Iranian Journal of Fuzzy Systems Vol. 1, No. 1, (2004) pp. 61-73

INTUITIONISTIC FUZZY HYPER BCK-IDEALS OF HYPER BCK-ALGEBRAS

R. A. BORZOOEI AND Y. B. JUN*

ABSTRACT. The intuitionistic fuzzification of (strong, weak, s-weak) hyper BCK-ideals is introduced, and related properties are investigated. Characterizations of an intuitionistic fuzzy hyper BCK-ideal are established. Using a collection of hyper BCK-ideals with some conditions, an intuitionistic fuzzy hyper BCK-ideal is built.

1. Introduction

The hyper structure theory (called also multialgebras) was introduced in 1934 by Marty [8] at the 8th congress of Scandinavian Mathematiciens. In [7], Jun et al. applied the hyper structures to BCK-algebras, and introduced the concept of a hyper BCK-algebra which is a generalization of a BCK-algebra. They also introduced the notion of a (weak, s-weak, strong) hyper BCK-ideal, and gave relations among them. After the introduction of the concept of fuzzy sets by Zadeh [9], several researchers were conducted on the generalization of the notion of fuzzy sets. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. In this paper, using the Atanassov's idea, we establish the intuitionistic fuzzification of the notion of (strong, weak, s-weak) hyper BCK-ideals in hyper BCK-algebras, and investigate some of their properties. We give characterizations of intuitionistic fuzzy hyper BCK-ideals. Using a collection of hyper BCK-ideals with some conditions, we build an intuitionistic fuzzy hyper BCK-ideal.

2. Preliminaries

We include some elementary aspects of hyper BCK-algebras that are necessary for this paper, and for more details we refer to [5], [6], and [7].

Let *H* be a nonempty set endowed with a hyperoperation " \circ ". For two subsets *A* and *B* of *H*, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We shall use $x \circ y$ instead of

 $x\circ\{y\},\,\{x\}\circ y,\,\mathrm{or}\,\,\{x\}\circ\{y\}.$

By a hyper BCK-algebra we mean a nonempty set H endowed with a hyperoperation " \circ " and a constant 0 satisfying the following axioms:

(HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,

Received: June 2003; Accepted: November 2003

Key words and Phrases: Hyper BCK-algebra, **inf-sup** property, Intuitionistic Fuzzy (Weak, s-weak, Strong) Hyper BCK-ideal.

^{*}Executive Research Worker of Educational Research Institute in GSNU.

(HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,

(HK3) $x \circ H \ll \{x\},\$

(HK4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call " \ll " the *hyperorder* in H.

Note that the condition (HK3) is equivalent to the condition:

(p1) $x \circ y \ll \{x\}$ for all $x, y \in H$.

In any hyper BCK-algebra H, the following hold.

- (p2) $x \circ 0 \ll \{x\}, 0 \circ x \ll \{0\}$ and $0 \circ 0 \ll \{0\}$.
- (p3) $(A \circ B) \circ C = (A \circ C) \circ B, A \circ B \ll A \text{ and } 0 \circ A \ll \{0\}.$
- $(p4) \ 0 \circ 0 = \{0\}.$
- (p5) $0 \ll x$.
- (p6) $x \ll x$.
- (p7) $A \ll A$.
- (p8) $A \subseteq B$ implies $A \ll B$.
- (p9) $0 \circ x = \{0\}$
- $(p10) \ 0 \circ A = \{0\}.$
- (p11) $A \ll \{0\}$ implies $A = \{0\}$.
- (p12) $A \circ B \ll A$.
- (p13) $x \in x \circ 0$.
- (p14) $x \circ 0 \ll \{y\}$ implies $x \ll y$.
- (p15) $y \ll z$ implies $x \circ z \ll x \circ y$.

(p16) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$ and $x \circ z \ll y \circ z$.

(p17) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$.

for all $x, y, z \in H$ and for all nonempty subsets A, B and C of H.

A nonempty subset I of a hyper BCK-algebra H is said to be a hyper BCK-ideal of H if it satisfies

- (I1) $0 \in I$,
- (I2) $x \circ y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

A nonempty subset I of a hyper BCK-algebra H is called a *strong hyper BCK-ideal* of H if it satisfies (I1) and

(I3) $(x \circ y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Note that every strong hyper BCK-ideal of a hyper BCK-algebra is a hyper BCK-ideal.

A nonempty subset I of a hyper BCK-algebra H is called a *weak hyper BCK-ideal* of H if it satisfies (I1) and

(I4) $x \circ y \subseteq I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

We now review some fuzzy logic concepts. A *fuzzy set* in a set H is a function $\mu: X \to [0,1]$, and the complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in H given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in H$. For any $t \in [0,1]$ and a fuzzy set μ in a nonempty

set H, the set

$$U(\mu; t) = \{x \in H \mid \mu(x) \ge t\} \text{ (resp. } L(\mu; t) = \{x \in H \mid \mu(x) \le t\})$$

is called an *upper* (resp. *lower*) *level set* of μ .

A fuzzy set μ in a hyper *BCK*-algebra *H* is called a *fuzzy hyper BCK-ideal* of *H* if it satisfies

- $x \ll y$ implies $\mu(y) \le \mu(x)$,
- $\mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\},\$

for all $x, y \in H$.

An *intuitionistic fuzzy set* (briefly, IFS) A in a nonempty set X is an object having the form

 $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$

where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and

 $0 \le \mu_A(x) + \gamma_A(x) \le 1$

for all $x \in X$. An intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$ in X can be identified with an ordered pair (μ_A, γ_A) in $I^X \times I^X$. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$.

3. Intuitionistic Fuzzy Hyper BCK-Ideals

In what follows let H denote a hyper BCK-algebra unless otherwise specified.

Definition 3.1. An IFS $A = (\mu_A, \gamma_A)$ in H is called an *intuitionistic fuzzy hyper* BCK-ideal of H if it satisfies

 $\begin{array}{ll} (\mathrm{k1}) & x \ll y \text{ implies } \mu_A(x) \ge \mu_A(y) \text{ and } \gamma_A(x) \le \gamma_A(y), \\ (\mathrm{k2}) & \mu_A(x) \ge \min\{\inf_{a \in x \diamond y} \mu_A(a), \, \mu_A(y)\}, \\ (\mathrm{k3}) & \gamma_A(x) \le \max\{\sup_{b \in x \diamond y} \gamma_A(b), \, \gamma_A(y)\} \end{array}$

for all $x, y \in H$.

Example 3.2. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table:

0	0	a	b
0	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0,a\}$	$\{0,a\}$
b	$\{b\}$	$\{a, b\}$	$\{0, a, b\}$

Define an IFS $A = (\mu_A, \gamma_A)$ in H by $\mu_A(0) = 0.7$, $\mu_A(a) = 0.4$, $\mu_A(b) = 0.2$, $\gamma_A(0) = 0.07$, $\gamma_A(a) = 0.5$, and $\gamma_A(b) = 0.6$. It is easily verified that $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper *BCK*-ideal of H.

Definition 3.3. An IFS $A = (\mu_A, \gamma_A)$ in H is called an *intuitionistic fuzzy strong* hyper BCK-ideal of H if it satisfies

$$\inf_{a \in x \circ x} \mu_A(a) \ge \mu_A(x) \ge \min\{\sup_{b \in x \circ y} \mu_A(b), \, \mu_A(y)\}$$

and

64

$$\sup_{c \in x \circ x} \gamma_A(c) \le \gamma_A(x) \le \max\{\inf_{d \in x \circ y} \gamma_A(d), \gamma_A(y)\}$$

for all $x, y \in H$.

Example 3.4. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table:

0	0	a	b
0	{0}	{0}	$\{0\}$
a	$\{a\}$	$\{0\}$	$\{a\}$
b	$ \{b\}$	$\{b\}$	$\{0,b\}$

Define an IFS $A = (\mu_A, \gamma_A)$ in H by $\mu_A(0) = 0.9, \ \mu_A(a) = 0.6, \ \mu_A(b) = 0.3,$ $\gamma_A(0) = 0.09, \ \gamma_A(a) = 0.16, \ \text{and} \ \gamma_A(b) = 0.23.$ It is routine to check that A = (μ_A, γ_A) is an intuitionistic fuzzy strong hyper *BCK*-ideal of *H*.

Definition 3.5. An IFS $A = (\mu_A, \gamma_A)$ in H is called an *intuitionistic fuzzy s-weak* hyper BCK-ideal of H if it satisfies

- (s1) $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(0) \le \gamma_A(x)$ for all $x \in H$, (s2) for every $x, y \in H$ there exist $a, b \in x \circ y$ such that

$$\mu_A(x) \ge \min\{\mu_A(a), \mu_A(y)\}$$
 and $\gamma_A(x) \le \max\{\gamma_A(b), \gamma_A(y)\}.$

Definition 3.6. An IFS $A = (\mu_A, \gamma_A)$ in H is called an *intuitionistic fuzzy weak* hyper BCK-ideal of H if it satisfies

$$\mu_A(0) \ge \mu_A(x) \ge \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\}$$

and

$$\gamma_A(0) \le \gamma_A(x) \le \max\{\sup_{b \in x \circ y} \gamma_A(b), \gamma_A(y)\}$$

for all $x, y \in H$.

Let an IFS $A = (\mu_A, \gamma_A)$ in H be an intuitionistic fuzzy *s*-weak hyper *BCK*-ideal of H and let $x, y \in H$. Then there exist $a, b \in x \circ y$ such that

$$\mu_A(x) \ge \min\{\mu_A(a), \mu_A(y)\}$$
 and $\gamma_A(x) \le \max\{\gamma_A(b), \gamma_A(y)\}$

Since $\mu_A(a) \ge \inf_{c \in x \circ y} \mu_A(c)$ and $\gamma_A(b) \le \sup_{d \in x \circ y} \gamma_A(d)$, it follows that

$$\mu_A(x) \ge \min\{\inf_{c \in x \circ y} \mu_A(c), \, \mu_A(y)\}$$

and

$$\gamma_A(x) \le \max\{\sup_{d \in x \circ y} \gamma_A(d), \gamma_A(y)\}.$$

Hence every intuitionistic fuzzy s-weak hyper BCK-ideal is an intuitionistic fuzzy weak hyper BCK-ideal.

An IFS $A = (\mu_A, \gamma_A)$ in H is said to satisfy the **inf-sup** property if for any subset T of H there exist $x_0, y_0 \in T$ such that $\mu_A(x_0) = \inf_{x \in T} \mu_A(x)$ and $\gamma_A(y_0) =$ $\sup_{y\in T}\gamma_A(y).$

It is not easy to find an example of an intuitionistic fuzzy weak hyper BCKideal which is not an intuitionistic fuzzy s-weak hyper BCK-ideal. But we have the following proposition.

Proposition 3.7. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy weak hyper BCKideal of H. If μ satisfies the **inf-sup** property, then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy s-weak hyper BCK-ideal of H.

Proof. Since $A = (\mu_A, \gamma_A)$ satisfies the **inf-sup** property, there exist $a_0, b_0 \in x \circ y$ such that $\mu_A(a_0) = \inf_{a \in x \circ y} \mu_A(a)$ and $\gamma_A(b_0) = \sup_{b \in x \circ y} \gamma_A(b)$. It follows that

$$\mu_A(x) \ge \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} = \min\{\mu_A(a_0), \mu_A(y)\}$$

and

$$\gamma_A(x) \le \max\{\sup_{b \in x \circ y} \gamma_A(b), \gamma_A(y)\} = \max\{\gamma_A(b_0), \gamma_A(y)\}.$$

This completes the proof.

Note that, in a finite hyper BCK-algebra, every fuzzy set satisfies the infsup property. Hence the concept of intuitionistic fuzzy weak hyper BCK-ideals and intuitionistic fuzzy s-weak hyper BCK-ideals coincide in a finite hyper BCKalgebra.

Proposition 3.8. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy strong hyper BCKideal of H and let $x, y \in H$. Then

- (i) $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(0) \le \gamma_A(x)$.
- (ii) $x \ll y$ implies $\mu_A(x) \ge \mu_A(y)$ and $\gamma_A(x) \le \gamma_A(y)$. (iii) $\mu_A(x) \ge \min\{\mu_A(a), \mu_A(y)\}$ and $\gamma_A(x) \le \max\{\gamma_A(b), \gamma_A(y)\}$ for all $a, b \in$ $x \circ y$.

Proof. (i) Since $0 \in x \circ x$ for all $x \in H$, we have $\mu_A(0) \ge \inf_{a \in x \circ x} \mu_A(a) \ge \mu_A(x)$ and $\gamma_A(0) \le \sup_{b \in x \circ x} \gamma_A(b) \le \gamma_A(x)$, which proves (i).

(ii) Let $x, y \in H$ be such that $x \ll y$. Then $0 \in x \circ y$ and so $\sup \mu_A(c) \ge \mu_A(0)$ and $\inf_{d \in x \circ y} \gamma_A(d) \leq \gamma_A(0)$. It follows from (i) that

$$\mu_A(x) \ge \min\{\sup_{c \in x \circ y} \mu_A(c), \, \mu_A(y)\} \ge \min\{\mu_A(0), \, \mu_A(y)\} = \mu_A(y)$$

and

$$\gamma_A(x) \le \max\{\inf_{d \in x \circ y} \gamma_A(d), \, \gamma_A(y)\} \le \max\{\gamma_A(0), \, \gamma_A(y)\} = \gamma_A(y)$$

(iii) Let $x, y \in H$. Since

$$\mu_A(x) \ge \min\{\sup_{c \in x \circ y} \mu_A(c), \, \mu_A(y)\} \ge \min\{\mu_A(a), \, \mu_A(y)\}$$

and

$$\gamma_A(x) \le \max\{\inf_{d \in x \circ y} \gamma_A(d), \gamma_A(y)\} \le \max\{\gamma_A(b), \gamma_A(y)\}$$

for all $a, b \in x \circ y$, we have the desired result.

65

The following corollaries are straightforward.

Corollary 3.9. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy strong hyper BCK-ideal of H, then

$$\mu_A(x) \geq \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} \ \text{ and } \ \gamma_A(x) \leq \max\{\sup_{b \in x \circ y} \gamma_A(b), \, \gamma_A(y)\}$$

for all $x, y \in H$.

Corollary 3.10. Every intuitionistic fuzzy strong hyper BCK-ideal is both an intuitionistic fuzzy s-weak hyper BCK-ideal (and hence an intuitionistic fuzzy weak hyper BCK-ideal) and an intuitionistic fuzzy hyper BCK-ideal.

Proposition 3.11. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy hyper BCK-ideal of H and let $x, y \in H$. Then

Proof. (i) Since $0 \ll x$ for all $x \in H$, it follows from (k1) that $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(0) \le \gamma_A(x)$.

(ii) Since $A = (\mu_A, \gamma_A)$ satisfies the **inf-sup** property, there exist $a_0, b_0 \in x \circ y$ such that $\mu_A(a_0) = \inf_{a \in x \circ y} \mu_A(a)$ and $\gamma_A(b_0) = \sup_{b \in x \circ y} \gamma_A(b)$. Hence

$$\mu_A(x) \ge \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} = \min\{\mu_A(a_0), \, \mu_A(y)\}$$

and

$$\gamma_A(x) \le \max\{\sup_{b \in x \circ y} \gamma_A(b), \, \gamma_A(y)\} = \max\{\gamma_A(b_0), \, \gamma_A(y)\}.$$

This completes the proof.

Corollary 3.12. (i) Every intuitionistic fuzzy hyper BCK-ideal is an intuitionistic fuzzy weak hyper BCK-ideal.

(ii) If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H satisfying the **inf-sup** property, then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy s-weak hyper BCK-ideal of H.

Proof. Straightforward.

The following example shows that the converse of Corollary 3.10 and Corollary 3.12(i) may not be true.

Example 3.13. (1) Consider the hyper *BCK*-algebra *H* in Example 3.2. Define an IFS $A = (\mu_A, \gamma_A)$ in *H* by

$$\mu_A(x) := \begin{cases} 0.8 & \text{if } x = 0, \\ 0.5 & \text{if } x = a, \\ 0.3 & \text{if } x = b, \end{cases} \quad \gamma_A(x) := \begin{cases} 0.08 & \text{if } x = 0, \\ 0.15 & \text{if } x = a, \\ 0.23 & \text{if } x = b, \end{cases}$$

66

Then we can see that $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper *BCK*-ideal of *H* and hence it is also an intuitionistic fuzzy weak hyper *BCK*-ideal of *H*. But it is not an intuitionistic fuzzy strong hyper *BCK*-ideal of *H* since

$$\min\{\sup_{w \in b \circ a} \mu_A(w), \, \mu_A(a)\} = \min\{\mu_A(a), \, \mu_A(a)\} = 0.5 \nleq \mu_A(b)$$

also

$$\max\{\inf_{w\in b\circ a}\gamma_A(w),\,\gamma_A(a)\}=\max\{\gamma_A(a),\,\gamma_A(a)\}=0.15 \ngeq \gamma_A(b).$$

(2) Consider the hyper *BCK*-algebra *H* in Example 3.2. Define an IFS $A = (\mu_A, \gamma_A)$ in *H* by

$$\mu_A(x) := \begin{cases} 0.8 & \text{if } x = 0, \\ 0.5 & \text{if } x = b, \\ 0.3 & \text{if } x = a, \end{cases} \qquad \gamma_A(x) := \begin{cases} 0.08 & \text{if } x = 0, \\ 0.15 & \text{if } x = b, \\ 0.23 & \text{if } x = a, \end{cases}$$

Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy weak hyper *BCK*-ideal of *H* but it is not an intuitionistic fuzzy hyper *BCK*-ideal of *H* since $a \ll b$ but $\mu_A(a) \not\geq \mu_A(b)$, also $\gamma_A(a) \not\leq \gamma_A(b)$.

Theorem 3.14. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy strong hyper BCK-ideal of H, then for every $s, t \in [0, 1]$, the nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are strong hyper BCK-ideals of H.

Proof. Assume that $U(\mu_A; t) \neq \emptyset \neq L(\gamma_A; s)$ for $s, t \in [0, 1]$. Then there exist $a \in U(\mu_A; t)$ and $b \in L(\gamma_A; s)$, and so $\mu_A(a) \geq t$ and $\gamma_A(b) \leq s$. Using Proposition 3.11(i), we get $\mu_A(0) \geq \mu_A(a) \geq t$ and $\gamma_A(0) \leq \gamma_A(b) \leq s$, so $0 \in U(\mu_A; t) \cap L(\gamma_A; s)$. Let $x, y \in H$ be such that $(x \circ y) \cap U(\mu_A; t) \neq \emptyset$ and $y \in U(\mu_A; t)$. Then there exists $a_0 \in (x \circ y) \cap U(\mu_A; t)$ and hence $\mu_A(a_0) \geq t$. It follows that

$$\mu_A(x) \ge \min\{\sup_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} \ge \min\{\mu_A(a_0), \, \mu_A(y)\} \ge t$$

so that $x \in U(\mu_A; t)$. Now let $u, v \in H$ be such that $(u \circ v) \cap L(\gamma_A; s) \neq \emptyset$ and $v \in L(\gamma_A; s)$. Then we can take $b_0 \in (u \circ v) \cap L(\gamma_A; s)$ and so $\gamma_A(b_0) \leq s$. Hence

$$\gamma_A(u) \le \max\{\inf_{b \in u \circ v} \gamma_A(b), \, \gamma_A(v)\} \le \max\{\gamma_A(b_0), \, \gamma_A(v)\} \le s,$$

which implies $u \in L(\gamma_A; s)$. Consequently, $U(\mu_A; t)$ and $L(\gamma_A; s)$ are strong hyper *BCK*-ideals of *H*.

We now consider the converse of Theorem 3.14. We need the following notion. An IFS $A = (\mu_A, \gamma_A)$ in H is said to satisfy the **sup-inf** property if for any subset T of H there exist $a_0, b_0 \in T$ such that $\mu_A(a_0) = \sup_{a \in T} \mu_A(a)$ and $\gamma_A(b_0) = \inf_{b \in T} \gamma_A(b)$.

Lemma 3.15. Let A be a subset of H. If I is a hyper BCK-ideal of H such that $A \ll I$, then A is contained in I.

Theorem 3.16. Let $A = (\mu_A, \gamma_A)$ be an IFS in H satisfying the sup-inf property. If for every $t, s \in [0, 1]$, the nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are strong hyper BCK-ideals of H, then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy strong hyper BCK-ideal of H.

Proof. Suppose that for each $t, s \in [0,1]$ the nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are strong hyper *BCK*-ideals of *H*. For every $x, y \in H$, let $\mu_A(x) = t$ and $\gamma_A(y) = s$. Then $x \in U(\mu_A; t)$ and $y \in L(\gamma_A; s)$. Since $x \circ x \ll x$ and $y \circ y \ll y$ by (p1), we have $x \circ x \ll U(\mu_A; t)$ and $y \circ y \ll L(\gamma_A; s)$. It follows from Lemma 3.15 that $x \circ x \subseteq U(\mu_A; t)$ and $y \circ y \subseteq L(\gamma_A; s)$. Thus, for each $a \in x \circ x$ and $b \in y \circ y$, we have $a \in U(\mu_A; t)$ and $b \in L(\gamma_A; s)$, and so $\mu_A(a) \ge t$ and $\gamma_A(b) \le s$. Therefore $\inf_{a \in x \circ x} \mu_A(a) \ge t = \mu_A(x)$ and $\sup_{b \in y \circ y} \gamma_A(b) \le s = \gamma_A(y)$. Now let

$$k := \min\{\sup_{a \in x \circ y} \mu_A(a), \ \mu_A(y)\} \ \text{ and } \ h := \max\{\inf_{b \in x \circ y} \gamma_A(b), \ \gamma_A(y)\}.$$

Since $A = (\mu_A, \gamma_A)$ satisfies the **sup-inf** property, we have

$$\mu_A(a_0) = \sup_{a \in x \circ y} \mu_A(a) \ge \min\{\sup_{a \in x \circ y} \mu_A(a), \mu_A(y)\} = k$$

and

ŀ

$$\gamma_A(b_0) = \inf_{b \in x \circ y} \gamma_A(b) \le \max\{\inf_{b \in x \circ y} \gamma_A(b), \gamma_A(y)\} = h$$

for some $a_0, b_0 \in x \circ y$. It follows that $a_0 \in U(\mu_A; k)$ and $b_0 \in L(\gamma_A; h)$ so that $(x \circ y) \cap U(\mu_A; k) \neq \emptyset$ and $(x \circ y) \cap L(\gamma_A; h) \neq \emptyset$. Since $y \in U(\mu_A; k) \cap L(\gamma_A; h)$, we have $x \in U(\mu_A; k) \cap L(\gamma_A; h)$ by (I3). Hence

$$\mu_A(x) \ge k = \min\{\sup_{a \in \tau < n} \mu_A(a), \ \mu_A(y)\}$$

and

$$\gamma_A(x) \le h = \max\{\inf_{b \in x \circ y} \gamma_A(b), \ \gamma_A(y)\}.$$

Consequently, $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy strong hyper *BCK*-ideal of *H*.

Theorem 3.17. Let $A = (\mu_A, \gamma_A)$ be an IFS in H. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H if and only if for every $s, t \in [0, 1]$, the nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are hyper BCK-ideals of H.

Proof. Assume that $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H and $U(\mu_A; t) \neq \emptyset \neq L(\gamma_A; s)$ for any $s, t \in [0, 1]$. It is clear that $0 \in L(\mu_A; t) \cap L(\gamma_A; s)$ by Proposition 3.11(i). Let $x, y \in H$ be such that $x \circ y \ll U(\mu_A; t)$ and $y \in U(\mu_A; t)$. Then for any $a \in x \circ y$, there exists $a_0 \in U(\mu_A; t)$ such that $a \ll a_0$. It follows from (k1) that $\mu_A(a) \geq \mu_A(a_0) \geq t$ for all $a \in x \circ y$ so that $\inf_{a \in x \circ y} \mu_A(a) \geq t$. Thus

$$\mu_A(x) \ge \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} \ge t,$$

and so $x \in U(\mu_A; t)$. Therefore $U(\mu_A; t)$ is a hyper *BCK*-ideal of *H*. Now let $x, y \in H$ be such that $x \circ y \ll L(\gamma_A; s)$ and $y \in L(\gamma_A; s)$. Then $x \circ y \ll L(\gamma_A; s)$ implies that for every $b \in x \circ y$ there is $b_0 \in L(\gamma_A; s)$ such that $b \ll b_0$, so $\gamma_A(b) \leq \gamma_A(b_0)$ by (k1). It follows that $\gamma_A(b) \leq \gamma_A(b_0) \leq s$ for all $b \in x \circ y$ so that $\sup_{b \in x \circ y} \gamma_A(b) \leq s$.

Then

$$\gamma_A(x) \le \max\{\sup_{b \in x \circ y} \gamma_A(b), \gamma_A(y)\} \le s$$

which implies that $x \in L(\gamma_A; s)$. Consequently, $L(\gamma_A; s)$ is a hyper *BCK*-ideal of *H*.

Conversely, suppose that for each $t, s \in [0, 1]$ the nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are hyper *BCK*-ideals of *H*. Let $x, y \in H$ be such that $x \ll y$, $\mu_A(y) = t$ and $\gamma_A(y) = s$. Then $y \in U(\mu_A; t) \cap L(\gamma_A; s)$, and so $x \ll U(\mu_A; t)$ and $x \ll L(\gamma_A; s)$. It follows from Lemma 3.15 that $x \in U(\mu_A; t)$ and $x \in L(\gamma_A; s)$ so that $\mu_A(x) \ge t = \mu_A(y)$ and $\gamma_A(x) \le s = \gamma_A(y)$. Now for any $x, y \in H$ let $t = \min\{\inf_{c \in x \circ y} \mu_A(c), \mu_A(y)\}$ and $s = \max\{\sup_{d \in x \circ y} \gamma_A(d), \gamma_A(y)\}$. Then $y \in U(\mu_A; t) \cap$

 $L(\gamma_A; s)$, and for each $a, b \in x \circ y$ we have

$$\mu_A(a) \ge \inf_{c \in x \circ y} \mu_A(c) \ge \min\{\inf_{c \in x \circ y} \mu_A(c), \, \mu_A(y)\} = t$$

and

and

$$\gamma_A(b) \leq \sup_{d \in x \circ y} \gamma_A(d) \leq \max\{\sup_{d \in x \circ y} \gamma_A(d), \gamma_A(y)\} = s.$$

Hence $a \in U(\mu_A; t)$ and $b \in L(\gamma_A; s)$, which implies that $x \circ y \subseteq U(\mu_A; t)$ and $x \circ y \subseteq L(\gamma_A; s)$. Using (p8), we get $x \circ y \ll U(\mu_A; t)$ and $x \circ y \ll L(\gamma_A; s)$. Combining $y \in U(\mu_A; t) \cap L(\gamma_A; s)$ and $U(\mu_A; t)$ and $L(\gamma_A; s)$ being hyper *BCK*-ideals of *H*, we conclude that $x \in U(\mu_A; t) \cap L(\gamma_A; s)$, and so

$$\mu_A(x) \ge t = \min\{\inf_{c \in x \circ y} \mu_A(c), \, \mu_A(y)\}$$
$$\gamma_A(x) \le s = \max\{\sup_{d \in x \circ y} \gamma_A(d), \, \gamma_A(y)\}.$$

This completes the proof.

Lemma 3.18. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H if and only if the fuzzy sets μ_A and $\bar{\gamma}_A$ are fuzzy hyper BCK-ideals of H.

Proof. Assume that $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H. Obviously μ_A is a fuzzy hyper BCK-ideal of H. Let $x, y \in H$. If $x \ll y$, then $\gamma_A(x) \leq \gamma_A(y)$, and so $\bar{\gamma}_A(x) = 1 - \gamma_A(x) \geq 1 - \gamma_A(y) = \bar{\gamma}_A(y)$. Now

$$\bar{\gamma}_A(x) = 1 - \gamma_A(x) \ge 1 - \max\{\sup_{b \in x \circ y} \gamma_A(b), \gamma_A(y)\}$$
$$= \min\{\inf_{b \in x \circ y} (1 - \gamma_A(b)), 1 - \gamma_A(y)\}$$
$$= \min\{\inf_{b \in x \circ y} \bar{\gamma}_A(b), \bar{\gamma}_A(y)\}.$$

Hence $\bar{\gamma}_A$ is a fuzzy hyper *BCK*-ideal of *H*. Conversely, assume that μ_A and $\bar{\gamma}_A$ are fuzzy hyper *BCK*-ideals of *H*. Let $x, y \in H$. If $x \ll y$, then $1 - \gamma_A(x) =$

$$\begin{split} \bar{\gamma}_A(x) \geq \bar{\gamma}_A(y) &= 1 - \gamma_A(y), \text{ and so } \gamma_A(x) \leq \gamma_A(y). \text{ Moreover,} \\ 1 - \gamma_A(x) &= \bar{\gamma}_A(x) \geq \min\{\inf_{c \in x \circ y} \bar{\gamma}_A(c), \bar{\gamma}_A(y)\} \\ &= \min\{\inf_{c \in x \circ y} (1 - \gamma_A(c)), 1 - \gamma_A(y)\} \\ &= \min\{1 - \sup_{c \in x \circ y} \gamma_A(c), 1 - \gamma_A(y)\} \\ &= 1 - \max\{\sup_{c \in x \circ y} \gamma_A(c), \gamma_A(y)\}, \end{split}$$

and so $\gamma_A(x) \leq \max\{\sup_{c \in x \circ y} \gamma_A(c), \gamma_A(y)\}$. Therefore $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H.

The following two theorems are immediately from Lemma 3.18 and Theorem 3.17, respectively.

Theorem 3.19. Let $A = (\mu_A, \gamma_A)$ be an IFS in H. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H if and only if $\Box A := (\mu_A, \overline{\mu}_A)$ and $\Diamond A := (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy hyper BCK-ideals of H.

Theorem 3.20. For any subset I of H, let $A(I) = (\mu_{A(I)}, \gamma_{A(I)})$ be an IFS in H defined by

 $\mu_{A(I)}(x) := \begin{cases} t_1 & \text{if } x \in I, \\ t_2 & \text{otherwise,} \end{cases} \quad \gamma_{A(I)}(x) := \begin{cases} s_1 & \text{if } x \in I, \\ s_2 & \text{otherwise,} \end{cases}$

for all $x \in H$, where $t_1, t_2, s_1, s_2 \in [0, 1]$ with $t_1 > t_2, s_1 < s_2, t_i + s_i \leq 1$ for i = 1, 2. Then I is a hyper BCK-ideal of H if and only if $A(I) = (\mu_{A(I)}, \gamma_{A(I)})$ is an intuitionistic fuzzy hyper BCK-ideal of H.

Theorem 3.21. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy hyper BCK-ideal of H, then the set

$$I := \{ x \in H \mid \mu_A(x) = \mu_A(0) \text{ and } \gamma_A(x) = \gamma_A(0) \}$$

is a hyper BCK-ideal of H.

Proof. Obviously $0 \in I$. Let $x, y \in H$ be such that $x \circ y \ll I$ and $y \in I$. Then $\mu_A(x) = \mu_A(0), \gamma_A(x) = \gamma_A(0)$, and for each $a \in x \circ y$ there exists $z \in I$ such that $a \ll z$. Thus $\mu_A(a) \ge \mu_A(z) = \mu_A(0)$ and $\gamma_A(a) \le \gamma_A(z) = \gamma_A(0)$ by (k1). It follows from (k2) and (k3) that

$$\mu_A(x) \ge \min\{\inf_{a \in x \circ y} \mu_A(a), \, \mu_A(y)\} = \mu_A(0)$$

and

$$\gamma_A(x) \le \max\{\sup_{a \in x \circ y} \gamma_A(a), \, \gamma_A(y)\} = \gamma_A(0)$$

so that $\mu_A(x) = \mu_A(0)$ and $\gamma_A(x) = \gamma_A(0)$. Hence $x \in I$, which shows that I is a hyper *BCK*-ideal of H.

The following example shows that arbitrary union of hyper BCK-ideals may not be a hyper BCK-ideal.

Example 3.22. Let $H = \mathbb{N} \cup \{0\} \cup \{\alpha\}$, where $\alpha \neq 0 \notin \mathbb{N}$. Define a hyperoperation " \circ " on *H* as follows:

$$x \circ y := \begin{cases} \{0, x\} & \text{if } x \leq y, \text{or} x \neq \alpha, y = \alpha, \\ \{x\} & \text{if } x > y, \\ \{\alpha\} & \text{if } x = \alpha, y = 0, \\ \mathbb{N} & \text{if } x = \alpha, y \in \mathbb{N}, \\ \mathbb{N} \cup \{0\} & \text{if } x = y = \alpha, \end{cases}$$

for all $x, y \in H$. Then (H, \circ) is a hyper *BCK*-algebra. Now, we prove that for each $k \in \mathbb{N}, \mathbb{N}_k = \{0, 1, 2, \cdots, k\}$ is a hyper *BCK*-ideal of *H*. Let $x, y \in H$ be such that $x \circ y \ll \mathbb{N}_k$ and $y \in \mathbb{N}_k$. Assume that $x \notin \mathbb{N}_k$. Then either $x = \alpha$ or $x \in \mathbb{N}, x \ge k+1$. If $x \in \mathbb{N}$ and $x \ge k+1$, then $\{x\} = x \circ y \ll \mathbb{N}_k$ since $y \le k$. Hence there is $0 \le i \le k$ such that $x \ll i$, and so $0 \in x \circ i$. It follows from x > i that $x \circ i = \{x\}$ so that x = 0, which is a contradiction. Now let $x = \alpha$. If y = 0, then $\{\alpha\} = \alpha \circ 0 = x \circ y \ll \mathbb{N}_k$. Hence there is $0 \leq i \leq k$ such that $\alpha \ll i$ and so $0 \in \alpha \circ i$. If i = 0, then $0 \in \alpha \circ i = \{\alpha\}$ which is a contradiction. If $i \neq 0$, then $0 \in \alpha \circ i = \mathbb{N}$, which is a contradiction. If $0 < y \leq k$, then $\mathbb{N} = \alpha \circ y = x \circ y \ll \mathbb{N}_k$. Since $k + 1 \in \mathbb{N}$, there exists $0 \le i \le k$ such that $k+1 \ll i$ and thus $0 \in (k+1) \circ i = \{k+1\}$ which is a contradiction. Therefore \mathbb{N}_k is a hyper *BCK*-ideal of *H*. Consequently, $\{\mathbb{N}_k \mid k \in \mathbb{N}\}\$ is a collection of hyper *BCK*-ideals of *H*. We note that $\bigcup \mathbb{N}_i = \mathbb{N}_0$

is not a hyper BCK-ideal of H.

Lemma 3.23. Let for all $x, y \in H, |x \circ y| < \infty$ and $\{I_p \mid p \in \Lambda \subseteq [0,1]\}$ be a collection of hyper BCK-ideals of H such that s > t if and only if $I_s \subset I_t$ for all

collection of hyper BCK-ideals of **H** such that s > t if and only if $I_s \subset I_t$ for all $s, t \in \Lambda$. If $q \in [0,1]$, then $\bigcup_{p \in \Lambda, p \ge q} I_p$ is also a hyper BCK-ideal of **H**. Proof. Obviously, $0 \in \bigcup_{p \in \Lambda, p \ge q} I_p$. Let $x, y \in H$ be such that $x \circ y \ll \bigcup_{p \in \Lambda, p \ge q} I_p$, $y \in \bigcup_{p \in \Lambda, p \ge q} I_p$ and $x \circ y = \{a_1, a_2, ..., a_n\}$. Then $y \in I_r$ for some $r \in \Lambda$ with $r \ge q$, and for every $a_i \in x \circ y$ there exists $b_i \in \bigcup_{p \in \Lambda, p \ge q} I_p$, and so $b_i \in I_{t_i}$ for some $t_i \in \Lambda$ with $t \ge q$ such that $a_i \ll b_i$. Let $t = \min\{t_i : 1 \le i \le n\}$. Then, for all $1 \le i \le n$. with $t_i \ge q$, such that $a_i \ll b_i$. Let $t = \min\{t_i : 1 \le i \le n\}$. Then, for all $1 \le i \le n$, $I_{t_i} \subset I_t$ and so $x \circ y \ll I_t$ with $t \ge q$. Without loss of generality we may assume that $I_{t_i} \subset I_t$ and so $x \circ g \subset I_t$ where $y \in I_t$ where $y \in I_t$. r > t, so $I_r \subset I_t$. It follows from (I2) that $x \in I_t \subset \bigcup_{p \in \Lambda, p \ge q} I_p$. Hence $\bigcup_{p \in \Lambda, p \ge q} I_p$ is a hyper BCK-ideal of H.

Theorem 3.24. Let for all $x, y \in H, |x \circ y| < \infty$ and $\{I_t \mid t \in \Lambda \subseteq [0, \frac{1}{2}]\}$ be a collection of hyper BCK-ideals of H such that $H = \bigcup_{t \in \Lambda} I_t$, and s > t if and only if $I_s \subset I_t$ for all $s, t \in \Lambda$. Then an IFS $A = (\mu_A, \gamma_A)$ in H defined by

$$\mu_A(x) := \sup\{t \in \Lambda \mid x \in I_t\}, \ \gamma_A(x) := \inf\{t \in \Lambda \mid x \in I_t\}$$

for all $x \in H$ is an intuitionistic fuzzy hyper BCK-ideal of H.

Proof. According to Theorem 3.17, it is sufficient to show that nonempty level sets $U(\mu_A;t)$ and $L(\gamma_A;s)$ are hyper BCK-ideals of H for every $s,t \in [0,1]$. In order to

prove that $U(\mu_A; t) \ (\neq \emptyset)$ is a hyper *BCK*-ideal of *H*, we consider into the following two cases:

(i)
$$t = \sup\{q \in \Lambda \mid q < t\}$$
, (ii) $t \neq \sup\{q \in \Lambda \mid q < t\}$.

Case (i) implies that

$$x \in U(\mu_A; t) \Leftrightarrow x \in I_q \, \forall q < t \Leftrightarrow x \in \bigcap_{q < t} I_q,$$

so that $U(\mu_A; t) = \bigcap_{q < t} I_q$, which is a hyper BCK-ideal of H. In case (ii), we claim that $U(\mu_A; t) = \bigcup_{q \ge t} I_q$. If $x \in \bigcup_{q \ge t} I_q$, then $x \in I_q$ for some $q \ge t$. It follows that $\mu_A(x) \ge q \ge t$, so that $x \in U(\mu_A; t)$. This shows that $\bigcup_{q \ge t} I_q \subseteq U(\mu_A; t)$. Now assume that $x \notin \bigcup_{q \ge t} I_q$. Then $x \notin I_q$ for all $q \ge t$. Since $t \neq \sup\{q \in \Lambda \mid q < t\}$, there exists $\varepsilon > 0$ such that $(t - \varepsilon, t) \cap \Lambda = \emptyset$. Hence $x \notin I_q$ for all $q > t - \varepsilon$, which means that if $x \in I_q$, then $q \le t - \varepsilon$. Thus $\mu_A(x) \le t - \varepsilon < t$, and so $x \notin U(\mu_A; t)$. Therefore $U(\mu_A; t) \subseteq \bigcup_{q \ge t} I_q$, and thus $U(\mu_A; t) = \bigcup_{q \ge t} I_q$ which is a hyper BCK-ideal of H, by Lemma 3.23. Next we prove that $L(\gamma_A; s)$ is a hyper BCK-ideal of H. We consider the following two cases:

(iii)
$$s = \inf\{r \in \Lambda \mid s < r\}$$
, (iv) $s \neq \inf\{r \in \Lambda \mid s < r\}$.

For case (iii) we have

$$x \in L(\gamma_A; s) \Leftrightarrow x \in I_r \, \forall s < r \Leftrightarrow x \in \bigcap_{s < r} I_r,$$

and hence $L(\gamma_A; s) = \bigcap_{s < r} I_r$ which is a hyper BCK-ideal of H. For case (iv), there exists $\varepsilon > 0$ such that $(s, s + \varepsilon) \cap \Lambda = \emptyset$. We will show that $L(\gamma_A; s) = \bigcup_{s \ge r} I_r$. If $x \in \bigcup_{s \ge r} I_r$, then $x \in I_r$ for some $r \le s$. It follows that $\gamma_A(x) \le r \le s$ so that $x \in L(\gamma_A; s)$. Hence $\bigcup_{s \ge r} I_r \subseteq L(\gamma_A; s)$. Conversely if $x \notin \bigcup_{s \ge r} I_r$, then $x \notin I_r$ for all $r \le s$, which implies that $x \notin I_r$ for all $r < s + \varepsilon$, i.e., if $x \in I_r$, then $r \ge s + \varepsilon$. Thus $\gamma_A(x) \ge s + \varepsilon > s$, i.e., $x \notin L(\gamma_A; s)$. Therefore $L(\gamma_A; s) \subseteq \bigcup_{s \ge r} I_r$ and consequently $L(\gamma_A; s) = \bigcup_{s \ge r} I_r$ which is a hyper BCK-ideal of H, by Lemma 3.23. This completes the proof.

Open Problem 3.25. Does the Lemma 3.23 (and so Theorem 3.24), hold if we omit the condition " $|x \circ y| < \infty$, for all $x, y \in H$ " in this lemma?

Acknowledgements. Authors would like to express their sincere thanks to the referees for their valuable suggestions and comments.

Intuitionistic Fuzzy Hyper BCK-Ideals of Hyper BCK-algebras

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, No. 1 (1986) 87–96.
- [2] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 61 (1994) 137–142.
- [3] Y. B. Jun and W. H. Shim, Fuzzy implicative hyper BCK-ideals of hyper BCK-algebras, Internat. J. Math. & Math. Sci., Vol. 29, No. 2 (2002) 63–70.
- [4] Y. B. Jun and X. L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematicae, Vol. 2, No. 3 (1999) 303–309.
- [5] Y. B. Jun and X. L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae Japonicae, Vol. 53, No.2 (2001) 353–360.
- [6] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japonica, Vol. 51, No.3 (2000), 493–498.
- [7] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei, On hyper BCK-algebras, Italian J. of Pure and Appl. Math., Vol. 8 (2000) 127-136.
- [8] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934) 45-49.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8 (1965) 338–353.

RAJAB ALI BORZOOEI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SISTAN AND BALUCHES-TAN, ZAHEDAN, IRAN

E-mail address: borzooei@hamoon.usb.ac.ir

Young Bae Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr