Iδ λ −= − + . (16) 

In (14), kJ  is the Jacobian of f  evaluated at kw , λ  is the 
Marquardt parameter, I  is the identity matrix. 

VII.  SIMULATION RESULTS 
The obtained signals were analyzed by the Daubechies 
mother wavelet and the energies of the detail signals 
obtained through the applying wavelet transform up to six 
levels have been used as the features fed into the neural 
network. For the MLP neural network, 16 neurons are 
determined in the hidden layer, four of which are allocated 
to ferroresonance signals and the rest to capacitor 
switching, load switching, and transformer switching 
signals. For training the network all four types of signals 
are used; 95 signals for learning and 90 for testing. Also 
the learning rate of the neural network is 0.0001 and the 
number of epochs is selected 500. The Daubechies wavelet 
transform is applied in all the three phases of current and 
voltage of signals. The results are provided in Table III. It 
should be noted that the currents and the voltages are the 
primary currents and voltages of the feeder shown in 
Fig. 4. Using all wavelets available in the MATLAB 
Wavelet Toolbox program, many simulations were 
performed. After many trial and error the best answer was 
received with Daubechies mother wavelet. So, Daubechies, 
which has the most correlation with the signals, was chosen 
as the suitable mother wavelet in this procedure. By 
applying the Db2 in the second phase current of the signals, 
the neural network has the least precisian of 80.33% and by 
applying the Db3 in the third phase voltage of the signals, 
neural network shows the most precisian of 97%. The 
above results can be justified using Fig. 12. This figure 
compares the average of the components correspondent to 
the feature vectors extracted by applying Db2 and Db3 in 
the second phase current and the third phase voltage of 
signals, respectively (the rectangles corresponding the 
ferroresonance signals are darker). According to the figure, 
the features extracted by applying Db1 in the second phase 
current are much similar. Thus the precision of algorithm is 
less in this case. But the features exacted by the applying 
Db2 in the third phase voltage are least similar. Thus the 
precision of algorithm is more in this case.  

VIII. CONCLUSIONS 
In this paper, the MLP neural network and the wavelet 

transform have been used to distinguish ferroresonance 
from other transients. The presented algorithm has the 
highest precision on third phase voltage and lowest 
precision on the second phase current of the signals. One of 
the main advantages of this algorithm is capability of 
changing the number of extracted features by changing the 
number of wavelet transform levels. Also, the chosen 
network has the ability to classifying the nonlinear feature 
vectors in multi-dimension space. By increasing 
complexity, only the number of hidden layer neurons 
should be increased. The applied network has an acceptable 
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(a) 

 
(b) 

Fig. 12.  Average of the components correspondent to the feature-vectors 
extracted in second phase current and third phase voltage, (a) Second 
phase current and (b) Third phase voltage. 
 
precision in the recognition of unused patterns for learning. 
This fact highlights the practical importance of algorithm. 

IX. APPENDIX 
The data of feeder are: 0.509R =  Ω/km, 0.3561X =  

Ω/km, Outside Radius of conductor=0.549 cm. 
Configuration of phases and mechanical data are: 

Height of pole = 12 m, Sag in mid span = 2.32 m. 
Constant parameters of the CIGRE load model usually 
considered in the EMTP program are as follows: 

0.073,  6.7,  0.74A B C= = =  
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