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Abstract 
      This study presents two mixed integer programming models for scheduling hybrid flow shops with 
sequence dependent setup times.In the first model , we assumed the machines at each stage are 
identical,but in the second model the machines at each stage are different.These models may be used to 
determine optimal solutions for hybrid flow shop problems of moderate size, and these problems could 
then be used as benchmarks for testing new sequencing heuristics. 
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Introduction 
   The purpose of this paper is twofold: (1) 
to present two mixed integer programming 
models for optimizing a family of hybrid 
flow shop sequencing problems with 
sequence-dependent setup times to 
minimize makespan, and (2) to compare 
these models on the basis of problem size, 
ease of implementation, and the flexibility 
of extension to variants. 
   Section 2 briefly reviews the related 
literature. In section 3 problem definition 
is presented. Sections 4 and 5 contain the 
general models. In section 6, the models 
are compared. Section 7 concludes and 
presents directions for future research. 
 
Literature Review 
   Several flow patterns can be 
encountered, depending on the number of 
operations required to process a job and on 
the number of available machines per 
operation. When a job requires only one 
operation for its completion, we 
characterize it as single-operation; 
otherwise, we call it multi-operation. In 

the latter case, the concept of routing may 
be introduced based on machines, we have 
single machine shop, flow shop, 
permutation flow shop, job shop, and open 
shop scheduling problems. When 
processing stages are considered instead of 
machines, we have parallel machine shop, 
hybrid flow shop, job shop with duplicate 
machines scheduling problems.The 
diagram in Fig.1 illustrates schematically 
the relationships between the different 
machine environments (Zandieh and 
Fatemi, 2003). 
   A hybrid flow shop model allows us to 
represent most of the production systems. 
The process industry such as  chemical, 
pharmaceutical, oil, food, tobacco, textile, 
paper, and metallurgical industry can be 
modelled as a hybrid flow shop. In the 
literature, the notion of hybrid flow shop 
has emerged in the 70s (Arthanary and 
Ramaswamy, 1971). 
A hybrid flow shop consists of a series of 
production stages or workshops, each of 
which has several facilities in parallel 
(Elmaghraby and Karnoub, 1995). 
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Some stages may have only one facility, 
but for the plant to be qualified as a hybrid 
flow shop, at least one stage must have 
several facilities. The flow of products in 
the plant is unidirectional. Each product is 
processed at only one facility in each stage 
and at one or more stages before it exits 
the plant. Each stage may have multiple 
parallel identical machines. Each job is 
processed by at most one machine at each 
stage. 
   Several mathematical formulations based 
on a continuous representation of the time 
domain have been published. Pinto and 
Grossmann (1995) proposed a continuous 
time MILP formulation for short-term 
scheduling of multistage batch plants. 
Since there was not a variable explicitly 
addressing consecutive orders, their 
formulation had difficulties handling 
order-sequence-dependent constraints. 
Pinto and Grossmann (1996) presented an 
alternate model that explicitly incorporated 
pre-ordering constraints into a 
representation of time slots for units. Their 
model was suitable for only pre-ordered 
orders and still did not address the 
sequence dependencies. Cerda, Henning 
and Grossmann (1996) proposed an MILP 
model for the short-term scheduling of a 

single-stage multi-product batch plants 
with parallel lines. They applied a set of 
tri-index variables (order, order, unit) to 
handle order sequence-dependencies 
explicitly. Ierapetritou and Floudas (1998) 
presented a continuous time formulation 
for the short-term scheduling of batch 
processes. The application of their 
formulation was restricted to pre-ordered 
problems. Chi-Wai and Gupta (2000) 
proposed continuous time MILP model for 
short term scheduling of multistage batch 
plants with sequence dependent 
consideration. They proposed a novel 
formulation that replaces the tetra-index 
binary variables without losing the model's 
generality. Moon and Hrymak (1999) 
addresses the short-term scheduling 
problem for the batch anealing process in 
the heat treatment of steel coils with 
sequence dependent consideration. They 
proposed a novel MILP model for 
scheduling and a novel algorithm for 
solving the problem. 
   Stafford (1988) focused on the standard 
flowshop (with no parallel machines and 
no sequence-dependent setup times). 
Srikar and Ghosh (1986) considered a 
permutation flowshop with sequence-
dependent setup times in their MILP 

Open shop 

Job shop 

Job shop with duplicate machine 

Flow shop 

Hybrid flow shop 

Permutation flow shop 

Single machine 

Parallel machine 

specific routings 
exist 

same routing 
for every job 

M(v)=1 

V=1 

V=1 M(v)=1 

M(v)=1 

No passing 

V=1 

V=1,M(v)=1 

V=1 

same routing 
for every job 

specific routings exist 
and are identical 

 

Fig. 1: A classification for scheduling problems based on resource environments. 
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model, which used many fewer variables 
than the previous models. Srikar and 
Ghosh (1986) used decision variables that 
focused on whether a job is scheduled 
anytime before another job. However, 
Stafford and Tseng (1990) discovered 
several problems with Srikar and Ghosh 
(1986), corrected these and extended this 
modeling concept to non-sequence-
dependent setup time flowshops, no-
intermediate-queue flowshops and 
sequence-dependent setup time, no-
intermediate- queue flowshops. Rios-
Mercado and Bard (1998) also consider 
the sequence-dependent setup time 
flowshop and develop several valid 
inequalities for Models based on the 
traveling salesman problem and the Srikar-
Ghosh model. 
   No literature has been discovered 
addressing models for the hybrid flow 
shop with sequence- dependent setup 
times. The key features that are missing 
are the multiple machines per stage and the 
ability of jobs to skip some stages. 
 
Problem definition 
   Let V be the number of workshops in 
series. Let N be the number of jobs to be 
processed and M(v) be the number of 
machines in parallel at each stage v. We 
assume that machines are initially setup 
for a nominal job 0 at every stage. Job N+1 
exists at every stage only to indicate the 
end of the process, if needed. We have the  
following definitions. 
N=number of  jobs to be processed 
V =number of serial workshoptages 
vi =last stage visited by job i 
M(v) = the number of machines in parallel at 
each stage v  
p(i,v) =processing time for job i at stage v 
s(i,j,v)  =sequence dependent setup time from 
job i to job j at stage v 
W(i) =set of workshop stages visited by job i 
J(v) =set of jobs that visit workshop stage v 
J(v,0) =J(v)  plus job 0  
J(v,N+1) =J(v) plus job N+1 
   The processing time of job 0 is set at 0. 
The setup time from job 0 indicates the 
time to move from the nominal set point 

state. We assume that all jobs currently in 
the system must be completed at each 
stage before the jobs under consideration 
may begin setup. The completion times of 
job 0 at each stage are set to the earliest 
setup time may begin at that stage. The 
setup time for job N+1 is set at 0; this job 
only exists to indicate the end of the 
schedule. We also include the restriction 
that every stage must be visited by at least 
as many jobs as there are machines in that 
stage. 
 
First model 
    In the TSP based model, following 
model A from Rios-Mercado and Bard 
(1998), the following additional variables 
are used.  
r(v)=time at which stage v can begin 
processing, v=1,..., V 
C(i,v)=completion time for job i at stage v, 
v=1,..., V, i=1,..., N 
X(i,j,v) =1 if job i is processed immediately 
before job j at stage v, and 0 otherwise  

V,...,1v,ji),1N,v(Jj),0,v(Ji =≠+∈∈  
   Several observations can be made which 
guide the formulation of this model. Each 
stage v has a time at which it can begin 
processing, which is denoted r(v) . We 
consider the time each stage can begin 
processing to be the completion time of 
job 0 at that stage, and we further assume 
that it is the same for all machines at a 
stage. Every stage exists independently 
except that a job is not available to begin 
setup in stage v until it has completed 
processing on stage v-1. Each stage can be 
considered as a traveling salesman 
problem with multiple salesmen, equal to 
the number of machines in that stage. We 
assign jobs to machines implicitly; by 
interpreting a group of variables, such 
as X(0,3,1)=1 , X(4,2,1)=1,and X(2,0,1)=1, 
we see that jobs 0, 3, 4 and 2 are assigned 
to a machine in stage 1 in that order. 
Equations (1) to (11) comprise model 1. 
Model 1: 
min z

:.ts  
(1) 



  
   Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005                                                                           4 

  
 

v);v(M)v,j,0(X
)v(Jj

∀=∑
∈

 

(2) 

{ }
)0,v(Ji,v;1)v,j,i(X

i)1N,v(Jj
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(3) 

{ }
)1N,v(Jj,v;1)v,j,i(X

j)0,v(Ji

+∈∀=∑
−∈  

(4)  
v);v(r)v,0(C ∀=  
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[ ]

),0,v(Ji,v
);v,j(p)v,j,i(S)v(B

)v,j,i(X1)v,i(C)v,j(C

∈∀
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−+−
 

ji),1N,v(Jj ≠+∈  
(6) 

[ ]
),0,v(Ji,v);v,j(p)v,j,i(S)v,j(B

)v,j,i(X1)1v,i(C)v,j(C
∈∀+≥

−+−−

ji),1N,v(Jj ≠+∈  
(7) 

)v(Jiv);v,0(C)v,i(C ∈∀≥  
(8) 

)v(Ji,V,..,2v);1v,i(C)v,i(C ∈=−≥  
(9)  

N,..,1i);v,i(Cz i =≥  
(10) 

{ } v,j,i;1,0)v,j,i(X ∀∈  
(11) 

   The objective is to minimize makespan, 
which is denoted by z and is incorporated 
into later constraints. Job 0 must be 
scheduled on every machine in every 
stage. This is expressed by constraint set 
(2). At every stage, every job must have 
exactly one predecessor and exactly one 
successor. This is expressed by the 
constraint sets (3) and (4). The completion 
time of job 0 on each stage is set to be the 
time each stage is available in constraint 
set (5). The completion time of two jobs in 
the same stage depend on whether those 
jobs are scheduled together or not. If two 
jobs, namely i and j, are scheduled in that 
order with no jobs between them, job j’s 
completion time is at least the sum of job 
i’s completion time, the setup time from i 
to j, and job j’s processing time. If i and j 
are scheduled in any other way, the 

difference between the two completion 
times is larger than a very negative number 
B(v). B(v) is an upper bound on the time 
stage v completes processing, similar to 
the upper bound A in Rios-Mercado and 
Bard (1998). 

 { }
{ }

∑
= ∈









+=

n

1i N,..,1,0j
)1,i,j(Smax)1,i(p)1(B , and  

{ }
{ }

∑
= ∈









++−=

n

1i N,..,1,0j
)v,i,j(Smax)v,i(p)1v(B)v(B . 

Constraint set (6) enforces the restriction 
that the machine must be idle before setup 
can begin. The completion time of a job in 
one stage also  depends on its completion 
time in the previous stage.We define 
C(i,0)=0, iє(0,1,..,N). We incorporate this 
idea by ensuring that the completion time 
of job j in stage v is at least as large as the 
completion time in stage v-1 plus the setup 
from the immediately previous job in stage 
v, plus the processing time of job j. 
Constraint set (7) enforces the concept that 
the job must be available before setup can 
begin. The value B(j,v) is set to 

i
}max{ v)j,S(i,v)p(j,v)B(j, += . Since job 0 is 

some sort of surrogate for machine 
availability, we require every job to be 
processed after job 0 at every stage. 
Allowing that some jobs do not actually 
require processing in every stage, we 
include constraint set (8). Since jobs must 
be processed in a linear fashion through 
the stages, we include the restriction that 
completion times must be nondecreasing 
as the stage number increases. This is 
enforced through constraint set (9). The 
makespan is defined to be the latest time a 
job completes processing. Because the 
flowshop is hybrid, each job j’s last stage 
is vj. The makespan is the largest of the 
completion times of all the jobs, denoted 
by C(j,vj) for each job. Since jobs 0 and 
N+1 exist to begin and end the schedule, 
we do not include these jobs for 
consideration in defining the makespan in 
constraint set (10). 
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Second model 
   In the second model, jobs are explicitly 
placed into positions on machines, 
following Wagner (1959) and Stafford 
(1988). If there were one machine at every 
stage and the jobs were required to be 
processed in the same order at every stage, 
this would result in a permutation 
schedule. However, we will be making the 
investment in extra decision variables so 
that permutation schedules will not be 
required. Moreover, with possibly a 
different number of machines at every 
stage and jobs that may skip stages, it is 
not clear how to define a permutation 
schedule in this context. A specific job is 
called job i. The job in the jth position will 
be called the jth job. The following 
decision variables are used. 
 
X(i,j,v,k)=1 if job i is scheduled in position j 
on machine k in stage v and 0 otherwise 
e(j,v,k)=setup beginning time for jth job on 
machine k in stage v 
d(j,v,k)=completion time for jth job on 
machine k in stage v 
w(j,v,k)=idle time after jth job completes and 
before start of setup of (j+1)st job on machine 
k in stage v 
T(j,v,k)=processing time of the jth job on 
machine k in stage v 
S(j,v,k)=setup time from the jth to (j+1)st job 
on machine k in stage v 
 
   Position 0 on every machine at every 
stage will be occupied by job 0. Note that 
a different job 0 can be created for each 
machine and each stage in this problem, so 
that the completion of job 0 can represent 
the end of an in-progress schedule through 
the appropriate assignment of values to 
variables d(0,v,k). The largest position 
number required for each machine in stage 
v is )(vJ , because job 0 is not counted as 
one of the jobs in each stage. Equations 
(12) - (26) comprise model 2. 
   The objective is to minimize makespan, 
which is denoted by z and is incorporated 
into later constraints. Every job that visits 
stage v must be assigned to exactly one 
position on one machine in that stage. We 

will later explicitly assign job 0 to the 0th 
position, so we need only consider the 
other jobs that visit stage v. This is 
expressed by constraint set (13). We 
explicitly assign job 0 to the 0th position 
on all machines at all stages in constraint 
set (14). Every position of every machine 
in every stage has at most one job assigned 
to it, expressed by constraint set (15). 
Constraint set (15) only requires that at 
most one job is assigned to each possible 
position. In no way does it requires that 
jobs be scheduled in consecutive positions. 
For example, up to this point, a valid 
assignment may have jobs in positions 0, 
1, 3, and 4 on a machine in a particular 
stage. To prevent this, we require all 
positions after an empty position to empty 
as well. This can be enforced by constraint 
set (16). A couple of “helper” variables are 
defined to simplify the presentation of the 
model. These variables are T(j,v,k) and 
S(j,v,k), which associate processing and 
setup times with jobs by position instead 
of names. For example, if job 3 is the 4th 
job on stage 2, machine 3, the variable 
T(4,2,3) takes on the value p(3,2). The 
processing times are associated with the 
position numbers by using the constraint 
set (17). 
Model 2: 
min z

:.ts  
(12) 

)v(Ji,v;1)k,v,j,i(X
)v(J

1j

)v(M

1k

∈∀=∑ ∑
= =

 

(13) 
k,v;1)k,v,0,0(X ∀∀=  

(14) 
)v(J,..,1j,k,v;1)k,v,j,i(X

)v(Ji

=∀∀≤∑
∈  

(15) 

{ }

1)v(J,..,1j),v(Jh,k,v

);k,v,j,i(X)k,v,1j,h(X
h)0,v(Ji

−=∈∀∀

≤+ ∑
−∈

 
(16) 
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   The setup time from job i to job h, if job 
i is assigned to position j and job h is 
assigned to position j+1 on machine k in 
stage v will be called the setup to the 

(j+1)st job, S(j+1,v,k) , and can be found 
by the following equation 

{ }

1)v(S,..,0j,k,v

;)k,v,1j,h(X)v,h,i(S)k,v,j,i(X

)k,v,1j(S

h)v(Ji )v(Jh

−=∀∀

+

=+

∑ ∑
−∈ ∈

 

This is non-linear. We introduce a new 
binary variable Y(I,j,h,v,k) which is 1 
when job i is in position j and job h is in 
position j+1 on machine k in stage v, and 0 
otherwise. Constraint set (27) is replaced 
by the constraint sets (18), (19), (20) , (21) 
, (22) and (23). At every machine on every 
stage, job 0’s completion time is that 
machine’s ready time. At this time, we 
compute the machine’s ready time in 
constraint set (24) as the sum of the 
processing of job 0 up to and including the 
current stage, or ∑

=

=
v

u

kuTkvr
1

),,0(),(  , though 

this may vary by application. The (j+1)st 
job in each stage on each machine can 
begin processing after the jth job 
completes processing and some waiting 
time passes. The waiting time can account 
for the fact that the (j+1)st job is not done 
with its processing on the previous stage it 
visits and machine k on stage v is idle 
while waiting for the job to arrive. Since 
the objective is makespan, which is 
defined by only one job’s completion time, 
the waiting time variable may be positive 
even when the job is available for setup. 
This set of scheduling variables allows 
machines to be idle when jobs are 
available and is shown in constraint set 
(25). The jth job’s completion time is the 
sum of its available-to-setup time, the time 
to setup from the (j-1)st job to the jth job, 
and its processing time, as shown in 
constraint set (26). Because we require 
jobs to finish processing at stage v before 
setup can begin at stage v+1, we need the 
available-to-setup time for jobs in stage v 
to be at least as large as the completion 
time of the jobs in stage v-1. However, our 
available-to-setup and completion time 
variables are in terms of the position each 
job has, not the jobs themselves. For this 
reason, we need to translate these times so  
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Table 1: Size complexity of the SDST models. 

IP model 
Number of model I model II 

Binary 
Variables 

( )( )∑
=

+
V

1v

1)v(J)v(J  ( )∑
=

++−
V

1v

23 1)v(J)v(J)v(J).v(M  

Other 
Variables (N+1)V ( )∑

=

+
V

1v

)v(M.1)v(J5  

Constraints 
( )( )∑

=

++−+
V

1v

)v(J2.)v(J2)v(JNV2  ( )[ ]∑
=

+−++
V

1v

2 5)v(J2)v(J3)v(J).v(M)v(M4)v(J3  

 
Table 2 : Empirical model sizes and solution information (computer time given are in second). 

Problem Problem Size model I model II 
Binary Var. 64 Binary Var. 386 
Constraint 196 Constraint 1292 1 

V=2, 
v,6)v(J ∀== 1,M(v)  

Time 251 Time 321 
Binary Var. 84 Binary Var. 772 
Constraint 196 Constraint 3004 2 

V=2, 
v,6)v(J ∀== 2,M(v)  

Time 31 Time 3100,gap21%
Binary Var. 42 Binary Var. 272 
Constraint 116 Constraint 876 3 

V=2, 
{ } { }6,5,4,3,2)2(J,6,4,1)1(J,v ==∀= 2,M(v)

 Time 0.31 Time 3.2 
 
that we can make the required connections 
between these times in terms of the jobs 
themselves. Constraint set (27) ensures 
that the time setup can begin for job i on 
all stages vu ;  must be no earlier than the 
time job i ends on stage v. The makespan 
is defined to be the latest time a job 
completes processing in constraint set 
(28). 
Comparing models 1 and 2 
   Now that both models have been 
described, they can be compared in terms 
of the number of variables and constraints. 
Table 1 contains the number of binary and 
non-binary variables and the number of 
constraints in each model.   The number of 
constraints and binary variables are much 
higher in the second model. In order to 
better demonstrate the magnitude of the 
difference, Table 2 shows the number of 
binary variables and constraints for several 
different sized problems. Each cell shows 
the number of binary variables and 
constraints in that order. These problems 
have been solved in LINDO on a Pentium 
4, running time at 1400MHz. The 
additional information in each cell shows                       

the solving time. 
   Clearly, the number of binary variables 
and constraints is much larger for model 2. 
In these few small examples, the solving 
time required in the solution of model 2 
IPs is much higher than in the model 1 IPs. 
In problem 2, model 2 was not able to 
solve the problem optimally in the 1 hour 
computational time limit imposed, while 
model 1 solved the problem optimally in 
less than a minute. Problem 2 differs from 
Problem 1 structurally only in that the 
stages have two machines each. Model 2 
cannot tell the difference between these 
two machines at each stage, which 
certainly causes the solver to spend time 
considering alternative solutions that are 
identical. Problem 3 is easily solved by 
both models, even though it has two 
machines at each stage. This problem is 
easier because only two jobs visit both 
stages, so the interaction between the 
stages is less when compared to problems 
1 and 2. 
   Despite the above performance, model 2 
has significant advantages over model 1 
due to the adaptations that model 2 can 



  
   Journal of Faculty of Engineering, Vol. 39, No. 4. Nov. 2005                                                                           8 

  
 

accommodate. Model 2 can accommodate 
machines at stages with different ready 
times, non-identical processing times and 
differing capabilities. Model 2 can also 
accommodate inserted idle time in 
schedules, as well as times during which 
machines may not be available, such as 
during planned maintenance. For this 
reason, we believe that the basic structure 
of model 2 has an inherent value. 
 
Conclusions 
   Two models have been presented for 
scheduling the hybrid flow shops with 
sequence-dependent setup times. These 
models differ in their modeling 

perspective. Though the second one is 
much larger, it is more adaptable to 
variants of the problem. Several strategies 
will be pursued in improving model 2. The 
first strategy will be to add constraints to 
differentiate between machines in each 
stage, in an effort to break the symmetry 
that exists in the stages, following work 
done by Sherali, sith, and Lee (2000) in 
the design of optical networks. The second 
strategy will focus on redefining the 
variables, since all the information in the X 
variables is replicated in the Y variables. 
The effectiveness of these strategies will 
be evaluated by generating and solving 
instances of this problem. 
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