

 Journal of Faculty of Engineering, Vol. 39, No. 4. No. 2005, PP. 1-9 (English Papers) 1

General models for hybrid flow shop sequencing problems
with sequence dependent setup times

M. Zandieh

Department of Industrial Engineering,Amirkabir University of Technology
z7725953@aut.ac.ir

S. M. T. Fatemi Ghomi
Department of Industrial Engineering,Amirkabir University of Technology

fatemi@aut.ac.ir
S. M. Moattar Husseini

Department of Industrial Engineering,Amirkabir University of Technology
)16/7/84 بیخ تصوی، تار26/4/84 افتیخ دریتار(

Abstract
 This study presents two mixed integer programming models for scheduling hybrid flow shops with
sequence dependent setup times.In the first model , we assumed the machines at each stage are
identical,but in the second model the machines at each stage are different.These models may be used to
determine optimal solutions for hybrid flow shop problems of moderate size, and these problems could
then be used as benchmarks for testing new sequencing heuristics.

Keywords: Short-term scheduling; Hybrid flow shop; Sequence dependent setup
times; Mathematical programming

Introduction
 The purpose of this paper is twofold: (1)
to present two mixed integer programming
models for optimizing a family of hybrid
flow shop sequencing problems with
sequence-dependent setup times to
minimize makespan, and (2) to compare
these models on the basis of problem size,
ease of implementation, and the flexibility
of extension to variants.
 Section 2 briefly reviews the related
literature. In section 3 problem definition
is presented. Sections 4 and 5 contain the
general models. In section 6, the models
are compared. Section 7 concludes and
presents directions for future research.

Literature Review
 Several flow patterns can be
encountered, depending on the number of
operations required to process a job and on
the number of available machines per
operation. When a job requires only one
operation for its completion, we
characterize it as single-operation;
otherwise, we call it multi-operation. In

the latter case, the concept of routing may
be introduced based on machines, we have
single machine shop, flow shop,
permutation flow shop, job shop, and open
shop scheduling problems. When
processing stages are considered instead of
machines, we have parallel machine shop,
hybrid flow shop, job shop with duplicate
machines scheduling problems.The
diagram in Fig.1 illustrates schematically
the relationships between the different
machine environments (Zandieh and
Fatemi, 2003).
 A hybrid flow shop model allows us to
represent most of the production systems.
The process industry such as chemical,
pharmaceutical, oil, food, tobacco, textile,
paper, and metallurgical industry can be
modelled as a hybrid flow shop. In the
literature, the notion of hybrid flow shop
has emerged in the 70s (Arthanary and
Ramaswamy, 1971).
A hybrid flow shop consists of a series of
production stages or workshops, each of
which has several facilities in parallel
(Elmaghraby and Karnoub, 1995).

 Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005 2

Some stages may have only one facility,
but for the plant to be qualified as a hybrid
flow shop, at least one stage must have
several facilities. The flow of products in
the plant is unidirectional. Each product is
processed at only one facility in each stage
and at one or more stages before it exits
the plant. Each stage may have multiple
parallel identical machines. Each job is
processed by at most one machine at each
stage.
 Several mathematical formulations based
on a continuous representation of the time
domain have been published. Pinto and
Grossmann (1995) proposed a continuous
time MILP formulation for short-term
scheduling of multistage batch plants.
Since there was not a variable explicitly
addressing consecutive orders, their
formulation had difficulties handling
order-sequence-dependent constraints.
Pinto and Grossmann (1996) presented an
alternate model that explicitly incorporated
pre-ordering constraints into a
representation of time slots for units. Their
model was suitable for only pre-ordered
orders and still did not address the
sequence dependencies. Cerda, Henning
and Grossmann (1996) proposed an MILP
model for the short-term scheduling of a

single-stage multi-product batch plants
with parallel lines. They applied a set of
tri-index variables (order, order, unit) to
handle order sequence-dependencies
explicitly. Ierapetritou and Floudas (1998)
presented a continuous time formulation
for the short-term scheduling of batch
processes. The application of their
formulation was restricted to pre-ordered
problems. Chi-Wai and Gupta (2000)
proposed continuous time MILP model for
short term scheduling of multistage batch
plants with sequence dependent
consideration. They proposed a novel
formulation that replaces the tetra-index
binary variables without losing the model's
generality. Moon and Hrymak (1999)
addresses the short-term scheduling
problem for the batch anealing process in
the heat treatment of steel coils with
sequence dependent consideration. They
proposed a novel MILP model for
scheduling and a novel algorithm for
solving the problem.
 Stafford (1988) focused on the standard
flowshop (with no parallel machines and
no sequence-dependent setup times).
Srikar and Ghosh (1986) considered a
permutation flowshop with sequence-
dependent setup times in their MILP

Open shop

Job shop

Job shop with duplicate machine

Flow shop

Hybrid flow shop

Permutation flow shop

Single machine

Parallel machine

specific routings
exist

same routing
for every job

M(v)=1

V=1

V=1 M(v)=1

M(v)=1

No passing

V=1

V=1,M(v)=1

V=1

same routing
for every job

specific routings exist
and are identical

Fig. 1: A classification for scheduling problems based on resource environments.

 General models for….. 3

model, which used many fewer variables
than the previous models. Srikar and
Ghosh (1986) used decision variables that
focused on whether a job is scheduled
anytime before another job. However,
Stafford and Tseng (1990) discovered
several problems with Srikar and Ghosh
(1986), corrected these and extended this
modeling concept to non-sequence-
dependent setup time flowshops, no-
intermediate-queue flowshops and
sequence-dependent setup time, no-
intermediate- queue flowshops. Rios-
Mercado and Bard (1998) also consider
the sequence-dependent setup time
flowshop and develop several valid
inequalities for Models based on the
traveling salesman problem and the Srikar-
Ghosh model.
 No literature has been discovered
addressing models for the hybrid flow
shop with sequence- dependent setup
times. The key features that are missing
are the multiple machines per stage and the
ability of jobs to skip some stages.

Problem definition
 Let V be the number of workshops in
series. Let N be the number of jobs to be
processed and M(v) be the number of
machines in parallel at each stage v. We
assume that machines are initially setup
for a nominal job 0 at every stage. Job N+1
exists at every stage only to indicate the
end of the process, if needed. We have the
following definitions.
N=number of jobs to be processed
V =number of serial workshoptages
vi =last stage visited by job i
M(v) = the number of machines in parallel at
each stage v
p(i,v) =processing time for job i at stage v
s(i,j,v) =sequence dependent setup time from
job i to job j at stage v
W(i) =set of workshop stages visited by job i
J(v) =set of jobs that visit workshop stage v
J(v,0) =J(v) plus job 0
J(v,N+1) =J(v) plus job N+1
 The processing time of job 0 is set at 0.
The setup time from job 0 indicates the
time to move from the nominal set point

state. We assume that all jobs currently in
the system must be completed at each
stage before the jobs under consideration
may begin setup. The completion times of
job 0 at each stage are set to the earliest
setup time may begin at that stage. The
setup time for job N+1 is set at 0; this job
only exists to indicate the end of the
schedule. We also include the restriction
that every stage must be visited by at least
as many jobs as there are machines in that
stage.

First model
 In the TSP based model, following
model A from Rios-Mercado and Bard
(1998), the following additional variables
are used.
r(v)=time at which stage v can begin
processing, v=1,..., V
C(i,v)=completion time for job i at stage v,
v=1,..., V, i=1,..., N
X(i,j,v) =1 if job i is processed immediately
before job j at stage v, and 0 otherwise

V,...,1v,ji),1N,v(Jj),0,v(Ji =≠+∈∈
 Several observations can be made which
guide the formulation of this model. Each
stage v has a time at which it can begin
processing, which is denoted r(v) . We
consider the time each stage can begin
processing to be the completion time of
job 0 at that stage, and we further assume
that it is the same for all machines at a
stage. Every stage exists independently
except that a job is not available to begin
setup in stage v until it has completed
processing on stage v-1. Each stage can be
considered as a traveling salesman
problem with multiple salesmen, equal to
the number of machines in that stage. We
assign jobs to machines implicitly; by
interpreting a group of variables, such
as X(0,3,1)=1 , X(4,2,1)=1,and X(2,0,1)=1,
we see that jobs 0, 3, 4 and 2 are assigned
to a machine in stage 1 in that order.
Equations (1) to (11) comprise model 1.
Model 1:
min z

:.ts
(1)

 Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005 4

v);v(M)v,j,0(X
)v(Jj

∀=∑
∈

(2)

{ }
)0,v(Ji,v;1)v,j,i(X

i)1N,v(Jj

∈∀=∑
−+∈

(3)

{ }
)1N,v(Jj,v;1)v,j,i(X

j)0,v(Ji

+∈∀=∑
−∈

(4)
v);v(r)v,0(C ∀=

(5)
[]

),0,v(Ji,v
);v,j(p)v,j,i(S)v(B

)v,j,i(X1)v,i(C)v,j(C

∈∀
+≥

−+−

ji),1N,v(Jj ≠+∈
(6)

[]
),0,v(Ji,v);v,j(p)v,j,i(S)v,j(B

)v,j,i(X1)1v,i(C)v,j(C
∈∀+≥

−+−−

ji),1N,v(Jj ≠+∈
(7)

)v(Jiv);v,0(C)v,i(C ∈∀≥
(8)

)v(Ji,V,..,2v);1v,i(C)v,i(C ∈=−≥
(9)

N,..,1i);v,i(Cz i =≥
(10)

{ } v,j,i;1,0)v,j,i(X ∀∈
(11)

 The objective is to minimize makespan,
which is denoted by z and is incorporated
into later constraints. Job 0 must be
scheduled on every machine in every
stage. This is expressed by constraint set
(2). At every stage, every job must have
exactly one predecessor and exactly one
successor. This is expressed by the
constraint sets (3) and (4). The completion
time of job 0 on each stage is set to be the
time each stage is available in constraint
set (5). The completion time of two jobs in
the same stage depend on whether those
jobs are scheduled together or not. If two
jobs, namely i and j, are scheduled in that
order with no jobs between them, job j’s
completion time is at least the sum of job
i’s completion time, the setup time from i
to j, and job j’s processing time. If i and j
are scheduled in any other way, the

difference between the two completion
times is larger than a very negative number
B(v). B(v) is an upper bound on the time
stage v completes processing, similar to
the upper bound A in Rios-Mercado and
Bard (1998).

 { }
{ }

∑
= ∈

+=

n

1i N,..,1,0j
)1,i,j(Smax)1,i(p)1(B , and

{ }
{ }

∑
= ∈

++−=

n

1i N,..,1,0j
)v,i,j(Smax)v,i(p)1v(B)v(B .

Constraint set (6) enforces the restriction
that the machine must be idle before setup
can begin. The completion time of a job in
one stage also depends on its completion
time in the previous stage.We define
C(i,0)=0, iє(0,1,..,N). We incorporate this
idea by ensuring that the completion time
of job j in stage v is at least as large as the
completion time in stage v-1 plus the setup
from the immediately previous job in stage
v, plus the processing time of job j.
Constraint set (7) enforces the concept that
the job must be available before setup can
begin. The value B(j,v) is set to

i
}max{ v)j,S(i,v)p(j,v)B(j, += . Since job 0 is

some sort of surrogate for machine
availability, we require every job to be
processed after job 0 at every stage.
Allowing that some jobs do not actually
require processing in every stage, we
include constraint set (8). Since jobs must
be processed in a linear fashion through
the stages, we include the restriction that
completion times must be nondecreasing
as the stage number increases. This is
enforced through constraint set (9). The
makespan is defined to be the latest time a
job completes processing. Because the
flowshop is hybrid, each job j’s last stage
is vj. The makespan is the largest of the
completion times of all the jobs, denoted
by C(j,vj) for each job. Since jobs 0 and
N+1 exist to begin and end the schedule,
we do not include these jobs for
consideration in defining the makespan in
constraint set (10).

 General models for….. 5

Second model
 In the second model, jobs are explicitly
placed into positions on machines,
following Wagner (1959) and Stafford
(1988). If there were one machine at every
stage and the jobs were required to be
processed in the same order at every stage,
this would result in a permutation
schedule. However, we will be making the
investment in extra decision variables so
that permutation schedules will not be
required. Moreover, with possibly a
different number of machines at every
stage and jobs that may skip stages, it is
not clear how to define a permutation
schedule in this context. A specific job is
called job i. The job in the jth position will
be called the jth job. The following
decision variables are used.

X(i,j,v,k)=1 if job i is scheduled in position j
on machine k in stage v and 0 otherwise
e(j,v,k)=setup beginning time for jth job on
machine k in stage v
d(j,v,k)=completion time for jth job on
machine k in stage v
w(j,v,k)=idle time after jth job completes and
before start of setup of (j+1)st job on machine
k in stage v
T(j,v,k)=processing time of the jth job on
machine k in stage v
S(j,v,k)=setup time from the jth to (j+1)st job
on machine k in stage v

 Position 0 on every machine at every
stage will be occupied by job 0. Note that
a different job 0 can be created for each
machine and each stage in this problem, so
that the completion of job 0 can represent
the end of an in-progress schedule through
the appropriate assignment of values to
variables d(0,v,k). The largest position
number required for each machine in stage
v is)(vJ , because job 0 is not counted as
one of the jobs in each stage. Equations
(12) - (26) comprise model 2.
 The objective is to minimize makespan,
which is denoted by z and is incorporated
into later constraints. Every job that visits
stage v must be assigned to exactly one
position on one machine in that stage. We

will later explicitly assign job 0 to the 0th
position, so we need only consider the
other jobs that visit stage v. This is
expressed by constraint set (13). We
explicitly assign job 0 to the 0th position
on all machines at all stages in constraint
set (14). Every position of every machine
in every stage has at most one job assigned
to it, expressed by constraint set (15).
Constraint set (15) only requires that at
most one job is assigned to each possible
position. In no way does it requires that
jobs be scheduled in consecutive positions.
For example, up to this point, a valid
assignment may have jobs in positions 0,
1, 3, and 4 on a machine in a particular
stage. To prevent this, we require all
positions after an empty position to empty
as well. This can be enforced by constraint
set (16). A couple of “helper” variables are
defined to simplify the presentation of the
model. These variables are T(j,v,k) and
S(j,v,k), which associate processing and
setup times with jobs by position instead
of names. For example, if job 3 is the 4th
job on stage 2, machine 3, the variable
T(4,2,3) takes on the value p(3,2). The
processing times are associated with the
position numbers by using the constraint
set (17).
Model 2:
min z

:.ts
(12)

)v(Ji,v;1)k,v,j,i(X
)v(J

1j

)v(M

1k

∈∀=∑ ∑
= =

(13)
k,v;1)k,v,0,0(X ∀∀=

(14)
)v(J,..,1j,k,v;1)k,v,j,i(X

)v(Ji

=∀∀≤∑
∈

(15)

{ }

1)v(J,..,1j),v(Jh,k,v

);k,v,j,i(X)k,v,1j,h(X
h)0,v(Ji

−=∈∀∀

≤+ ∑
−∈

(16)

 Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005 6

)v(J,..,0j,k,v

;)k,v,j,i(X)v,i(p)k,v,j(T
)v(Ji

=∀∀

= ∑
∈

(17)

1)v(J,..,0j,k,v

)v,h,i(S)k,v,h,j,i(Y)k,v,1j(S

−=∀∀

=+ ∑∑

(18)

{} 1)v(J,..,1j,i)v(Jh),v(Ji,k,v
);k,v,j,i(X)k,v,h,j,i(Y

−=−∈∈∀∀

≤

(19)

)v(Jh,k,v
);k,v,1,h(X)k,v,h,0,0(Y

∈∀∀
≤

(20)

{} 1)v(J,..,1j,i)v(Jh),v(Ji,k,v
);k,v,1j,h(X)k,v,h,j,i(Y

−=−∈∈∀∀

+≤

(21)

)v(Jh,k,v
;1)k,v,1,h(X)k,v,0,0(X)k,v,h,0,0(Y

∈∀∀
−+≥

(22)

;1)k,v,1j,h(X)k,v,j,i(X)k,v,h,j,i(Y −++≥
{} 1)v(J,..,1j,i)v(Jh),v(Ji,k,v −=−∈∈∀∀

(23)

k,v
);k,v(r)k,v,0(d

∀∀
=

(24)

1)v(J,..,0j,k,v
);k,v,j(w)k,v,j(d)k,v,1j(e

−=∀∀

+=+

(25)

)v(J,..,1j,k,v
);k,v,j(T)k,v,j(s)k,v,j(e)k,v,j(d

=∀∀

++=

(26)

[]
[] ;B)k,v,j,i(X1B

)l,u,f,i(X1)k,v,f,i(e)k,v,j(d
−+

−+≤

[]

)u(J,..,1f,)v(J,..,1j
,)u(J)v(Ji,l,Vuv,k,v

==

∈∀∀∀ ∩≺≺

(27)

);k,v,j(dz ≥
(28)

{ } k,v,j,i;1.0)k,v,j,i(X ∀∈
(29)

 The setup time from job i to job h, if job
i is assigned to position j and job h is
assigned to position j+1 on machine k in
stage v will be called the setup to the

(j+1)st job, S(j+1,v,k) , and can be found
by the following equation

{ }

1)v(S,..,0j,k,v

;)k,v,1j,h(X)v,h,i(S)k,v,j,i(X

)k,v,1j(S

h)v(Ji)v(Jh

−=∀∀

+

=+

∑ ∑
−∈ ∈

This is non-linear. We introduce a new
binary variable Y(I,j,h,v,k) which is 1
when job i is in position j and job h is in
position j+1 on machine k in stage v, and 0
otherwise. Constraint set (27) is replaced
by the constraint sets (18), (19), (20) , (21)
, (22) and (23). At every machine on every
stage, job 0’s completion time is that
machine’s ready time. At this time, we
compute the machine’s ready time in
constraint set (24) as the sum of the
processing of job 0 up to and including the
current stage, or ∑

=

=
v

u

kuTkvr
1

),,0(),(, though

this may vary by application. The (j+1)st
job in each stage on each machine can
begin processing after the jth job
completes processing and some waiting
time passes. The waiting time can account
for the fact that the (j+1)st job is not done
with its processing on the previous stage it
visits and machine k on stage v is idle
while waiting for the job to arrive. Since
the objective is makespan, which is
defined by only one job’s completion time,
the waiting time variable may be positive
even when the job is available for setup.
This set of scheduling variables allows
machines to be idle when jobs are
available and is shown in constraint set
(25). The jth job’s completion time is the
sum of its available-to-setup time, the time
to setup from the (j-1)st job to the jth job,
and its processing time, as shown in
constraint set (26). Because we require
jobs to finish processing at stage v before
setup can begin at stage v+1, we need the
available-to-setup time for jobs in stage v
to be at least as large as the completion
time of the jobs in stage v-1. However, our
available-to-setup and completion time
variables are in terms of the position each
job has, not the jobs themselves. For this
reason, we need to translate these times so

 General models for….. 7

Table 1: Size complexity of the SDST models.

IP model
Number of model I model II

Binary
Variables

()()∑
=

+
V

1v

1)v(J)v(J ()∑
=

++−
V

1v

23 1)v(J)v(J)v(J).v(M

Other
Variables (N+1)V ()∑

=

+
V

1v

)v(M.1)v(J5

Constraints
()()∑

=

++−+
V

1v

)v(J2.)v(J2)v(JNV2 ()[]∑
=

+−++
V

1v

2 5)v(J2)v(J3)v(J).v(M)v(M4)v(J3

Table 2 : Empirical model sizes and solution information (computer time given are in second).

Problem Problem Size model I model II
Binary Var. 64 Binary Var. 386
Constraint 196 Constraint 1292 1

V=2,
v,6)v(J ∀== 1,M(v)

Time 251 Time 321
Binary Var. 84 Binary Var. 772
Constraint 196 Constraint 3004 2

V=2,
v,6)v(J ∀== 2,M(v)

Time 31 Time 3100,gap21%
Binary Var. 42 Binary Var. 272
Constraint 116 Constraint 876 3

V=2,
{ } { }6,5,4,3,2)2(J,6,4,1)1(J,v ==∀= 2,M(v)

 Time 0.31 Time 3.2

that we can make the required connections
between these times in terms of the jobs
themselves. Constraint set (27) ensures
that the time setup can begin for job i on
all stages vu ; must be no earlier than the
time job i ends on stage v. The makespan
is defined to be the latest time a job
completes processing in constraint set
(28).
Comparing models 1 and 2
 Now that both models have been
described, they can be compared in terms
of the number of variables and constraints.
Table 1 contains the number of binary and
non-binary variables and the number of
constraints in each model. The number of
constraints and binary variables are much
higher in the second model. In order to
better demonstrate the magnitude of the
difference, Table 2 shows the number of
binary variables and constraints for several
different sized problems. Each cell shows
the number of binary variables and
constraints in that order. These problems
have been solved in LINDO on a Pentium
4, running time at 1400MHz. The
additional information in each cell shows

the solving time.
 Clearly, the number of binary variables
and constraints is much larger for model 2.
In these few small examples, the solving
time required in the solution of model 2
IPs is much higher than in the model 1 IPs.
In problem 2, model 2 was not able to
solve the problem optimally in the 1 hour
computational time limit imposed, while
model 1 solved the problem optimally in
less than a minute. Problem 2 differs from
Problem 1 structurally only in that the
stages have two machines each. Model 2
cannot tell the difference between these
two machines at each stage, which
certainly causes the solver to spend time
considering alternative solutions that are
identical. Problem 3 is easily solved by
both models, even though it has two
machines at each stage. This problem is
easier because only two jobs visit both
stages, so the interaction between the
stages is less when compared to problems
1 and 2.
 Despite the above performance, model 2
has significant advantages over model 1
due to the adaptations that model 2 can

 Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005 8

accommodate. Model 2 can accommodate
machines at stages with different ready
times, non-identical processing times and
differing capabilities. Model 2 can also
accommodate inserted idle time in
schedules, as well as times during which
machines may not be available, such as
during planned maintenance. For this
reason, we believe that the basic structure
of model 2 has an inherent value.

Conclusions
 Two models have been presented for
scheduling the hybrid flow shops with
sequence-dependent setup times. These
models differ in their modeling

perspective. Though the second one is
much larger, it is more adaptable to
variants of the problem. Several strategies
will be pursued in improving model 2. The
first strategy will be to add constraints to
differentiate between machines in each
stage, in an effort to break the symmetry
that exists in the stages, following work
done by Sherali, sith, and Lee (2000) in
the design of optical networks. The second
strategy will focus on redefining the
variables, since all the information in the X
variables is replicated in the Y variables.
The effectiveness of these strategies will
be evaluated by generating and solving
instances of this problem.

References
1 – Arthanary, T. S. and Ramaswamy, K. G. (1971). "An extension of two machine sequencing problems."

Opsearch, Vol. 8, PP. 10-22.

2 - Cerda, J., Henning, P., & Grossmann, I. E. (1996). "A mixed integer linear programming model for short-

term scheduling of single stage multi-product batch plants with parallel lines." Industrial Engineering &

Chemical Research, Vol. 36, PP. 1695-1707.

3 - Chi-Wai Hui, and Avaneesh, Gupta. (2000). "A novel MILP formulation for short-term scheduling of

multistage multi-product batch plants." Computers & Chemical Engineering, Vol. 24, PP. 1611-1617.

4 – Elmaghraby, S. E. and Karnoub, R. E. (1995). Production control in flexible flowshops: an example from

textile manufacturing. OR Report N°305 OR & IE Dept. North Carolina State University. USA.

5 - Ierapetritou, M. G. and Floudas, C. A. (1998). "Effective continuous time formulation for short-term

scheduling. 1. Multipurpose batch processes." Industrial Engineering & Chemical Research, Vol. 37, PP.

4341-4359.

6 - Pinto, J. M. and Grossmann, I. E. (1995). "A continuous time mixed integer linear programming model for

short-term scheduling of multistage batch plants." Industrial Engineering & Chemical Research, Vol. 34,

PP. 3037-3051.

7 - Pinto, J. M. and Grossmann, I. E. (1996). "A continuous time MILP model for short-term scheduling of

batch plants with preordering constraints." Computers & Chemical Engineering, Vol. 20, PP. S1197-S1202.

8 - Rios-Mercado, R. Z. and Bard, J. F. (1998). "Computational experience with a branch-and-cut algorithm for

flowshop scheduling with setups." Computers and Operations Research, Vol. 25, No. 5, PP. 351-366.

9 - Sherali, H. D., Smith, J. C. and Lee, Y. (2000). "Enhanced model representations for an intra-ring

synchronous optical network design problem allowing demand splitting." INFORMS Journal on Computing,

Vol. 12, No. 4, PP. 284-298.

10 - Srikar, B. N. and Ghosh, S. (1986). "A MILP model for the N-job, M-stage flowshop with sequence

dependent set-up times." International Journal of Production Research, Vol. 24, No. 6, PP. 1459-1474.

11 - Stafford, E. F. (1988). "On the development of a mixed-integer linear programming model for the flowshop

sequencing problem." Journal of the Operational Research Society, Vol. 39, No. 12, PP. 1163-1174.

 General models for….. 9

12 - Stafford, E. F. and Tseng, F.T. (1990). "On the Srikar-Ghosh MILP model for the NxM SDST flowshop

Problem." International Journal of Production Research, Vol. 28, No. 10, PP. 1817-1830.

13 – Sungdeuk, Moon. And Hrymak, Andrew N. (1999). "Scheduling of the batch annealing process-

deterministic case." Computers & Chemical Engineering, Vol. 23, PP. 1193-1208.

14 - Wagner, H. M. (1959). "An integer linear-programming model for machine scheduling." Naval

ResearchLogistics Quarterly, Vol. 6, PP. 131-140.

15 - Zandieh, M. and Fatemi,S. M. T. (2003). "A Framework and A Classification Scheme for modelling

production systems." Proceedings of the Second National Industrial Engineering Conference, Yazd

University,Yazd, Iran , PP. 308-315.

