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Abstract—The performance of speaker identification is 
almost perfect in the neutral environment. However, the 
performance is significantly deteriorated in emotional 
environments. In this work, three different and separate 
models have been used, tested and compared to identify 
speakers in each of the neutral and emotional environments 
(completely two separate environments). Our emotional 
environments in this work consist of five emotions. These 
emotions are: angry, sad, happy, disgust and fear. The three 
models are: Hidden Markov Models (HMMs), Second-Order 
Circular Hidden Markov Models (CHMM2s) and 
Suprasegmental Hidden Markov Models (SPHMMs). Our 
results show that the three models perform extremely well for 
speaker identification in the neutral environment. In 
emotional environments, the average speaker identification 
performance based on HMMs, CHMM2s and SPHMMs is 
61.4%, 66.4% and 69.1%, respectively. Our results in this 
work are better than those obtained in subjective evaluation 
by human judges. 
 

Index Terms—Emotional environments, hidden Markov 
models, neutral environment, second-order circular hidden 
Markov models, speaker identification, suprasegmental 
hidden Markov models. 

I. INTRODUCTION 
PEAKER recognition by machine (computer) is the 
process of recognizing he or she on the basis of the 

information obtained from his or her speech signal. 
Speaker recognition is divided into two categories: speaker 
identification and speaker verification (authentication). 
Speaker identification is the process of determining to 
which of the registered speakers a given utterance belongs. 
Speaker identification can be used in civil cases or for the 
media. These cases include calls to radio stations, local or 
other government authorities, insurance companies, or 
recorded conversations and many other applications [1]. 
Speaker verification is the process of accepting or rejecting 
the identity of the claimed speaker. The applications of 
speaker verification involve the use of voice as a key to 
confirm the identity claim of a speaker. Such services 
include banking transactions using a telephone network, 
database access services, security control for confidential 
information areas, remote access to computers and many 
other areas. 

Based on the text to be spoken, speaker recognition 
methods typically can be grouped into text-dependent 
(fixed-text) or text-independent (free-text). In text-
dependent, speaker recognition systems require the speaker 
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to generate speech signals of the same text in both training 
and testing. On the other hand, in text-independent, speaker 
recognition systems do not require the speaker to generate 
speech signals of the same text in both training and testing. 
The process of speaker recognition can be divided into two 
sets: “open set” and “closed set”. In the “open set”, a 
reference model of the unknown speaker may not exist; 
whereas, in the “closed set”, a reference model of the 
unknown speaker should be available. 

Speaker recognition in emotional environments is one of 
research fields in human-computer interaction or affective 
computing [2]. Emotional environments can be defined as 
the environments where speakers produce their speech 
under the influence of emotional states such as sadness, 
anger and happiness. A major motivation comes from the 
desire to develop a human machine interface that is more 
adaptive and responsive to a user’s identity in emotional 
environments. The main task of intelligent human-machine 
interaction is to empower a computer with the affective 
computing ability so that a computer can recognize  
the identity of the user in such environments for many 
different applications. 

Speaker identification systems in emotional 
environments can be used in many applications. In 
telecommunications, emotional speaker identification 
systems can be used to enhance the telephone-based speech 
recognition performance, route emergency call services for 
high priority emergency calls and assess a caller’s 
emotional state for telephone response services. Emotional 
speaker identification systems can also be used in the 
applications of emotionally intelligent automated systems 
in call-centers. In many cases, call-centers have a difficult 
task in managing customer disputes. It is very important for 
call-centers to take note of disputes using emotionally 
intelligent automated systems and successfully respond to 
these disputes to achieve the customers' satisfaction. 

In literature, there are many studies that focus on speaker 
recognition in the neutral environment. Neutral 
environment is defined as the environment in which speech 
is produced assuming that speakers are not under the 
influence of any emotion. Furui focused on speaker feature 
extraction, recognition and processing in the neutral 
environment [1]. Zheng and Yuan implemented circular 
hidden Markov models for speaker identification in the 
neutral environment [3]. Shahin used second-order hidden 
Markov models to enhance speaker identification 
performance in the neutral environment [4]. Farrell et al. 
applied neural networks and conventional classifiers for 
speaker recognition systems in the neutral environment [5]. 
On the other hand, there are few studies that focus on 
speaker recognition in emotional environments. Zetterholm 
focused his attention on the prosody and voice quality in 
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the expression of emotions [6]. Koike et al. studied 
prosodic parameters in emotional speech [7]. Pereira and 
Watson studied some acoustic characteristics of emotion 
[8]. In one of our previous studies, we identified speakers 
using their emotions (emotion-dependent speaker 
identification) [9]. Wu et al. focused their study on the 
influence of emotion on the performance of a GMM-UBM 
based speaker verification system [10]. Tao et al. 
concentrated on prosody conversion from neutral speech to 
emotional speech [11]. 

Our contribution in this work includes studying and 
enhancing text-dependent speaker identification in each of 
the neutral and emotional environments based on each of 
hidden Markov models (HMMs), second-order circular 
hidden Markov models (CHMM2s) and suprasegmental 
hidden Markov models (SPHMMs). Our emotional 
environments in this work consist of five emotions. These 
emotions are angry, sad, happy, disgust and fear. 

This paper is organized as follows. Section II focuses on 
second-order circular hidden Markov models. The details 
of suprasegmental hidden Markov models are given in 
Section III. Section IV describes the speech database used 
in this work. Section V discusses the algorithm that has 
been used for speaker identification in each of the neutral 
and emotional environments based on each of HMMs, 
CHMM2s and SPHMMs. Results and discussion are given 
in Section VI. Concluding remarks are drawn in 
Section VII. 

II. SECOND-ORDER CIRCULAR HIDDEN MARKOV MODELS 
HMMs have become one of the most successful and 

broadly used modeling techniques in the fields of speech 
and speaker recognition in the last three decades [12], [13]. 
HMMs provide a very useful paradigm to model the 
dynamics of speech signals. They provide a solid 
mathematical formulation for the problem of learning 
HMM parameters from speech observations. More details 
about HMMs are available in many references [12], [13]. 

CHMM2s have been proposed, implemented and tested 
in previous study by Shahin to enhance the performance of 
text-dependent speaker identification under the shouted 
talking condition [14]. CHMM2s have proven to be 
superior models over each of first-order left-to-right hidden 
Markov models (LTRHMM1s), second-order left-to-right 
hidden Markov models (LTRHMM2s) and first-order 
circular hidden Markov models (CHMM1s) [14]. This is 
because CHMM2s possess the characteristics of both 
CHMMs and HMM2s: 
1. The underlying state sequence in HMM2s is a second-

order Markov chain where the stochastic process is 
specified by a 3-D matrix because in these models the 
state-transition probability at time 1t +  depends on the 
states of the Markov chain at the two times t  and 

1t − . On the other hand, the underlying state sequence 
in HMM1s is a first-order Markov chain where the 
stochastic process is specified by a 2-D matrix because 
in these models it is assumed that the state-transition 
probability at time 1t +  depends only on the state of 
the Markov chain at time t . 

2. The Markov chain in CHMMs is more powerful than 
that in LTRHMMs in modeling the changing statistical 

characteristics that exist in the actual observations of 
speech signals. 

3. The absorbing state in LTRHMMs governs the fact 
that the rest of a single observation sequence provides 
no further information about earlier states once the 
underlying Markov chain reaches the absorbing state. 
In speaker identification systems, it is true that a 
Markov chain should be able to revisit the earlier states 
because the states of HMMs reflect the vocal organic 
configuration of the speaker. Therefore, the vocal 
organic configuration of the speaker is reflected to 
states more conveniently using CHMMs than those 
using LTRHMMs. 

The initial elements of the parameters in the training 
phase of CHMM2s are [14]: 

The initial element of the probability of an initial state 
distribution is given by 

1( ) , 1kv i N i k
N

= ≥ ≥  (1) 

where, N  is the number of states. 
The initial element of the forward probability of 

producing the observation 1O BB is given by 

1 1( , ) ( ) ( ) , 1k kii k v i b o N i kα = ≥ ≥  (2) 

The initial element of ijka  is given as 

1

1 1, , 1,2,...,
3
1 1 2, 1 1, 1
3
1 , , 1,2,...,
3
0

ijk

i j k N

N i i j i N k
a

i N j k N

otherwise

⎧ = =⎪
⎪
⎪ − ≥ ≥ + ≥ ≥ − ≥ ≥⎪= ⎨
⎪

= =⎪
⎪
⎪⎩

(3) 

The initial element of the observation symbol probability 
is given by 

11 , 1, 1b N j k M iijk M
= ≥ ≥ ≥ ≥  (4) 

where, M  is the number of observation symbols. 
The initial element of the backward probability of 

producing the observation TO  is given by 
1( , ) , 1T j k N j k
N

β = ≥ ≥  (5) 

The probability of the observation vector O  given the 
CHMM2s model Φ , can be calculated as 

1 1
(  ) ( , )

N N
Tk i

P O i kα
= =

Φ = ∑ ∑  (6) 

More details about the second-order circular hidden 
Markov models can be found in [14]. 

III. SUPRASEGMENTAL HIDDEN MARKOV MODELS 
SPHMMs allow us to summarize several states with 

HMMs into what is called suprasegmental state. 
Suprasegmental states are able to look at the observation 
sequence through a larger window to capture the prosodic 
properties. Such states allow observations at rates suitable 
for the situation of emotional modeling. For instance, 
prosodic information can not be observed at a rate that is 
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used for acoustic modeling. Therefore, prosodic events are 
modeled using suprasegmental states, while acoustic events 
are modeled using conventional hidden Markov states. 

Suprasegmental information plays a major role in human 
decoding of speech. The term suprasegmental was 
introduced by Lehiste as a cover term to speech phenomena 
which are attributed to speech segments larger than 
phonemes [15]. Syllables, words and phrases are examples 
for such segments. To these segments we attribute 
perceived properties such as pitch, speaking rate, loudness, 
voice quality, rhythm, duration and pause. The prosodic 
functions which are generally considered to be the most 
important ones in human-human communication are phrase 
boundaries, accents and sentence mood. Lea proposed the 
use of prosodic information in the Automatic Speech 
Understanding (ASU) systems [16]. Seventeen years later, 
a German speech-to-speech translation system called 
VERBMOBIL was completed as the world wide first 
complete speech understanding system, where prosody was 
really used. It was shown by the VERBMOBIL system that 
the used and implemented prosody yielded remarkable 
performance improvement [16]. 

Polzin and Waibel showed how prosodic information 
can be combined and integrated with acoustic information 
within HMMs in detecting emotions in speech [17]. In our 
work, prosodic and acoustic information of speaker 
identification can be combined and integrated as given by 
the formula. 

log  ( , ) (1 ). log  (  )

. log  (  )

v v v

v

P o P O

P O

λ α λ

α

Ψ = − +

Ψ
 (7) 

where α  is a weighting factor that is chosen to be equal to 
0.5 (so no biasing towards any model), vλ  is the acoustic 
model for the vth speaker, vΨ  is the suprasegmental model 
for the vth speaker, and O  is the observation vector or 
sequence of an utterance. 

The previous formula shows that each time we leave a 
suprasegmental state we need to add the log probability of 
this suprasegmental state given the respective 
suprasegmental observations within the speech signal to the 
log probability of the current acoustic model given the 
respective acoustic observations within the speech signal. 

IV. SPEECH DATABASE 
Our speech corpus was collected from 40 (20 males and 

20 females) nonprofessional (therefore our speech database 
is closer to the real-life data than to the acted data) healthy 
adult Native speakers of American English. Each speaker 
uttered 8 sentences where each sentence was uttered 9 
times under each emotion in emotional environments and 
under the neutral state in the neutral environment. Before 
uttering the sentences, the speakers listened to some 
recorded sentences that were uttered under each emotion. 
The 8 sentences were unbiased towards any emotion when 
uttered under the neutral state. These sentences were: 

1. He works five days a week. 
2. The sun is shining. 
3. The weather is fair. 
4. The students study hard. 
5. Assistant professors are looking for promotion. 

6. University of Sharjah. 
7. Electrical and Computer Engineering Department. 
8. He has two sons and two daughters. 
Our speech database was captured by a speech 

acquisition board using a 16-bit linear coding A/D 
converter and sampled at a sampling rate of 16 kHz. Our 
database was a 16-bit per sample linear data. 

In this work, our features representing the phonetic 
content of speech signals were called the short time log 
frequency power coefficients (LFPCs). LFPCs have proven 
to be superior features over each of the linear prediction 
cepstral coefficients (LPCCs) and the Mel-frequency 
cepstral coefficients (MFCCs) in the emotional speech and 
speaker recognition systems [18]. Our speech database in 
this work was a “closed set”. 

V. SPEAKER IDENTIFICATION ALGORITHM BASED ON EACH 
IFF HMMS, CHMM2S, AND SPHMMS 

In this work, each of HMMs, CHMM2s and SPHMMs 
has been separately used for speaker identification in each 
of the neutral and emotional environments. There are many 
studies that focus on speaker recognition based on HMMs 
[1], [3], [19]. 

A. The Algorithm Based on HMMs 
Our recognizer in this work adopted LFPC as feature 

parameters of each of neutral and emotional speech to 
represent energy distribution across the frequency spectrum 
and an LTRHMM was used as the classifier. The number 
of states, N , was 9 (this number is adequate for the used 
utterances). The number of mixture components, M , was 
5 per state, with a continuous mixture observation density 
was selected for an LTRHMM as the recognizer. In the last 
three decades, the majority of the studies performed in the 
fields of speech and speaker recognition on HMMs have 
been done using LTRHMMs because phonemes follow 
strictly the left to right (LTR) sequence [12], [13]. 

In our training session based on HMMs for each of the 
neutral and emotional environments (completely two 
separate environments), one reference model for each 
speaker was derived using 5 of the 9 utterances per the 
same speaker per the same sentence under the neutral 
emotion. The reference models were common for both the 
neutral and emotional environments. The number of 
utterances in the training session was 1600. 

In our testing (identification) session based on HMMs in 
each of the neutral and emotional environments, each one 
of the 40 speakers used 4 of the 9 utterances per the same 
sentence (text-dependent) in the neutral environment and 9 
utterances per the same sentence under each of the 5 
emotions in emotional environments. The number of 
utterances in the neutral and the emotional testing sessions 
was composed of 1280 and 14400, respectively. In each 
separate environment, the probability of generating every 
utterance was computed, the model with the highest 
probability was chosen as the output of speaker 
identification as given in the following formula 

* arg max { ( )}
40 1

vV P O
v

λ=
≥ ≥

 (8) 
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Fig. 1.  Basic structure of LTRSPHMM derived from LTRHMM. 
 
where, *V P is the index of the identified speaker, O  is the 
observation vector or sequence that belongs to the 
unknown speaker and ( )vP O λ  is the probability of the 
observation sequence O  given the vth acoustic model vλ . 

B. The Algorithm Based on CHMM2s 
In this work, LFPCs were used as feature parameters of 

each of neutral and emotional speech to represent energy 
distribution across the frequency spectrum and an CHMM2 
was used as the classifier. Based on these models, the 
number of states was 9. The number of mixture 
components was 5 per state, with a continuous mixture 
observation density was selected for an CHMM2 as the 
recognizer. 

In these models, the number of utterances in the training 
session was 1600. The number of utterances in the neutral 
and emotional testing sessions was made up of 1280 and 
14400, respectively. In each environment, the probability 
of generating every utterance was computed as given in the 
following formula 

* arg max { (  )}
40 1

vV P O
v

= Φ
≥ ≥

 (9) 

where, ( )vP O Φ  is the probability of the observation 
sequence O  given the vth CHMM2s model vΦ . 

C. The Algorithm Based on SPHMMs 
Our recognizer in this work used LFPC as feature 

parameters of speech signals in each of the neutral and 
emotional environments and a left-to-right suprasegmental 
hidden Markov model (LTRSPHMM) was used as the 
classifier. The number of states was 9. The number of 
mixture components was 5 per state, with a continuous 
mixture observation density was selected for an 
LTRSPHMM as the recognizer. In this work, LTRSPHHM 
was derived from LTRHMM. Fig. 1 shows our adopted 
structure of LTRSPHMM that was derived from 
LTRHMM. In this figure, 1 2 6, , ...,q q q  are hidden Markov 
states. 1p  is a suprasegmental state (e.g. phone) that 
consists of 1 2,q q  and 3q . 2p  is a suprasegmental  
state (e.g. phone) that is made up of 4 5,q q  and 6q . 3p  is a  

TABLE I 
SPEAKER IDENTIFICATION PERFORMANCE IN THE NEUTRAL ENVIRONMENT 

BASED ON HMMS 
 

Gender Speaker identification performance (%) 
Male 99 

Female 99 
Average 99 

 
TABLE II 

SPEAKER IDENTIFICATION PERFORMANCE IN THE NEUTRAL ENVIRONMENT 
BASED ON CHMM2S 

 

Gender Speaker identification performance (%) 
Male 99 

Female 99 
Average 99 

 
TABLE III 

SPEAKER IDENTIFICATION PERFORMANCE IN THE NEUTRAL ENVIRONMENT 
BASED ON SPHMMS 

 

Gender Speaker identification performance (%) 
Male 99 

Female 99 
Average 99 

 
suprasegmental state (e.g., syllable) that is composed of 1p  
and 2p . ija  is the transition probability between the ith 
hidden Markov state and the jth hidden Markov state, while 

ijb  is the transition probability between the ith 
suprasegmental state and the jth suprasegmental state. 

Our training session of SPHMMs was similar to the 
training session of the conventional HMMs. In our training 
session of SPHMMs, suprasegmental models were trained 
on top of acoustic models. In each of the neutral and 
emotional environments, one reference model was derived 
using 5 of the 9 utterances per the same speaker per the 
same sentence under the neutral emotion. The number of 
utterances in the training session of each of the neutral and 
emotional environments was 1600. 

In the testing session, each one of the 40 speakers used 4 
of the 9 utterances per the same sentence in the neutral 
environment and 9 utterances per the same sentence under 
each of the 5 emotions in emotional environments. The 
number of utterances in the neutral and emotional testing 
sessions was composed of 1280 and 14400, respectively. 
The probability of generating every utterance was 
computed as given in the following formula 

* arg max { (   , )}
40 1

v vV P O
v

λ= Ψ
≥ ≥

 (10) 

VI. RESULTS AND DISCUSSION 
Tables I-III summarize the results of speaker 

identification performance in the neutral environment 
based on HMMs, CHMM2s and SPHMMs, respectively. It 
is evident from the three tables that each of HMMs, 
CHMM2 and SPHMMs perform almost perfect in this 
environment. Therefore, the three models are extremely 
powerful in such an environment. Our results in this 
environment are consistent with the results obtained in 
previous studies. Based on Gaussian mixture models 
(GMMs), Reynolds achieved speaker identification 
performance of 99.5% using TIMIT database [20]. Shahin 
and Botros obtained speaker identification performance of 
100% based on dynamic time warping (DTW) [21].  
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TABLE IV 
SPEAKER IDENTIFICATION PERFORMANCE IN EMOTIONAL ENVIRONMENTS 

BASED ON HMMS 
 

Speaker Identification  
Performance (%) Emotion 

Male Female 
Average (%) 

Angry 54 54 54 
Sad 61 62 61.5 

Happy 65 64 64.5 
Disgust 62 64 63 

Fear 63 65 64 
 

TABLE V 
SPEAKER IDENTIFICATION PERFORMANCE IN EMOTIONAL ENVIRONMENTS 

BASED ON CHMM2S 
 

Speaker identification 
performance (%) Emotion 

Male Female 
Average (%) 

Angry 58 59 58.5 
Sad 66 66 66 

Happy 70 70 70 
Disgust 68 69 68.5 

Fear 69 69 69 
 

In emotional environments, HMMs perform poorly as 
shown clearly in Table IV. The performance of speaker 
identification based on HMMs in such environments has 
been  significantly deteriorated compared to that in the 
neutral environment. Table IV shows that the average 
speaker identification performance in emotional 
environments based on HMMs is 61.4%. 

Table V shows apparently that speaker identification 
performance in emotional environments based on 
CHMM2s has been greatly improved compared to that 
based on HMMs. This is because CHMM2s possess the 
characteristics of both CHMMs and HMM2s. This table 
shows that the average speaker identification performance 
in such environments is 66.4%. 

Speaker identification performance in emotional 
environments based on SPHMMs is given in Table VI. 
This table shows that the average speaker identification 
performance in these environments based on SPHMMs is 
69.1%. Therefore, SPHMMs are superior models over each 
of HMMs and CHMM2s in such environments. This may 
be attributed to the following reasons: 
1. SPHMMs are convenient models to integrate 

observations from emotional modality because such 
models allow for observations at a rate appropriate for 
emotional modality. 

2. SPHMMs possess more ability than each of HMMs and 
CHMM2s in capturing prosodic properties, which can 
reflect more emotional properties of speech signals. 
Speech signals in emotional environments differ from 
those in the neutral environment in many aspects 
including intonation, speaking rate and intensity. 

3. Emotional environments are communicated by a subtle 
combination of features at all three levels of speech 
abstraction. These three levels are suprasegmental, 
segmental and intrasegmental [22]. 
It is noticeable from Tables IV, V, and VI that the least 

speaker identification performance in emotional 
environments occurs when speakers speak in the angry 
emotion. This is because the angry emotion can not be 
entirely separated from the shouted talking condition in our 
daily life [23]. It is well known that speaker identification  

TABLE VI 
SPEAKER IDENTIFICATION PERFORMANCE IN EMOTIONAL ENVIRONMENTS 

BASED ON SPHMMS 
 

Speaker identification 
performance (%) Emotion 

Male Female 
Average (%) 

Angry 61 62 61.5 
Sad 68 69 68.5 

Happy 72 73 72.5 
Disgust 71 71 71 

Fear 72 72 72 
 

TABLE VII 
RELATIVE IMPROVEMENT OF USING SPHMMS OVER USING EACH OF 

HMMS AND CHMM2S PER EMOTION 
 

Emotion 
Relative improvement 

of using SPHMMs  
over HMMs (%) 

Relative improvement 
of using SPHMMs over 

CHMM2s (%) 
Neutral 0 0 
Angry 13.9 5.1 

Sad 11.4 3.8 
Happy 12.4 3.6 
Disgust 12.7 3.7 

Fear 12.5 4.3 
 
performance under the shouted talking condition has  
been sharply degraded [14], [23]. These tables also show 
that the highest speaker identification performance in such 
environments happens when speakers speak in the  
happy emotion. 

The relative improvement of using SPHMMs over using 
each of HMMs and CHMM2s per emotion is summarized 
in Table VII. This table shows that the highest relative 
improvement of using SPHMMs over using each of HMMs 
and CHMM2s happens under the angry emotion. 

Comparing each of Table I with Table IV, Table II with 
Table V and Table III with Table VI, it is evident that 
speaker identification performs extremely well in the 
neutral environment; however, the performance decreases 
sharply in emotional environments. Therefore, the 
emotional states of speakers have significantly negative 
impact on the performance of speaker identification in 
emotional environments. 

An informal subjective evaluation was carried out with 
10 nonprofessional listeners (human judges). A total of 160 
utterances (40 speakers with only 4 sentences each) were 
used in the neutral environment evaluation. In the 
emotional environment evaluation, a total of 800 utterances 
(40 speakers, 5 emotions and 4 sentences only) were used. 
The results of the evaluation were satisfactory and 
encouraging. The average speaker identification 
performance in the neutral and emotional environments is 
98.5% and 60.5%, respectively. These averages are less 
than our achieved averages in this work. 

VII. CONCLUDING REMARKS 
Some conclusions can be drawn from this work. First, 

speaker identification in the neutral environment is very 
close to 100% based on each of HMMs, CHMM2s and 
SPHMMs. Based on each of these three models separately, 
speaker identification in emotional environments has been 
significantly improved. Our results show evidently that 
SPHMMs are superior models over each of HMMs and 
CHMM2s for speaker identification in emotional 
environments. Second, prosodic features are very important 
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for speech signals in emotional environments; whereas, 
acoustic features are convenient for speech signals in the 
neutral environment. Third, the field of human emotions is 
an enormously complicated field of study. This may be 
attributed to a number of considerations which include: 
systems in emotional environments depend on many areas 
such as signal processing and analysis techniques, 
psychology, physiology and linguistics. Finally, speaker 
identification performance in emotional environments 
based on SPHMMs is limited. This limitation needs to be 
studied thoroughly in future work. 
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