
Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 8, NO. 1, WINTER-SPRING 2009

1682-0053/09$20 © 2009 ACECR

47

Abstract—Smell detection is the idea of improving the
quality of software by finding and fixing the problems (bad
smells) in the source code. The same idea is applicable at the
design level. Early detection of the problems in UML design
models helps designers produce high quality software.

In this paper, we present a process called
Sign/Criteria/Repair (SCR) for detecting and fixing the smells
in the application of a pattern language in a UML design. We
investigate how the SCR process can be implemented in three
different environments, ArgoUML, Epsilon, and OCLE, and
how these tools can help the designer improve a UML model.

Index Terms—MDD, pattern language, smell detection,
quality assessment.

I. INTRODUCTION
NE of the challenges in Model Driven Development
(MDD) and its approaches, e.g., Model Driven

Architecture (MDA) [1], as a new paradigm in software
engineering, is software quality management. Since the
models are the main artifacts which drive software
development in MDD, quality assessment of models is an
important issue. The tool assistance for quality assurance is
necessary since merely manual inspection or review is not
enough [2].

Smell detection is the idea of improving the quality of
software by finding and fixing the problems- called bad
smells- in the source code. The same idea is applicable at
the design level [3].

In UML documents, e.g., UML 2.0 Infrastructure [4],
Well-Formedness Rules (WFRs) help validate the abstract
syntax and help identify errors in UML models. UML uses
the Object Constraint Language (OCL) [5] for expressing
WFRs. However, the semantic and aesthetic checks, if
described, are explained by natural language since they are
contingent on the underlying domain of the model. Here is
where CASE tools come into play and can help designers
in finding the problems and checking the quality of the
models.

Designers are interested in using patterns while building
software. One benefit of using patterns is to help designers
communicate their idea. The name pattern language comes
from the fact that patterns create a vocabulary about the
design if we always use the suggested pattern names.
Martin Fowler's “Patterns of Enterprise Application
Architecture” [6] (Patterns of EAA) can be considered as a
pattern language for designing enterprise applications.

Manuscript received August 14, 2007; revised June 17, 2008.
B. Zamani is with the Department of Computer Engineering, University

of Isfahan, Isfahan, I. R. Iran (e-mail: zamani@eng.ui.ac.ir).
G. Butler is with the Department of Computer Science and Software

Engineering, Concordia University, Montreal QC, Canada
(gregb@encs.concordia.ca).

Publisher Item Identifier S 1682-0053(09)1641

In this paper, our goal is to investigate how easy it is to
do smell detection and quality assessment on models that
utilize Patterns of EAA as a pattern language. We present a
process called Sign/Criteria/Repair (SCR) for verifying the
application of patterns in a design. SCR can be viewed as a
critiquing process which helps designers find problems
(bad smells) in the application of patterns in their design
and follow the wizards for repairing the problems. We
investigate how the SCR process can be customized for
Patterns of EAA, how this process is implemented in
different environments, and how these environments can
help the designer in detecting and fixing the problems in a
design model. As our case studies, we have selected six
EAA patterns and three state-of-the-art environments,
ArgoUML [7], OCLE [8], and Epsilon [9].

There exist several works related to smell detection in a
design. The works in the first group focus particularly on
detecting design patterns [10]-[13], while works in the
second group focus on quality assessment of models [2],
[14], [15]. Besides these two groups, the most
comprehensive design critiquing system presented until
now seems to be ArgoUML [7]. Our work is close to the
first group considering the fact that we intend to detect
patterns. However, our work differs from those in the sense
that none of the above works has used the UML Profile [4]
technique (and stereotypes) as a powerful tool for detecting
model elements.

The rest of the paper is organized as follows. In Section
II, we briefly introduce Patterns of EAA and discuss how it
can be considered as a pattern language. Section III
presents the idea of smell detection. In Section IV, the SCR
process for detecting smells in using a pattern language in
models is introduced. In Section V the case studies of
integrating the SCR process into selected tools are
described. Finally, in Section VI, we conclude the paper.

II. PATTERNS OF EAA AS A PATTERN LANGUAGE
The Software community has borrowed the words

“pattern” and “Pattern Language” from the work of
architect Christopher Alexander [16]. To quote “Each
pattern describes a problem which occurs over and over
again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the
same way twice.”

By adapting this definition, software experts have
defined (discovered) hundreds of patterns as solutions to
recurring problems in software design. Each pattern author
has her own pattern form, which mostly consists of the
following items: the name of the pattern, the problem, the
solution, and the examples of pattern usage. By
documenting the patterns and the relationship among them,

Smell Detection in UML Designs which Utilize
Pattern Languages

B. Zamani and G. Butler

O

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 8, NO. 1, WINTER-SPRING 2009

48

Table Data Gateway: An object that acts as a Gateway to a database
table. One instance handles all the rows in the table.

Fig. 1. The Table Data Gateway Pattern [6].

in fact pattern authors are defining a language, called
Pattern Language, which could be used by the designers in
developing new software systems [17]. If we consider each
pattern as a recipe for a solution, a pattern language is a set
of recipes for a whole system. Pattern names play a crucial
role in a pattern language, because the designers can use
those names as a vocabulary that helps them communicate
more effectively [6].

Among many available sources of documented patterns,
the most famous one is the seminal book on design patterns
known as “Gang of Four” (GoF) book after its four authors
[18]. The annual conference on Pattern Language of
Programs (PLoP) [19], which is now in its 16th, is another
source dedicated to pattern authors to present their works.
Some of the patterns presented in the conference are
published in PLoP Design book series [20]. There are
several classifications for patterns. Each class can be
considered as a family of related patterns. For instance, in
the GOF book, the patterns are classified by two criteria,
purpose and scope. Purpose can be creational, structural, or
behavioral and reflects what a pattern does. Scope specifies
whether the pattern applies to classes or objects [18]. In
[20], patterns are divided into six parts, design
patterns, distributed patterns, and architecture patterns, to
name a few.

In this paper, we focus on the enterprise architectural
patterns presented in the book “Patterns of EAA” [6]. Over
forty patterns are defined in the book as solutions to
recurring problems, which are applicable to web-based
enterprise applications. The set of patterns introduced in
the book are related to each other and can be used to
describe an application as a whole. Therefore, this set can
be viewed as a pattern language for the design of web-
based enterprise applications.

The Patterns of EAA are decomposed into three layers,
based on the idea of three-tiered architecture for client-
server platforms, i.e., presentation, domain, and data
source. The presentation layer is responsible for user
interface, the domain layer deals with domain logic and
business rules, and the data source layer is related to
communicating with the database of the system.

The pattern language defined in the Patterns of EAA
book helps the designer in deciding what patterns to use
when designing an enterprise application. There are
different alternatives for different layers of the application,
and there are some recommendations. For instance, if you
are using the Transaction Script pattern for the domain
layer, then there are two alternatives for the data source
layer, the Row Data Gateway pattern and the Table Data
Gateway pattern.

Record Set: An in-memory representation of tabular data.

Fig. 2. The Record Set Pattern [6].

Patterns of EAA is a well-known source to be used by
designers of enterprise applications, albeit, applying a
pattern needs expertise and the novice designers are
vulnerable to making mistakes in using patterns.

To make our case studies simple and concrete enough,
we have selected six patterns: four patterns from “Data
Source Architectural Patterns” including Table Data
Gateway, Row Data Gateway, Active Record, and Data
Mapper, as well as two patterns from “basic patterns”
including Money and Record Set. In the following, we
summarize the definition of the Table Data Gateway and
Record Set patterns which are the target of our discussions
in the coming sections.

As indicated in Fig. 1, the essence of the Table Data
Gateway pattern is that it holds all the SQL commands,
e.g., selects, inserts, updates, and deletes, in the form of a
simple interface, for accessing a single table or view.
Others call these methods for interacting with the database.
Each method gets the input parameters and maps them into
a SQL call which is executed against a database
connection. Therefore, the developer does not need to be
worried about writing SQL codes.

There are two alternatives to return the multiple data
items resulted from SQL queries, a map or a Record Set.
Record Set is another pattern in EAA pattern language. For
people who are familiar with two-tier applications, using a
Record Set is more convenient. As Fig. 2 shows, the
Record Set pattern provides an in-memory structure which
is exactly the same as the result of an SQL query. This
brief description shows how the designer is able to utilize a
pattern language in designing a system.

III. SMELL DETECTION
Code smells are symptoms that when present may

indicate that source code is unhealthy and needs to be
revised. Smell detection is the idea of improving the quality
of software by finding and fixing the problems (bad smells)
in the source code. The same idea is applicable at the
design level. As it is discussed in the next section, we have
selected the term “repair” to refer to the task of fixing the
problems found in a model. In this context, repair could
refer to fixing an error in applying a pattern in the model,
adding missing items to the model, or making the design
better. However, when it comes to fixing the structural
problems in the source code, the term “refactoring” has
more advocates in the software community, since
refactoring preserves behavior.

Refactoring is a well-known technique in software
engineering that improves a software design by applying
a series of small behavior preserving transformations [3].

www.SID.ir

Arc
hi

ve
 o

f S
ID

ZAMANI AND BUTLER: SMELL DETECTION IN UML DESIGNS WHICH UTILIZE PATTERN LANGUAGES

49

TABLE I
SOME CODE SMELLS AND CORRESPONDING REFACTORINGS IN ECLIPSE

Code Smell Rafactoring
Two classes have common interfaces Extract Interface

Long method Extract Method
Need to change parameters of method Change Method Signature
Inappropriate name for class, method,

or attribute Rename

Same method/attribute in subclasses Pull Up

Nowadays, there is a tendency towards the tools and IDEs
that are equipped with plug-ins for detecting smells and
applying appropriate refactorings automatically. In the
“Refactoring Home Page” [21] a catalog of common
refactorings along with related tools and books can be
found. For instance, Table I shows some of the common
code smells and suggested refactorings that are applicable
by Eclipse IDE [9] on Java code.

As MDA is becoming a dominant paradigm in software
engineering, more attention is given to the design rather
than the code. Detecting smells at design level helps
produce high quality code. Since most designers are using
CASE tools for their designs, tools that are capable of
detecting smells in the design are more accepted by
designers.

So far there has been a few works on implementing tools
for automatic detection of GOF patterns [10]-[13],
however, our focus in this paper is on detecting smells in
using a pattern language which is used for designing
enterprise applications.

IV. SCR SMELL DETECTION PROCESS
In this section we propose a simple three-step process for

verifying the application of a pattern in a design. The
process is called Sign/Criteria/Repair (SCR) and it aims to
help the designer, first by detecting smells in using the
pattern, and second by repairing the model. The SCR
process consists of the following three steps.

1. Sign: The first and most important property of a
pattern is its sign. Each pattern has a unique sign.
Checking the Sign is the first step of applying the
SCR process. If the Sign is present, we continue the
process. There are several techniques used in
detecting a particular pattern. For instance, [13] uses
graph similarity matching. One approach that makes
the detection of patterns less tedious, and is selected
in this work, is to make use of UML stereotypes [4].
In this approach, Sign is simply indicated by a class
which has corresponding stereotype.

2. Criteria: The second property of a pattern is a set of
criteria that indicates sound usage of the pattern. If all
the criteria are satisfied, a message will be displayed
to the designer to inform his/her about using the
pattern and stating that the usage of the pattern is
correct. For each failed criterion, which reflects a bad
smell in the design, a warning message will be
reported to the designer.

3. Repair: Repair is dependent on the result of criteria
evaluation. For correct usage of a pattern, no repair is
needed. For problematic usage of a pattern, if
there exists a wizard for fixing any of the smells,
upon designer's request, the repair takes place and an

TABLE II
THE STEREOTYPES USED FOR RECOGNIZING PATTERNS

Stereotype Base Class Corresponding Pattern
<<tabledatagateway>> Class Table Data Gateway
<<rowdatagateway>> Class Row Data Gateway

<<activerecord>> Class Active Record
<<datamapper>> Class Data Mapper
<<recordset>> Class Record Set
<<money>> Class Money

TABLE III

THE STEREOTYPES USED FOR RECOGNIZING OPERATIONS

Stereotype Base Class Corresponding Operation
<<find>> Operation Find

<<insert>> Operation Insert
<<delete>> Operation Delete
<<update>> Operation Update

appropriate message will be displayed to the designer.
Otherwise, a message is shown to the designer in
order to inform his/her for fixing the problem
manually.

Although, the SCR process is not restricted to any
specific class of patterns, in the following, we address the
problem of applying the SCR to Patterns of EAA. As it is
mentioned above, to simplify the detection of patterns of
EAA, we exploit one of the powerful extension
mechanisms of UML models [4] by defining stereotypes
corresponding to the names of patterns.

Table II shows the stereotypes that are considered for
each pattern. In addition, more stereotypes are defined to
represent specific operations in a class. Table III shows the
stereotypes that should be used for corresponding
operations.

Let us illustrate how to apply the SCR process to detect
smells in the application of one of the EAA patterns, the
Table Data Gateway pattern.

1. Sign: In the UML class diagram of the design model,
there should be a class with stereotype
<<tabledatagateway>>. The presence of this
stereotype shows the designer’s intention for applying
the Table Data Gateway pattern.

2. Criteria: The requirements of a sound Table Data
Gateway pattern are as follows.
a. The class needs operations for insert(), delete(), and

update(), and usually consists of several find()
operations. Each operation is recognized by its
name or stereotype. As it is mentioned in previous
section, we are using the UML extension
mechanism of stereotypes as an alternate way of
detecting an operation. For instance, if the name of
the operation starts with “insert” or if it has
stereotype <<insert>>, then we recognize it as
insert() operation.

b. All of the find operations should have Record Set
as return type.

c. The parameter list of insert operation should be
subset of the parameter list of update operation.

3. Repair: According to the Criteria, there are three
possible smells in using the Table Data Gateway
pattern. If any of the four operations is missing or if
the find operations do not have the Record Set return
type, then appropriate error message will be displayed

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 8, NO. 1, WINTER-SPRING 2009

50

to the user. In case there are wizards for fixing the
problems, and the user decides to apply the changes
based on the wizards, then the appropriate operations
will be added to the class. After fixing each problem,
an informative message is displayed to the designer to
aware his/her of the change. If there is a mismatch
between the parameters, i.e., the third criterion is
failed, then a warning message will be displayed to
the designer to inform his/her of bad smell in the
design that needs to be corrected.

For other five patterns, there are small variations in
applying the SCR process, briefly described in the
following.

• For Row Data Gateway pattern, there is a gateway
class which has attributes that match with columns in
the database table, and there is a finder class which
uses this gateway to access every record of the
database. The result of the find operation in Row Data
Gateway is a record instead of a table.

• Active Record pattern wraps a row in a table;
therefore it has one attribute for each column of the
database table in addition to all above mentioned
operations.

• Data Mapper pattern is used to move data between
objects and a database, therefore it has the above
mentioned operations but no attributes.

• Record Set pattern contains classes for table, row, and
column with containment as it is indicated in Fig. 2.

• The Money pattern has two simple requirements: the
class should have two specific attributes named
“amount” and “currency.”

To integrate the SCR process into an IDE, we need to
have facilities for describing the Sign, the Criteria, and the
Repair, and be able to invoke each of these parts from the
IDE. Instead of building such environment, we decided to
integrate the SCR process into existing tools for doing our
case studies.

V. INTEGRATING SCR INTO MODELING TOOLS
As our case studies for integrating the SCR process, we

have selected three state-of-the-art tools, ArgoUML,
Epsilon, and OCLE. In this section, for each tool, we
provide a brief overview, implementation aspects of the
SCR process, and an instant evaluation of the suitability of
the tool for the SCR process.

A. ArgoUML
ArgoUML [7] is an open source UML modeling tool that

supports all standard UML 1.4 diagrams. Besides features
such as diagram editor and reverse engineering of compiled
Java code, ArgoUML is a design critiquing tool. As the
creator of ArgoUML defines: “A design critic is an
intelligent user interface mechanism embedded in a design
tool that analyzes a design in the context of decision-
making and provides feedback to help the designer
improve the design” [15].

Simply put, ArgoUML has predefined agents, called
critics, that are constantly investigating the current model
and if the conditions for triggering a critic are held, the
critic will generate a ToDo item (this item is called a

critique) in the ToDo list. A ToDo item is a short
description of the problem, some guidelines about how to
solve the problem, and if there exists, a wizard which helps
the designer solve the problem automatically.

The critics run as asynchronous processes in parallel
with the main ArgoUML tool. The critics are not intrusive,
since the user can totally ignore them or disable one or all
of them by the critics' configuration menu. The critics are
not user defined, since they all are written in Java and are
compiled as part of the tool. Furthermore, a ToDo item
generated by a critic will remain in the ToDo list until the
origin of the problem is vanished, either manually by the
designer or by following the wizards proposed by the tool.

For implementing the SCR process and integrating it into
ArgoUML, we have followed the guidelines given in the
ArgoUML Cookbook [22] to perform the following steps.

1. For each pattern, write a critic class. Each critic class
has a predicate method that should implement Sign
and Criteria parts of the SCR process.

2. Specify the head and description of the critic in the
configuration file “critics.properties.”

3. Register the critic in class “Init.”
4. If the critic is supported by a wizard, add a method to

the critic class for initiating the wizard.
5. Write a wizard class for performing the Repair part of

the SCR process. Since there is no association
between the critic class and the wizard class, we need
to re-evaluate all the requirements that we had in the
Criteria part to see what options are required to be
given to the user in the wizard class.

We have implemented both critic and wizard classes for
all six selected patterns of EAA in ArgoUML. As a simple
example of the Java code written in ArgoUML, the
following code excerpt shows a general purpose function
which checks the name or stereotype of an operation in the
model.

public static boolean opSt(Object cls, String op) {
 boolean found = false;
 Iterator operator =
 Model.getFacade().getOperations(cls).iterator();
 while (operator.hasNext()) {
 Object o = operator.next();
 String opName = Model.getFacade().getName(o);
 if (opName.startsWith(op)) { found = true; break; }
 Iterator s =
 Model.getFacade().getStereotypes(o).iterator();
 while (s.hasNext()) {
 String sName =
 Model.getFacade().getName(s.next());
 if (sName.equals(op)) { found = true; break; }
 }
 if (found) break;

 }
 return found;
}

To evaluate, from the one hand, we believe that the two
concepts of “design critiquing” and “smell detection in the
design” are very similar. Hence, ArgoUML is an
appropriate platform for integrating the SCR process. In
addition, the ToDo items and the wizards are very
interactive and user friendly. However, from the other

www.SID.ir

Arc
hi

ve
 o

f S
ID

ZAMANI AND BUTLER: SMELL DETECTION IN UML DESIGNS WHICH UTILIZE PATTERN LANGUAGES

51

hand, firstly, due to the fact that ArgoUML critics are
implemented in Java and adding new critics requires Java
expertise and is done by modifying the source code, end-
users cannot add new critics for criticizing new patterns.
Secondly, due to lack of association between critic class
and wizard class, duplicate evaluation of criteria is needed
in the wizard class. This is painful. Thirdly, it is not
possible to define critics using OCL in ArgoUML, since
OCL constraints can be written at the model level only.
And last but not least, an important disability of ArgoUML
in applying the SCR process is dependent on the logic
behind critics. The fact is that critics are triggered only
when one of the Criteria is violated, hence there is no
possibility to inform the user about the correct usage of a
pattern without adding more functionality to ArgoUML

B. Epsilon
The Extensible Platform for Specification of Integrated

Languages for mOdel maNagement (Epsilon) [9] is a
platform of model management languages for tasks such as
model merging and model transformation. Epsilon has a
base language called Epsilon Object Language (EOL) [23],
for model querying, navigation, and modification, and a
driver language called Epsilon Model Connectivity (EMC)
that enables managing models of different technologies. So
far there are six task specific languages built in the context
of Epsilon, among them Epsilon Wizard Language (EWL)
is very close to the idea of the SCR process. All Epsilon
languages, except EWL, are available in the Epsilon plug-
in for Eclipse [9]. However, as a working environment for
EWL, the Epsilon team has integrated the execution engine
of EWL within ArgoUML. The result is an “ArgoUML
Powered by Epsilon” tool [24]. We have selected this
environment for performing our case studies with EWL.

The basic concept in EWL is wizard (not to be confused
with ArgoUML wizards). A wizard consists of a name, a
guard part, a title, and a do part. Therefore, the wizard
structure in EWL is compatible with our SCR process.
Both Sign and Criteria parts of the SCR correspond to the
guard part of the wizard in EWL. The Repair part of the
SCR corresponds to the do part of EWL.

The “ArgoUML Powered by Epsilon” has added a panel
named “wizards” to the user interface of ArgoUML. Users
can define the specifications of wizards in EWL language
and save them to a “wizards.ewl” file located in the
installation directory of ArgoUML. By running ArgoUML
and selecting a model element, the guards of all wizards are
evaluated. If the guard of a wizard is evaluated to true, the
title is displayed to the user and the body part is executed.
The body normally is responsible for fixing the problems
associated with the selected model element.

We have written EWL wizards for all six selected
patterns of EAA. Again as a simple example, the following
code excerpt shows a general purpose function written in
EWL which checks the name or stereotype of an operation
in the model.

operation Class opSt (opName : String) : Boolean {
 return self.feature.exists (o:Operation |
o.name.startsWith(opName) or
 o.hasStereotype(opName));
}

Writing wizards in EWL, for “ArgoUML powered by
Epsilon,” as an offline file accessible by the end-user is a
novel idea. This way the designer can add a wizard for a
new pattern independent of the source code of the tool. The
ability to define global variables in EWL is helpful and
prevents redundant calculations of conditions in the
Criteria and the Repair parts of the SCR process. Overall,
EWL is a rich language in model modifications, i.e., while
part of the syntax is similar to OCL, it has constructs such
as high-level programming languages along with
operations for applying changes on the model. However,
despite the “confirm” interface which ensures that the user
is confirming the changes, executing a wizard in EWL
needs to be more interactive. A suggestion would be to
give opportunity to the user to be able to select among a list
of problems that are going to be fixed automatically.

C. OCLE
Object Constraint Language Environment (OCLE) [8] as

a UML CASE tool, offers many useful features such as full
OCL support at both UML meta-model level and model
level, and a graphical interface for creating UML diagrams.
At the meta-model level, OCLE checks the well-
formedness of UML models against the WFRs specified in
UML 1.5. At the model level, OCLE helps users in both
static and dynamic checking.

By compiling and running constraint files, the user is
able to check which of the invariants are not satisfied by
the model. However, it is the user's responsibility to fix the
problems in the model. A Compile-time error reflects
problems concerning OCL syntax. A Runtime error means
that some of the invariants in constraints are violated.

Considering the SCR process, since both the Sign and
Criteria steps are model independent tasks and need to be
verified against the meta-model, we have to check the Sign
and Criteria using OCL in “.ocl” constraint files which are
meta-model level constraints. However, due to the lack of
capability for model modifications by OCL, there is no
corresponding part in our constraints for the Repair step of
the SCR. It is up to the user to check every invariant, and
for every bad smell (failed invariant), the user is
responsible for fixing the problem.

We have defined the constraints related to all six
selected patterns of EAA in OCLE. The following code
excerpt shows a general purpose function written in OCLE
which checks the name or stereotype of an operation in the
model.

context Class
 def: let opSt (op : String) : Boolean =
Operation.allInstances -> exists
 (o:Operation | o.owner = self
 and((o.name.substring(0,op.size()-1) = op)

or o.hasSt(op)))

Translating the Sign and Criteria parts of the SCR
process into OCL constraints in OCLE is a straightforward
and condensed form. However, using OCLE needs OCL
expertise and writing constraints for critiquing patterns
needs knowledge of the meta-model. Furthermore, OCLE
is not meant to fix the problems in a model due to the lack
of update facilities in OCL language which is not able to do

www.SID.ir

Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 8, NO. 1, WINTER-SPRING 2009

52

modifications in a model; therefore, Repair part of SCR is
not applicable in OCLE. Finally, the tool cannot help more
than displaying bad smells to the user and highlighting the
problematic invariants. All the repair actions are the
designer’s responsibility.

VI. CONCLUSIONS
The main idea of smell detection in the application of a

pattern language for a domain, e.g., the Patterns of EAA, is
to detect when a pattern is used, to report whether the
pattern is used wrongly, and to help the designer in
repairing the bad smells (problems) that are found in the
application of the pattern.

We introduced a process named Sign/Criteria/Repair
(SCR) for detecting and repairing the smells in the usage of
patterns. A Sign is the basic characteristic of a pattern,
usually in the form of stereotypes. Criteria are the minimal
requirements of the pattern. Repair is a set of steps to fix
smells in the application of the pattern. Each pattern
has specific Sign and Criteria. Each smell has essential
Repair steps.

To evaluate the idea of the SCR and its applicability and
usefulness in current modeling tools, we did experiments
with three state-of-the-art tools, ArgoUML, Epsilon, and
OCLE. We observed that the SCR process is able to be
integrated in modeling tools and help designer in detecting
bad smells early in the design process. The Repair
mechanism of SCR is effective in removing the problems
in a design and ensures correctness. Interactive modeling
tool will speed up the design process and results in more
efficiency. It is worth mentioning that the required effort
and the offered help is not the same in all three tools.

As a brief comparison, using OCLE needs OCL
expertise, and OCLE is not meant to fix the problems in a
model due to the lack of update facilities in OCL language.
Adding new critics in ArgoUML requires Java expertise,
however wizards in ArgoUML are interactive and user
friendly. Writing wizards in EWL, for ArgoUML powered
by Epsilon, by the end-user is a novel idea; however, the
user needs to learn the EWL syntax, which is not difficult,
to apply update transformations on UML models.

REFERENCES
[1] OMG Model Driven Architecture, in URL:

http://www.omg.org/mda/, accessed on May 1, 2008.
[2] R. Breu and J. Chimiak-Opoka, "Towards systematic model

assessment," in Proc. Perspectives in Conceptual Modeling: ER
2005 Workshops, vol. 3770 of LNCS, Springer 2005, pp. 398-409.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

[4] OMG, Unified Modeling Language: Infrastructure, v2.0. OMG
document formal/05-07-05, 2005.

[5] OMG, Object Constraint Language: Specification, v2.0. OMG
document formal/06-05-01, 2005.

[6] M. Fowler, Patterns of Enterprise Application Architecture,
Addison-Wesley Professional, 2002.

[7] Tigris.org, ArgoUML official website, in URL:
http://argouml.tigris.org/, accessed on May 1, 2008.

[8] BABES-BOLYAI University, OCLE: Object Constraint Language
Environment, in URL: http://lci.cs.ubbcluj.ro/ocle/, accessed on May
1, 2008.

[9] Eclipse, Epsilon, Eclipse Foundation, in URL:
http://www.eclipse.org/gmt/epsilon/, accessed on May 1, 2008.

[10] F. Bergenti and A. Poggi, "Improving UML designs using automatic
design pattern detection," in Proc. 12th Int. Conf. on Software
Engineering and Knowledge Engineering, SEKE, pp. 336-343, 2000.

[11] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, "Automatic
design pattern detection," in Proc. 11th IEEE Int. Workshop on
Program Comprehension, IWPC'03, pp. 94-103, 2003.

[12] R. Wuyts, "Declarative reasoning about the structure of object-
oriented systems," in Proc. Technology of Object-Oriented
Languages, TOOLS 26, pp. 112-124, 1998.

[13] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
"Design pattern detection using similarity scoring," IEEE Trans.
Soft. Eng., vol. 32, no. 11, pp. 896-909, Nov. 2006.

[14] W. Liu, S. Easterbrook, and J. Mylopoulos, "Rule-based detection of
inconsistency in UML models," in Proc. Workshop on Consistency
Problems in UML-Based Software Development, pp. 106-123, 2002.

[15] J. E. Robbins, Cognitive Support Features for Software Development
Tools, Ph.D. Thesis, University of California, Irvine, 1999.

[16] C. Alexander et al., A Pattern Language: Towns, Buildings,
Construction, Oxford University Press, 1977.

[17] S. Berczuk, "Finding solutions through pattern languages,"
Computer, vol. 27, no. 12, pp. 75-76, Dec. 1994.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1995.

[19] hillside.net, Pattern Languages of Programs Conference official
website, in URL: http://hillside.net/plop/, accessed on May 1, 2008.

[20] D. Manolescu, M. Voelter, and J. Noble, Pattern Languages of
Program Design 5, Addison-Wesley, 2006.

[21] ThoughtWorks, Refactoring Home Page, in URL:
http://www.refactoring.com/, accessed on May 1, 2008.

[22] L. Tolke, M. Klink, and M. van der Wulp, Cookbook for Developers
of ArgoUML, University of California, 2006.

[23] D. S. Kolovos, R. F. Paige, and F. A.C. Polack, "The Epsilon object
language (EOL)," in Proc. 2nd European Conf. on Model Driven
Architecture-Foundations and Applications, ECMDA-FA 2006,
vol. 4066 of LNCS, pp. 128– 142, Springer 2006.

[24] D. S. Kolovos, R. F. Paige, F. A. C. Polack, and L. M. Rose, "Update
transformations in the small with the epsilon wizard language," J. of
Object Technology, JOT, Special Issue for TOOLS Europe, vol. 6,
no. 9, pp. 53-69, Oct. 2007.

Bahman Zamani received his B.Sc. from the University of Isfahan,
Isfahan, Iran, in 1991, and his M.Sc. from the Sharif University of
Technology, Tehran, Iran in 1997, both in Computer Engineering
(Software). He obtained his Ph.D. degree in Computer Science from
Concordia University, Montreal, QC, Canada in 2009.

From 1998 to 2003, he was a researcher and faculty member of the
Iranian Research Organization for Science and Technology (IROST) -
Isfahan Branch. Dr. Zamani joined the Department of Computer
Engineering at the University of Isfahan in 2009, as an Assistant
Professor. His research interests include Pattern Language Verification in
Model Driven Design.

Greg Butler Greg Butler is Professor in Computer Science at Concordia
University, Montreal, Canada. He joined Concordia in 1992 after nine
years on the faculty of the University of Sydney, Australia. Dr. Butler has
broad international experience, including periods visiting the University of
Delaware, Universität Bayreuth, Universität Karlsruhe, and RMIT,
Melbourne. Dr. Butler has consulted on object-oriented design, object
technology, and extensible software architectures.

Dr. Butler's research goal is to construct knowledge-based scientific
work environments, especially those for genomics and bioinformatics. In
order to succeed at this, Dr. Butler has been investigating software
technology for complex software systems - including software
architectures, object-oriented design, and software reuse - to complement
his experience in scientific computation and knowledge-based systems.

Dr. Butler obtained his Ph.D. from the University of Sydney in 1980
for work on computational group theory. He worked in computer algebra
for 20 years developing algorithms, constructing software systems,
designing languages, and investigating the integration of databases and
knowledge-bases with computer algebra systems. He is a major contributor
to the Cayley system for computational group theory, modern algebra, and
discrete mathematics.

www.SID.ir

