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Abstract—In this paper, Brent method is proposed to solve 
dynamic economic dispatch (DED) problem with transmission 
losses. The proposed algorithm involves the selection of the 
values of incremental fuel costs (lambda) and then the 
evaluation of optimal lambda is done by Brent method. The 
constraint of ramp rate limits distinguishes the DED problem 
from traditional static economic dispatch(ED) problem. The 
DED problem divides the entire dispatch period into a 
number of small time intervals and then static economic 
dispatch problem is solved in each interval by incorporating 
the ramp rate limits. The proposed method has been tested on 
6- and 15- units. The simulation results of the proposed 
method are compared with conventional lambda iterative 
method. The simulation results show that the proposed 
method achieves qualitative solution with less computational 
time than the conventional lambda iterative method. 
 

Index Terms—Brent method, dynamic economic dispatch, 
ramp rate limits, incremental transmission loss. 

NOMENCLATURE 

T  Number of intervals 
ng  Number of units 

t
iP   Output power of unit‘ i ’ at hour ‘ t ’ 
, ,i i ia b c  Coefficients of fuel cost function 

TC  Total fuel cost 
( )t

i iC P  Fuel cost of unit ‘ i ’ at hour ‘ t ’ 
t

DP  Power demand at hour ‘t’ 
t

LP  Incremental transmission loss 

0 00, ,ij iB B B  B-Loss coefficient  

,miniP  Minimum output power of unit ‘ i ’ 

,maxiP  Maximum output power of unit ‘ i ’ 

iλ  Incremental fuel cost of unit ‘ i ’ 

iUR  Up ramp rate limits of unit ‘ i ’ 

iDR  Down ramp rate limits of unit ‘ i ’ 
0

iP  Initial output power of unit ‘ i ’ 

I. INTRODUCTION 
YNAMIC economic dispatch (DED) problem is one of 
the main functions of power system operation and 

control. The main objective of DED problem is to 
determine the optimal schedule of output powers of online 
generating units over a certain period of time to meet 
power demands at minimum operating cost. It is a dynamic 
optimization problem that includes generator constraints 
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and ramp rate limits [1]. The static economic dispatch 
problem assumes that the amount of power to be supplied 
by a given set of units is constant for a given interval of 
time and attempts to minimize the cost of supplying this 
energy subject to constraints on the static behavior of the 
generating units. In real time operation of power system, 
thermal gradients inside the turbine should be kept within 
safe limits to avoid shortening the life of equipments such 
as generating units and boiler. This mechanical constraint 
is translated into a limit on the rate of increase and decrease 
of the output power during the variation in the power 
demand and this limit is known as ramp rate limit. The 
constraint of ramp rate limits distinguishes the DED 
problem from the static economic dispatch (ED) problem. 
Due to ramp rate limits the DED problem cannot be solved 
for a single value of the load. Moreover, it is the most 
accurate formulation of the economic dispatch problem. 
Generally, DED problem divides the entire dispatch period 
into a number of small time intervals and then static 
economic dispatch problem is solved in each interval by 
incorporating the ramp rate limits. 

Earlier, conventional approaches such as lambda 
iterative method [2], Gradient projection method [3], linear 
[4] and dynamic programming [5] methods were used for 
solving the DED problem. In these methods, computational 
time increases with the increase of the dimensionality of 
the problem. In order to get the qualitative solution, 
Gradient type Hopfield neural network [6] was used to 
solve DED problem. The major problem associated with 
the Hopfield neural network is that the unsuitable sigmoid 
function may increase the computational time to give 
optimal solution [7]. Stochastic search optimization 
techniques such as genetic algorithm (GA) [8], 
evolutionary programming (EP) [9] and particle swarm 
optimization(PSO) [10] methods have been used to solve 
DED problem because these algorithms can achieve global 
optimal solution. Major problem associated with these 
algorithms is that appropriate control parameters are 
required. Some times these algorithms take huge 
computational time due to improper selection of the control 
parameters. More precisely, hybrid methods combining 
probabilistic methods and deterministic methods are found 
to be very effective in solving complex optimization 
problems [11], [12]. In these methods, initially probabilistic 
methods are used for search purpose to find near optimal 
solution and then deterministic methods are used to fine 
tune that region to get the final solution. 

It is observed from the literature survey that most of the 
conventional and stochastic search methods have some 
limitations to solve the DED problems within considerable 
computational time. The conventional lambda iterative 
method takes more computational time. Some times, it 
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exhibits oscillatory behavior towards the end due to the 
improper selection of initial guess value of lambda 
(incremental fuel cost) and incremental lambda. Also the 
heuristic and modern heuristic methods are unable to find 
the optimal solution within considerable time due to their 
heuristic nature. Therefore it is necessary to find a suitable 
method to solve DED problem. In brief, power balance 
equation in DED problem contains two variables, namely 
lambda and power demand. At specified power demand, 
power balance is a highly non linear equation in terms of 
lambda. Non linear equations with single variables can be 
solved by root finding methods [13] available in numerical 
methods. In this paper, Brent method [14] is proposed to 
solve the DED problem. 

The proposed algorithm has been implemented in 
MATLAB on a Pentium IV, 2.4 GHz personal computer 
with 512 MB RAM. The paper is organized as follows: 
Formulation of DED problem is introduced in section II. 
The description of Brent method is addressed in section III. 
Implementation of Brent method for solving DED problem 
is given in Section IV. The simulation results of power 
system with various generating units are presented in 
Section V. Conclusions are finally given in the last section. 

II. DYNAMIC ECONOMIC DISPATCH PROBLEM 
The main objective of DED problem is to determine the 

optimal schedule of output powers of online generating 
units with predicted power demands over a certain period 
of time to meet the power demand at minimum operating 
cost. The mathematical formulation of DED problem is 
given below. 

The fuel cost function of the generating unit is expressed 
as a quadratic function of real power generation. 

The objective function of the DED problem is 

1 1
Min ( )

ngT
t

T i i
t i

C C P
= =

=∑∑  (1) 

where 
2( )t t t

i i i i i i iC P a b P c P= + +  (2) 

The objective function is subjected to various 
constraints, which are given below. 

A. Equality Constraint 

1

ng
t t t

i D L
i

P P P
=

= +∑  (3) 

The total transmission loss is assumed as a quadratic 
function of output powers of the generator units [15]. 

0 00
1 1

ng ng
t t t t

L i ij j i j
i j

P P B P B P B
= =

= + +∑∑  (4) 

B. Inequality Constraints 

1) Generator Limits 

,min , ,maxi i t iP P P≤ ≤  (5) 

2) Ramp Rate Limits 
The range of actual operation of online generating unit is 

restricted by its ramp rate limits. These limits can impact 
the operation  of  generating unit.  The operational  decision  

t t+1 

Pi(t) Pi(t+1) 

t t+1 

Pi(t) 

Pi(t)+URi(t) 

t t+1 

 Pi(t)+DRi(t) 

Pi(t) 

a) Steady state power 
demand 

b) Increased power 
demand 

c) Decreased power   
demand  

Fig. 1.  Ramp rate limits of the generating units. 
 
at the present hour may affect the operational decision at 
the later hour due to ramp rate limits. In actual operation, 
three possible situations exist due to variation in power 
demand from present hour to next hour. First, during the 
steady state operation, the operation of the online unit is in 
steady state condition. Second, if the power demand is 
increased, the power generation of the generating unit also 
increases. Third, if the power demand is decreased then the 
power generation of the generating unit also decreases. The 
ramp rate limits with all possible cases are shown in Fig. 1. 

The generator constraints due to ramp rate limits of 
generating units are given as  

A) when generation increases  

, , 1i t i t iP P UR−− ≤  (6) 

B) when generation decreases 

, 1 ,i t i t iP P DR− − ≤  (7) 

Therefore the generator constraints can be modified as 

,min , 1 , ,max , 1max( , ) min( , )i i t i i t i i t iP P DR P P P UR− −− ≤ ≤ + (8) 

From (8), the limits of minimum and maximum output 
powers are modified as follows 

,min_ ,min , 1max( , )i ramp i i t iP P P DR−= −  (9) 

,max_ ,max , 1min( , )i ramp i i t iP P P UR−= +  (10) 

Formulation of Lagrange function for the DED problem 
with ramp rate limits is given by 

1
( )

ng

T D L i
i

F P P Pχ λ
=

= + × + −∑  (11) 

The expressions of lambda and output power are 

0
1

(2 )

1 (2 )

i i i
i ng

ij j i
i

P

B P B

β γλ

=

+ × ×
=

− × +∑
 (12) 

( )
0

1,

(1 2 )

2

ng

i i ij j i
j i j

i
i i ii

B B P
P

B

λ β

γ λ
= ≠

× − − × −
=

× +

∑
 (13) 

III. BRENT METHOD 
Brent method is a root finding method which combines 

root bracketing, bisection and inverse quadratic 
interpolation. It uses a Lagrange interpolation polynomial 
of degree 2. Brent claims that this method always 
converges as long as the values of the function are 
computable within a given region containing a root. 

Brent method fits x  as a quadratic function of y  from 
the three points 1 2,  x x  and 3x  and then the relation 
between the x  and y  are obtained as follows from the 
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interpolation formula. 
( ( ))( ( ))1 2 3

( ( ) ( ))( ( ) ( ))3 1 3 2
( ( ))( ( ))2 3 1

( ( ) ( ))( ( ) ( ))1 2 1 3
( ( ))( ( ))3 1 2

( ( ) ( ))( ( ) ( ))2 3 2 1

y f x y f x x
x

f x f x f x f x

y f x y f x x

f x f x f x f x

y f x y f x x

f x f x f x f x

− −
= +

− −

− −
+

− −

− −

− −

 (14) 

subsequent estimation of root is obtained by setting 0y =  

2
Px x
Q

= +  (15) 

where 

( )( ) ( )( )3 2 2 11P S T R T x x R x x⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦  (16) 

( 1)( 1)( 1)Q T R S= − − −  (17) 

with 

)(
)(

3

2

xf
xfR =  (18) 

)(
)(

1

2

xf
xf

S =  (19) 

)(
)(

3

1

xf
xf

T =  (20) 

IV. IMPLEMENTATION OF BRENT METHOD FOR DYNAMIC 
ECONOMIC DISPATCH PROBLEM WITH TRANSMISSION 

LOSSES 
In this section, Brent method has been proposed for 

solving DED problem with transmission losses. 
The power balance equation can be written as 

1
( , ) ( )

ng

D i D L
i

f P P P Pλ
=

= − +∑  (21) 

It is clear from (21) that ( , )Df Pλ contains two variables 
λ  and DP . At specified ,  ( )DP f λ  is highly non-linear in 
terms of λ . Therefore, equation (21) becomes 

( ) 0f λ =  (22) 

where 0)( =λf  is a non linear relation in λ . The solution 
of λ  is obtained by Brent method. 

Two steps are involved for solving the DED problem 

A. Selection of Lambda Value 
At required power demand, the best two lambda values 

are obtained from reduced pre-prepared power demand 
(RPPD) table. The formulation of pre-prepared power 
demand table and RPPD table are given below 

1) Formation of PPD Table 
(i) From (12), lambda values are evaluated at the 
minimum and maximum output powers of all 
generators by incorporating ramp rate limits. 
(ii) All the lambda values are arranged in ascending 
order. 
(iii) The output powers and power losses are 
computed for all values of lambda. 

Input 

Enter the input data 

t=1 

T=24

Conversion of generator limits by adding ramp rate 

Obtain RPPD table 

Apply Brent method and find new lambda value 

Error<0.01 

Stop 

No 

No 

t=t+1

Obtain optimal solution 

T
ii PP =0

 
Fig 2.  Flow chart of Brent method for solving DED problem. 
 

(iv) All lambda values, output powers, Sum of 
Output Powers (SOP), power losses and SOP plus 
power loss are formulated as a table. This table is 
called PPD table. 

2) Formation of RPPD Table 
At required power demand, the upper and lower rows of 

the PPD table are selected such that the power demand lies 
within the SOP plus loss and these two rows are formulated 
as a table and it is known as reduced PPD (RPPD) table. 

The application of Brent method to find the optimal 
lambda value from the power balance equation at required 
power demand in the ED problem is as follows. 

At the required power demand 

1 jx λ=  and 1 j( )  j Lf x SOP P= +  (23) 

3 1jx λ +=  and 3 1 L j 1( ) P  jf x SOP + += +  (24) 

2 1(  )/2j jx λ λ += +  (25) 

At 2x , 2( )f x  value is evaluated and finally from (15), the 
optimal lambda value is evaluated by an iterative approach. 

Solution of the DED problem by the proposed algorithm 
is as follows 

• Enter the input data 
• Lambda values are calculated using (12) for all units at 

their maximum and minimum output powers by 
incorporating ramp rate limits and then are arranged 
in ascending order and finally minimum and 
maximum lambda values are selected. 

• Output powers and power loss are computed for 
selected lambda values. 

• lambda is evaluated by Brent method from the power 
balance equation. Set the generator constraints by 
incorporating ramp rate limits. 

• Optimal solution is obtained 
The complete flow chart of Brent method for solving 

dynamic economic dispatch is shown in Fig. 2. 
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TABLE I 
FUEL COST DATA OF SIX UNITS SYSTEM 

 

U  ia ($) 
ib  ($/MW) 

ic  ($/MW2) 
,miniP  (MW) ,maxiP  

(MW) 
1 240 7 0.007 100 500 
2 200 10 0.0095 50 200 
3 220 8.5 0.009 80 300 
4 200 11 0.009 50 150 
5 220 10.5 0.008 50 200 
6 190 12 0.0075 50 120 

 
TABLE II 

RAMP RATE LIMITS DATA OF SIX UNITS SYSTEM 
 

Unit 0
iP (MW) 

iUR  (MW/h) iDR (MW/h) 
1 340 80 120 
2 134 50 90 
3 240 65 100 
4 90 50 90 
5 110 50 90 
6 52 50 90 

 
TABLE III 

DATA OF PRDICTED POWER DEMANDS FOR 6 UNITS SYSTEM 
 

H 1 2 3 4 5 6 7 8 

PD (MW) 955 942 935 930 935 963 989 102
3 

H 9 10 11 12 13 14 15 16 

PD (MW) 112
6 

115
0 

120
1 

123
5 

119
0 

125
1 

126
3 

125
0 

H 17 18 19 20 21 22 23 24 

PD (MW) 122
1 

120
2 

115
9 

109
2 

102
3 984 975 960 

 

V. CASE STUDIES AND SIMULATION RESULTS 
This section presents numerical examples and simulation 

results of two test cases to evaluate the performance of the 
proposed method. The proposed algorithm has been 
implemented in MATLAB and executed on Pentium IV, 
2.4 GHz personal computer with 512 MB RAM to solve 
the DED problem of a power system having 6 and 15 
generating units with generator constraints and 
transmission losses. The results obtained from the proposed 
method were compared in terms of the solution quality and 
computation efficiency with lambda iterative method. 

During the execution of conventional lambda iterative 
method, the lambda value and incremental lambda values 
are selected based on the dimensionality of the problem. 

Example-1) In this example, 6- units system is 
considered. The data was extracted from [16]. The fuel cost 
data of the six thermal units is given in Table I. B-Loss 
coefficients of 6- units system is given as follows 

1.7       1.2      0.7     - 0.1   - 0.5    - 2.0

1.2       1.4     0.9      0.1    - 0.6    - 0.1  

0.7       0.9    3.1      0.0     -1.0    - 0.6310
-0.1      0.1    0.0     0.24   - 0.6     - 0.8

-0.5   

ijB −=

  - 0.6   - 0.1    - 0.6    12.9    - 0.2

-2.0    -1.0   - 0.6     - 0.8    - 0.2    15.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

310 -0.3908  -1.297  7.047  0.591  2.161  -6.635Boi
⎡ ⎤⎣ ⎦

−= •  

00 0.056B =  

Ramp rate limits data is given in Table II. The data of 
predicted power demands is given in Table III. 
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Fig. 3  Number of iterations at each hour for 24 hour by Brent method for 
6 units system. 
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Fig. 4.  Error at each iteration at 24th Hour by Brent method. 
 

TABLE IV 
OUTPUT POWERS AND POWER LOSSES FOR ALL POWER DEMANDS OF  

6-UNITS SYSTEM 
 

OUTPUT POWERS (MW) 
S.n 

P1  P2  P3  P4  P5  P6  
Loss 

(MW)  

1 380.34 123.69 211.33 84.278 112.78 50 7.4194 
2 377.14 121.33 208.84 81.672 110.25 50 7.2344 
3 375.42 120.05 207.5 80.271 108.89 50 7.136 
4 374.19 119.14 206.55 79.27 107.92 50 7.0662 
5 375.42 120.05 207.5 80.271 108.89 50 7.136 
6 382.31 125.15 212.86 85.882 114.34 50 7.5348 
7 388.72 129.88 217.83 91.098 119.39 50 7.9173 
8 397.1 136.07 224.34 97.927 126 50 8.4356 
9 419.01 152.26 241.35 115.79 143.21 64.399 10.016 

10 423.97 155.93 245.2 119.84 147.09 68.372 10.407 
11 434.53 163.73 253.39 128.46 155.35 76.807 11.275 
12 441.58 168.94 258.86 134.22 160.85 82.424 11.879 
13 432.25 162.05 251.62 126.6 153.57 74.989 11.083 
14 444.9 171.39 261.44 136.94 163.44 85.065 12.172 
15 447.39 173.23 263.37 138.97 165.39 87.045 12.394 
16 444.69 171.24 261.28 136.77 163.28 84.9 12.153 
17 438.68 166.79 256.61 131.85 158.59 80.112 11.628 
18 434.74 163.88 253.55 128.63 155.51 76.973 11.292 
19 425.83 157.31 246.64 121.36 148.55 69.862 10.557 
20 411.99 147.07 235.89 110.06 137.7 58.764 9.4798 
21 397.1 136.07 224.34 97.927 126 50 8.4356 
22 387.48 128.97 216.87 90.094 118.42 50 7.8429 
23 385.27 127.33 215.15 88.289 116.67 50 7.7099 
24 381.57 124.6 212.28 85.281 113.75 50 7.4914 

 
The number of iterations at each power demand is shown 

in Fig. 3. It is clear that Brent method provides optimal 
solution within few iterations. 

Output powers and power loss for all power demands are 
given in Table IV. 
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Fig. 5.  Number of iterations for 24 hours by the Brent method. 
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Fig. 6.  Error at each iteration at the Power demand of 2236 MW. 
 

The simulation results obtained from the proposed 
method are compared with lambda iterative method in 
terms of the solution quality, convergence characteristics 
and computational time and the statistical data is given in 
Table V. 
Example-2) In this example, the system contains 15 
generating units whose characteristics are given in table VI 
and the data was extracted from [15]. Power demands for 

TABLE V 
SIMULATION RESULTS OF LAMBDA ITERATIVE METHOD AND THE 

PROPOSED METHOD 
 

Methods Lambda Iterative method Proposed 
Fuel cost 313405.648 313405.403 
Iterations 100 2 

Time (Sec) 0.125 0.078 
 

 
TABLE VI 

FUEL COST DATA OF 15 GENERATING UNITS 
 

U  ia ($) 
ib  ($/MW) ic  

($/MW2) 
,miniP  

(MW) 
,maxiP

 (MW) 
1 671 10.1 0.000299 150 455 
2 574 10.2 0.000183 150 455 
3 374 8.8 0.001126 20 130 
4 374 8.8 0.001126 20 130 
5 461 10.4 0.000205 150 470 
6 630 10.1 0.000301 135 460 
7 548 9.8 0.000364 135 465 
8 227 11.2 0.000338 60 300 
9 173 11.2 0.000807 25 162 
10 175 10.7 0.001203 25 160 
11 186 10.2 0.003586 20 80 
12 230 9.9 0.005513 20 80 
13 225 13.1 0.000371 25 85 
14 309 12.1 0.001929 15 55 
15 323 12.4 0.004447 15 55 

 
TABLE VII 

LOAD DEMAND FOR 24 HOURS 
 

H 1 2 3 4 5 6 
PD(MW) 2236 2240 2226 2236 2298 2316 

H 7 8 9 10 11 12 
PD(MW) 2331 2443 2630 2728 2783 2785 

H 13 14 15 16 17 18 
PD(MW) 2780 2830 2970 2950 2902 2803 

H 19 20 21 22 23 24 
PD(MW) 2651 2584 2432 2312 2261 2254 

 
24 hours are given in Table VII. 

The proposed algorithm has been successfully applied 
for mixed generating units by considering 15 units system 
with transmission losses. The exact transmission  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

= −

128.3-9.42.82.816.8-8.8-7.2-7.8-0.80.3-0.3-2.6-2.8-0.20.1-
-9.457.8-10.1-0.4-3.8-1.1-1.20.5-0.2-1.7-2.40.111.11.0 0.3 
2.8-10.110.3-0.10.40.90.70.10.0-0.2-0.20.1-2.60.4 0.4 
2.8-0.4-0.15.40.1-3.4-2.5-3.60.7-0.1-0.20.0 0.0 0.0 0.2-
16.8-3.80.40.114.0-2.7-2.1-2.3-0.51.10.7-1.1-1.7-0.40.3-
-8.8-1.10.9-3.4-2.72011.67.90.9-0.8-1.33.2  -1.2-0.40.5-
-7.2-1.20.7-2.5-2.111.6 12.9  8.2   1.5  -0.5-1.02.9 -0.8-0.20.3-
-7.80.50.1-3.6-2.37.9 8.2   16.8 1.7  -0.6-1.25.0 0.0 0.10.1-
-0.8-0.20.0 0.7-0.50.9  1.5    1.7   1.5   0.0 -0.31.1  -0.10.00.1-
0.3  -1.7-0.2-0.11.1  0.8- 0.5-  0.6-  0.0   1.61.4-0.4-0.9-0.20.1-

-0.32.4- -0.2-0.20.7  1.3-   1.0-   1.2-   0.3-  1.4 9.0 -0.7-1.3-0.50.3-
-2.60.1  0.10.0 -1.13.2  2.9   5.0    1.1    -0.4-0.73.4 -0.10.00.1-
-2.811.1 -2.60.0 -1.7-1.20.8-  0.0   0.1-  -0.9-1.3-0.17.6 1.30.7 
-0.21.0  0.40.0 -0.4-0.40.2 0.1   0.0   -0.2-0.50.0 1.3  1.51.2 
-0.10.3  0.4-0.2-0.30.5- 0.3- 0.1- 0.1- -0.1-0.3-0.10.7 1.21.4 

.10 3
ijB

-3
i0

00

B 10 [-1   -2   28   -1 1   -3   -2   -2 6   39   -17   -00   -32 67 -64]
B 0.0055

=
=
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TABLE VIII 
OUTPUT POWERS FOR 24 HOURS BY BRENT METHOD FOR 15-UNITS SYSTEM 

 

H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 352.59 330.271 130 130 306.35 285.45 366.51 162.88 25 59.416 40.728 20 25 15 15 
2 402.4 333.33 130 130 186.35 353.95 446.51 62.88 25 67.916 47.526 20 25 15 15 
3 403.93 335.49 130 130 150 356.05 465 60 25 68.177 47.735 20 25 15 15 
4 406.43 338.93 130 130 150 359.5 465 60 25 68.604 48.077 20 25 15 15 
5 421.95 360.24 130 130 150 380.88 465 60 25 71.254 50.2 20 25 15 15 
6 426.46 366.43 130 130 150 387.09 465 60 25 72.024 50.817 20 25 15 15 
7 430.22 371.58 130 130 150 392.27 465 60 25 72.666 51.331 20 25 15 15 
8 455 410.77 130 130 150 431.68 465 60 25 77.547 55.244 21.758 25 15 15 
9 455 455 130 130 172.65 460 465 60 25 119.41 80 50.619 25 15 15 
10 455 455 130 130 240.47 460 465 60 25 138.92 80 64.243 25 15 15 
11 455 455 130 130 278.67 460 465 60 25 150.01 80 72.033 25 15 15 
12 455 455 130 130 280.07 460 465 60 25 150.42 80 72.32 25 15 15 
13 455 455 130 130 276.59 460 465 60 25 149.41 80 71.607 25 15 15 
14 455 455 130 130 311.38 460 465 60 25 159.57 80 78.772 25 15 15 
15 455 455 130 130 391.38 460 465 60 71.9 160 80 80 25 15 15 
16 455 455 130 130 437.15 460 465 60 25 160 80 80 25 15 15 
17 455 455 130 130 385.78 460 465 60 25 160 80 80 25 15 15 
18 455 455 130 130 292.58 460 465 60 25 154.07 80 74.89 25 15 15 
19 455 455 130 130 187.16 460 465 60 25 123.56 80 53.511 25 15 15 
20 455 455 130 130 150 460 465 60 25 106.04 78.165 41.351 25 15 15 
21 455 405.94 130 130 150 426.82 465 60 25 76.945 54.761 21.347 25 15 15 
22 425.46 365.05 130 130 150 385.71 465 60 25 71.853 50.68 20 25 15 15 
 23 412.69 347.52 130 130 150 368.12 465 60 25 69.672 48.933 20 25 15 15 
 24 410.93 345.11 130 130 150 365.71 465 60 25 69.373 48.693 20 25 15 15 

 
TABLE IX 

POWER LOSS AND FUEL COST OF THE BRENT METHOD FOR 15 UNITS 
SYSTEM 

 

H Power Loss 
(MW) 

Fuel cost 
($) H Power Loss 

(MW) 
Fuel cost 

($) 
1 28.201 28619 13 32.599 34232 
2 20.919 28454 14 34.721 34787 
3 20.381 28292 15 41.869 36412 
4 20.537 28398 16 42.145 36133 
5 21.528 29050 17 38.777 35590 
6 21.825 29240 18 33.545 34487 
7 22.075 29398 19 28.233 32817 
8 23.982 30580 20 26.556 32089 
9 27.671 32589 21 23.802 30464 
10 30.647 33658 22 21.759 29198 
11 32.719 34265 23 20.931 28661 
12 32.8 34287 24 20.82 28587 

 
TABLE X 

TOTAL FUEL COST, AVERAGE ITERATIONS AND TIME OF BRENT METHOD 
FOR 24 HOURS 

 

 Proposed method 
Fuel cost ($) 760287.232 

Average iterations 4 
Time (Sec) 0.53 

 
loss of the system is represented by B-Loss  
coefficients [17].  

Optimal solution by the Brent method for 24 hours is 
given in Table VIII. Also the number of iterations for 24 
hours is shown in Fig. 5. It is clear from the Fig. 5 that the 
Brent method provides the optimal solution in few 
iterations. Error at each iteration at the power demand of 
2236 MW is shown in Fig. 6. 

VI. CONCLUSIONS 
In this paper, Brent method has been proposed for 

solving the dynamic economic dispatch problem of a power 
system having 6 and 15 units with the generator 

constraints, ramp rate limits and transmission losses. A 
salient feature of the proposed method is that it gives high 
quality solution with fast convergence characteristics 
compare to the lambda iterative method. Due to the fast 
convergence, the computational time is less for getting 
optimal solution. The proposed algorithm will not depend 
on any user defined parameters. Furthermore, the 
computational times of the proposed method are much less 
than the lambda iterative method and increase linearly with 
size of the system. The comprehensive numerical results 
prove the successful implementation and feasibility of the 
proposed approach for the ED problems. 
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