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FUZZY INFORMATION AND STOCHASTICS

R. VIERTL AND D. HARETER

Abstract. In applications there occur different forms of uncertainty. The two
most important types are randomness (stochastic variability) and imprecision
(fuzziness). In modelling, the dominating concept to describe uncertainty is
using stochastic models which are based on probability. However, fuzziness
is not stochastic in nature and therefore it is not considered in probabilistic
models.
Since many years the description and analysis of fuzziness is subject of inten-
sive research. These research activities do not only deal with the fuzziness of
observed data, but also with imprecision of informations. Especially methods
of standard statistical analysis were generalized to the situation of fuzzy ob-
servations. The present paper contains an overview about of the presentation
of fuzzy information and the generalization of some basic classical statistical
concepts to the situation of fuzzy data.

1. Introduction

Most of the information we obtain is afflicted with uncertainty. In our languages
there are found many linguistic uncertainties. For example, the statements ”a short
time“, ”a long distance“, or ”nice weather“ are not exactly determinable, but their
interpretation depends on our subjective opinion. Even information which seem to
be exact, like measurements, are afflicted with uncertainty. The results of measure-
ments of continuous quantities contain essentially two different types of uncertainty:
randomness and imprecision. Imprecision appears for example as a result of the
limited precision of measuring instruments and is not statistical in nature.
The dominating concept to describe uncertainty in modelling is using stochastic
models which are based on probability. However, probabilistic models are not suit-
able to describe all kinds of uncertainty, but only randomness. Especially the
imprecision of data is not statistical in nature and cannot be described by using
probability. Besides, many data like life times, or human reliabilities are impre-
cise by nature and cannot be described realistically by precise real numbers. The
quantification of the imprecision of a one-dimensional quantity is possible by us-
ing so-called fuzzy numbers, which are a generalization of real numbers. They are
defined and represented by so-called characterizing functions.

Definition 1.1. The characterizing function ξx?(·) of a fuzzy number x? is a real
function which obeys the following:

Invited Paper: Received in February 2004
Key words and phrases: Fuzzy Numbers, Fuzzy Probability Distributions, Fuzzy Random

Variables, Fuzzy Stochastic Processes, Decision on Fuzzy Information.

www.SID.ir



Arc
hi

ve
 o

f S
ID

40 R. Viertl and D. Hareter

(1) 0 ≤ ξx?(x) ≤ 1 for all x ∈ R
(2) ∃x0 ∈ R : ξx?(x0) = 1

(3) For all δ ∈ (0, 1] the so-called δ-cut Cδ(x?) := {x ∈ R : ξx?(x) ≥ δ} is a
closed finite interval [xδ, xδ]

The set supp [ξx?(·)] := {x ∈ R : ξx?(x) > 0} = [x0, x0] is called the support of ξx?(·)
resp. the support of x? and the set of all fuzzy numbers is denoted by F(R).

Remark 1.2. The characterizing function ξx?(·) of a fuzzy number x? is unequiv-
ocal determined by the set of δ-cuts Cδ(x?) by

(1) ξx?(x) = sup
δ∈(0,1]

δ ICδ(x?)(x) for all x ∈ R .

The quantification of a vector-valued quantity is possible by using fuzzy vectors,
which are defined and represent by so-called vector-characterizing functions.

Definition 1.3. The vector-characterizing function ζx?(·, . . . , ·) of a fuzzy vector
x? is a real valued function of n real variables x = (x1, . . . , xn) which obeys

(1) 0 ≤ ζx?(x) ≤ 1 for all x ∈ Rn

(2) ∃x0 = (x0
1, . . . , x

0
n) ∈ Rn : ζx?(x0) = 1

(3) For all δ ∈ (0, 1] the so-called δ-cut Cδ(x?) :=
{
x ∈ Rn : ζx?(x) ≥ δ

}
is a

star-shaped compact set

Remark 1.4. In the literature there exist different definitions of fuzzy vectors.
Some authors demand for the δ-cuts simply connected and compact sets of Rn. In
some papers the δ-cuts have to be compact and convex sets.

Fuzzy vectors are also used to define functions of fuzzy numbers. The definition is
given in the next section.

2. Functions of Fuzzy Data

To analyse fuzzy data the definition of mathematical operations for fuzzy num-
bers is necessary. For them, the generalization of real functions f : Rn → R to
the case of fuzzy arguments is needed. The definition of this generalization is
based on the so-called extension principle which is well known in fuzzy set the-
ory [3]. At first, n fuzzy numbers x?

1, . . . , x
?
n with corresponding characterizing

functions ξx?
1
(·), . . . , ξx?

n
(·) have to be combined into a fuzzy vector x? with vector-

characterizing function ζx?(·, . . . , ·) by

(2) ζx? (x1, . . . , xn) := min
i=1(1)n

ξx?
i
(xi) for all (x1, . . . , xn) ∈ Rn .
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Fuzzy Information and Stochastics 41

Remark 2.1. In general, the combination of n fuzzy numbers x?
1, . . . , x

?
n into

a fuzzy vector x? can be done by using a so-called t-norm Tn instead of the
min-operator, as in the book by Klement, Mesiar and Pap [2]. However, for the
analysis of fuzzy data only the min-operator used in equation (2) is practical (see
remark 2.5).

Proposition 2.2. The δ-cuts Cδ(x?) of the combined fuzzy vector x? are the Carte-
sian products of the δ-cuts of the n fuzzy numbers x?

1, . . . , x
?
n, i.e.

Cδ(x?) = Cδ(x?
1)× · · · × Cδ(x?

n) for all δ ∈ (0, 1] if and only if formula (2) is used
to obtain the combined fuzzy vector x?.

Proof. See Viertl [13]. ¤

In order to generalize real valued functions f(·) to the situation of fuzzy argument
values, the combined fuzzy vector x? with vector-characterizing function ζx?(·, . . . , ·)
is used. The characterizing function ξy?(·) of the fuzzy value y? = f(x?

1, . . . , x
?
n) is

defined via the extension principle by

(3) ξy?(y) :=

{
sup

{
ζx?(x) : f(x) = y

}
if f−1({y}) 6= ∅

0 if f−1({y}) = ∅

}
for all y ∈ R .

Proposition 2.3. For a continuous function f : Rn → R and n fuzzy numbers
x?

1, . . . , x
?
n with combined fuzzy vector x?, the value y? = f(x?

1, . . . , x
?
n) is a fuzzy

number in the sense of definition 1.1. The δ-cuts of y? are determined by

Cδ(y?) =
[

min
(x1,...,xn)∈Cδ(x?)

f(x1, . . . , xn), max
(x1,...,xn)∈Cδ(x?)

f(x1, . . . , xn)
]

.

Proof. See Viertl [13]. ¤

Proposition 2.3 is in general not valid for discontinuous functions f : Rn → R
because in this case the δ-cuts Cδ(y?) do not have to be intervals.

Using equation (3), the main arithmetic operations of two fuzzy numbers x?
1 and

x?
2 can be defined. The generalized addition x?

1 ⊕ x?
2 is defined via the continuous

function f(x1, x2) = x1 + x2, the multiplication x?
1 ¯ x?

2 is defined via the contin-
uous function f(x1, x2) = x1 · x2 and the ratio x?

1/x?
2 is defined via the function

f(x1, x2) = x1/x2. Note that f(x1, x2) = x1/x2 is only continuous in R2 \ (x1, 0).
Thus, the quotient is only defined in the case 0 |∈ supp

[
ξx?

2
(·)].

Example 2.4. The characterizing function ξx?(·) of the sum x? = x?
1 ⊕ x?

2 of two
fuzzy numbers x?

1 and x?
2 with corresponding characterizing functions ξx?

1
(·) and

ξx?
2
(·) is calculated by

ξx?(x) = ξx?
1⊕x?

2
(x) = sup

x1+x2=x
min

{
ξx?

1
(x1), ξx?

2
(x2)

}

= sup
y∈R

min
{
ξx?

1
(y), ξx?

2
(x− y)

}
for all x ∈ R.
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42 R. Viertl and D. Hareter

Using proposition 2.3, the δ-cuts Cδ(x?) of x? can be calculated from the δ-cuts
Cδ(x?

1) = [x1,δ, x1,δ] and Cδ(x?
2) = [x2,δ, x2,δ] by

Cδ(x?) =
[

min
(x1,x2)∈Cδ(x?)

x1 + x2, max
(x1,x2)∈Cδ(x?)

x1 + x2

]

=
[

min
(x1,x2)∈Cδ(x?

1)×Cδ(x?
2)

x1 + x2, max
(x1,x2)∈Cδ(x?)

x1 + x2

]

=
[
x1,δ + x2,δ, x1,δ + x2,δ

]
.

Remark 2.5. It is easy to verify, that for a fuzzy number x? the equation

(4) x? =
1
2
¯ (x? ⊕ x?) resp. more general x? =

1
n
¯ (x? ⊕ · · · ⊕ x?)

holds. This desirable feature is a result of using the min-operation in (2) and the
resulting proposition 2.2. In general, equation (4) is not valid if for the combination
in equation (2) another Tn-norm instead of the min-operator is used.

2.1. Statistical Analysis of Fuzzy Data.

The well known methods of standard statistical analysis deal with data in form
of real numbers and vectors. In case of a one-dimensional stochastic quantity
X ∼ f(· | θ), θ ∈ Θ, with observation space M ⊆ R, a statistic S = s(X1, . . . , Xs) is
a measurable function s : Mn → R from the sample space Mn to R. However, for a
continuous stochastic quantity, the assumption of a sample composed of real data
is not realistic, as explained in the introduction. Therefore, standard statistical
methods have to be generalized to the situation of fuzzy data. For most of these
methods, the generalization can be done by using the extension principle (3).

2.1.1. Fuzzy Estimators.

In general, a classical estimator ϑ(·, . . . , ·) for a parameter θ is a continuous function
of the real-valued sample. The generalized (fuzzy) estimator θ̂? = ϑ(x?

1, . . . , x
?
n)

based on a sample of fuzzy data x?
1, . . . , x

?
n is given by its characterizing function

ξbθ?(·), whose values ξbθ?(θ), θ ∈ Θ are calculated using (3), which gives the following:

ξbθ?(θ) =

{
sup

{
ζx?(x) : ϑ(x) = θ

}
if ϑ−1({θ}) 6= ∅

0 if ϑ−1({θ}) = ∅

}
for all θ ∈ Θ .

Example 2.6. In figure 1 a fuzzy sample of an exponentially distributed stochastic
quantity X ∼ Exθ is depicted.
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Fuzzy Information and Stochastics 43

Figure 1. Fuzzy sample
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The corresponding fuzzy estimation θ̂? of the parameter θ, i.e. the mean of the
fuzzy observations, is depicted in figure 2.

Figure 2. Characterizing function of the fuzzy estimation θ̂?
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0
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2.1.2. Fuzzy Confidence Regions.

The concept of classical confidence regions can be generalized to the situation of a
sample of fuzzy numbers by using an idea similar to the extension principle. Let
κ(·, . . . , ·) be a classical confidence function for a parameter θ with confidence level
1−α. The function κ : Mn → P(Θ) is a function from the sample space Mn to the
power set P(Θ) of the parameter space Θ. Therefore the application of equation
(3) is not possible. However, using an adaptation of the extension principle, the
fuzzy confidence region κ? based on fuzzy data x?

1, . . . , x
?
n and the corresponding

combined fuzzy vector x? with vector-characterizing function ζx?(·, . . . , ·), is given
by its membership function ϕκ?(·) which is defined by

ϕκ?(θ) :=

{
sup

{
ζx?(x) : θ ∈ κ(x)

}
if ∃x : θ ∈ κ(x)

0 else

}
for all θ ∈ Θ .

Note, that κ? need not be a fuzzy number in the sense of definition 1.1 because the
δ-cuts Cδ(κ?) do not have to be intervals. In this case, the so-called convex hull of
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44 R. Viertl and D. Hareter

κ? can be taken into account (for details see Viertl (1996)). Functions which fulfill
both conditions (1) and (2) of definition 1.1 but not necessarily condition (3) are
denoted membership functions instead of characterizing functions.

Example 2.7. In figure 3 a one-dimensional fuzzy confidence region (called fuzzy
confidence interval) with confidence level 0.9 for the parameter of example 2.6 is
depicted.

Figure 3. Fuzzy confidence interval
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3. Fuzzy Probability Distributions

For real valued data, the well-known concept of a histogram provides information
about the underlying distribution. Considering a sample of fuzzy data, this concept
has to be adapted because the frequencies of fixed events are not precise numbers.
In figure 4 the situation where a fuzzy observation x? cannot be assigned to one
singular class is depicted.

Figure 4. Fuzzy observation and classification

x

Ki Ki+1

1

xx  
(x)

d

*

Because of the non-empty intersection of supp [ξx?(·)] with the two classes Ki and
Ki+1 the fuzzy number x? can not be assigned to Ki nor to Ki+1. In the calculation
of the relative frequencies the observation has to be taken into account in both
classes Ki and Ki+1. However, considering the δ-cut of x? in figure 4, it can be
definitely allocated to the class Ki+1. For a sample of fuzzy data x?

1, . . . , x
?
n this

fact leads to the following calculation of the fuzzy valued relative frequencies h?
n(A)
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Fuzzy Information and Stochastics 45

of a fixed event A which is defined via its δ-cuts Cδ (h?
n(A)) =

[
hn,δ(A), hn,δ(A)

]
in

the following way: For δ ∈ (0, 1] the upper limit hn,δ(A) is defined as the number
of observations whose δ-cuts have non-empty intersection with A, i.e.

hn,δ(A) =
# {x?

i : Cδ(x?
i ) ∩A 6= ∅}

n
,

and the lower limit hn,δ(A) is given by the number of observations whose δ-cuts
are for sure contained in A, i.e.

hn,δ(A) =
# {x?

i : Cδ(x?
i ) ⊆ A}

n
.

The obtained fuzzy frequency h?
n(A) is a cascade fuzzy number.

For the impossible event ∅ and the sure event M (the whole set of possible obser-
vations) it follows

h?
n(∅) = 0 and h?

n(M) = 1,

i.e. the extreme events have precise frequencies.

Considering probability distributions as theoretical counterparts of frequencies, a
fuzzy probability density is a function f? : M → F(R+) where F(R+) denotes the
set of all fuzzy numbers x? with supp [ξx?(·)] ⊆ [0,∞);that is, for every element x
of the observation space M , f?(x) is a fuzzy number with corresponding charac-
terizing function ϕx(·) and δ-cuts Cδ (f?(x)) =

[
ϕ

δ
(x), ϕδ(x)

]
. Certainly a further

condition, equal to the standardization of a real-valued probability density, is neces-
sary to characterize a fuzzy probability density. Before this condition can be given,
the concept of the integration of such fuzzy valued functions has to be explained:
The result

(5) I? =
∫

A

− f?(x) d x

of the generalized integration is a fuzzy number whose characterizing function ξI?(·)
is defined via their δ-cuts Cδ(I?) =

[Iδ, Iδ

]
by

Iδ :=
∫

A

ϕ
δ
(x) d x and Iδ :=

∫

A

ϕδ(x) d x ,

which are simply real integrals of the real functions ϕ
δ
(·) and ϕδ(·). To ensure

the existence of both integrals, ϕ
δ
(·) and ϕδ(·) are assumed to be integrable for all

δ ∈ (0, 1]. The characterizing function ξI?(·) is given by

ξI?(x) = sup
δ∈(0,1]

δ · ICδ(I?)(x) for all x ∈ M,

where ICδ(I?)(·) denotes the indicator function of the interval Cδ(I?) =
[Iδ, Iδ

]
.

Using the generalized integration (5), a fuzzy probability density f?(·) has to fulfill
the generalized normalization condition∫

M

− f?(x) dx = 1?
+
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46 R. Viertl and D. Hareter

where 1?
+ denotes a fuzzy number with 1 ∈ C1(1?) and Cδ(1?) ⊆ (0,∞) for all

δ ∈ (0, 1].

Furthermore, the calculation of the probability of a subset A ⊆ M has to be de-
fined. In case of a real-valued density f(·), the probability P (A) of a subset A ⊆ M
is simply calculated by

P (A) =
∫

A

f(x) dx .

In case of a fuzzy probability density f?(·), the probability of a subset A cannot be
calculated by using the general integration described above, because the support
supp[P ?(A)] of the fuzzy probability P ?(A) need not be a part of the interval [0, 1].
Therefore, another concept for the calculation of P ?(A) has to be defined. A nec-
essary property of the defined probability is the availability of the standardization
P ?(M) = 1 and P ?(∅) = 0. The definition of P ?(A) is based on the advisement to
calculate the highest and the lowest probability of A: Let

Sδ =
{

f : f is a probability density with ϕ
δ
(x) ≤ f(x) ≤ ϕδ(x) ∀x ∈ M

}

be the set of all possible classical probability densities between both δ-level curves
ϕ

δ
(·) and ϕδ(·). The δ-cut Cδ(P ?(A)) =

[
P δ(A), P δ(A)

]
of the fuzzy probability

P ?(A) is defined by

P δ(A) = sup
f∈Sδ

∫

A

f(x) dx

=





1−
∫

Ac

ϕ
δ
(x) dx if

∫

A

ϕδ(x) dx +
∫

Ac

ϕ
δ
(x) dx > 1

∫

A

ϕδ(x) dx else ,

and

P δ(A) = inf
f∈Sδ

∫

A

f(x) dx

=





∫

A

ϕ
δ
(x) dx if

∫

A

ϕ
δ
(x) dx +

∫

Ac

ϕδ(x) dx > 1

1−
∫

Ac

ϕδ(x) dx else .

For 0 < δ1 < δ2 ≤ 1 by Sδ2 ⊆ Sδ1 the following equation holds:
[
P δ2

(A), P δ2(A)
] ⊆ [

P δ1
(A), P δ1(A)

]

Therefore P ?(A) is a fuzzy number in the sense of definition 1.1. It is easy to verify
that P ?(M) = [1, 1] = 1 and P ?(∅) = [0, 0] = 0, i.e. the two extreme events have
the required probabilities.

Fuzzy probability densities can also be used in Bayesian analysis. If little or no
a-priori information is available the use of one real-valued a-priori distribution on
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the parameter space is questionable. In this case, fuzzy a-priori densities allow
a more realistic presentation of the available a-priori information. In Viertl and
Hareter [16] the well known Bayes’ theorem is generalized to the situation of fuzzy
a-priori density and fuzzy data.

4. Fuzzy stochastic processes

For the definition of fuzzy stochastic processes the definition of so-called fuzzy ran-
dom variables, which are extensions of classical real-valued random variables by
using fuzzy numbers x? ∈ F(R) as images, is necessary. In the literature there
exist different definitions of fuzzy random variables, see for examples the definition
of Puri and Ralescu [9] or the definition of Kwakernaak [5], [6]. In the following,
the definition of Kwakernaak is used.

Let (Ω,A, P ) be a probability space, and T ⊆ Rm.

Definition 4.1. A random interval is a set-valued mapping X : Ω → I(R) :=
{[a, b] : a, b ∈ R, a ≤ b} with ω → X(ω) = [X(ω), X(ω)] such that X(ω) and X(ω)
are random variables defined on (Ω,A, P ).

Definition 4.2. A fuzzy-valued mapping X? : Ω → F(R) is called fuzzy random
variable if Cδ(X?(ω)) =

[
Xδ(ω), Xδ(ω)

]
is a random interval for every δ ∈ (0, 1].

That is, fuzzy random variables are defined via the boundaries of the δ-cuts of the
fuzzy values X?(ω), ω ∈ Ω. The boundaries are calculated by

Xδ(ω) = inf {x ∈ R : x ∈ Cδ (X?(ω))} = inf
{
x ∈ R : ξX?(ω)(x) ≥ δ

}

and

Xδ(ω) = sup {x ∈ R : x ∈ Cδ (X?(ω))} = sup
{
x ∈ R : ξX?(ω)(x) ≥ δ

}

where ξX?(ω)(·) denotes the characterizing function of the fuzzy number X?(ω).

Definition 4.3. The expectation EX? of a fuzzy random variable X? is a fuzzy
number which is defined via its δ-cuts by using the concept of general integration
from section 3 using (5) in the following way:

Cδ(EX?) =
∫

Ω

Cδ(X?(ω)) P (dω) for all δ ∈ (0, 1] .

Using (1) the characterizing function ξEX?(·) of EX? is calculated by

ξEX?(x) = sup
δ∈(0,1]

δ ICδ(EX?)(x) for all x ∈ R .

Similar to the expectation EX?, the distribution function F ?
X? : R → F([0, 1]) of

a fuzzy random variable X? becomes fuzzy too. Using the δ-cuts Cδ(X?(ω)) =[
Xδ(ω), Xδ(ω)

]
of the fuzzy value X?(ω), ω ∈ Ω, the fuzzy distribution function

F ?
X?(·) is defined via its δ-cuts Cδ(F ?

X?(x)) =
[
F δ(x), F δ(x)

]
for every δ ∈ (0, 1]

and x ∈ R with

F δ(x) = P{ω : Xδ(ω) ≤ x} and F δ(x) = P{ω : Xδ(ω) ≤ x} .
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A real-valued function which describes the fuzziness of F ?
X?(·) is the following:

Definition 4.4. Let X? be a fuzzy random variable. Then for each δ ∈ (0, 1]
the real-valued function FD(x) = P {ω : x ∈ Cδ(X?(ω))} is called a δ-level shadow
distribution function of X?.

Certainly, FD(·) can be calculated by FD(x) = F δ(x)− F δ(x−), x ∈ R, and for a
real-valued continuous random variable X the equation FD(x) = 0 for all x ∈ R,
holds.

The basis for the definition of fuzzy stochastic processes is the concept of normal
dynamic fuzzy sets.

Definition 4.5. A family {A?(t); t ∈ T} is called a normal dynamic fuzzy set in R
if A?(t) ∈ F(R) for every t ∈ T .

Definition 4.6. A family of fuzzy random variables X?(·, ·) = {X?(t, ω) :
ω ∈ Ω, t ∈ T} is called a fuzzy random function or a fuzzy stochastic process on
(Ω,A, P ) if X?(t, ·) is a fuzzy random variable on (Ω,A, P ) for every fixed t ∈ T ,
and X?(·, ω) is a normal dynamic fuzzy set with respect to the parameter set T for
every fixed ω ∈ Ω. X?(·, ω) is called a fuzzy sample function or a fuzzy trajectory
of the process.

Definition 4.7. Given a fuzzy stochastic process X?(·, ·) on a probability space
(Ω,A, P ) and T ⊂ R , let D = {t1, t2, . . . , tn} be a finite set of distinct elements
of T . Considering the n-dimensional fuzzy random vector (X?(t1, ·), . . . , X?(tn, ·))
which is a mapping from Ω into Fn(R) = F(R)× · · · × F(R), the n-dimensional
δ-level shadow distribution function FD(·, . . . , ·) is defined for all (x1, . . . , xn) ∈ Rn

and δ ∈ (0, 1] by

FD(x1, . . . , xn) = P {ω : xi ∈ Cδ(X?(ti, ω)), i = 1(1, ..., n)n}
4.1. Parametric fuzzy random processes.

Let X?(t) = X(θ?, t) be a family of fuzzy random variables determined by a fuzzy
parameter θ?. The application of δ-level presentation leads to the δ-cuts of X?(t):

Cδ(X?(t)) = {X(θ, t) : θ ∈ Cδ(θ?)} for all δ ∈ (0, 1]

The fuzzy cumulative distribution function is presented using δ-level shadow dis-
tribution functions.

4.2. Applications of Fuzzy stochastic processes.

Safety assessment of structures in civil engineering are essential in all building
activities. Based on randomness und fuzziness of material properties the most up
to date analysis methods in reliability assessment are fuzzy stochastic methods.
Based on fuzzy stochastic processes so-called fuzzy probability structural analysis
is possible, using a realistic computational model for calculating fuzzy distribution
functions of critical quantities, especially fuzzy safety levels and fuzzy reliability
indexes. For details compare the papers Möller et al. [7] and Sickert et al. [11].
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5. Generalized law of large numbers

Based on the fuzziness of real observations of stochastic quantities and the resulting
fuzzy relative frequencies, compare section 2.1.1, the law of large numbers has to
be adapted. This was done in different ways, for example by Kruse [4] or Klement
et. al. [1]. In 1992 Niculescu and Viertl [8] proved the following generalized law of
large numbers:

Theorem 5.1. For every rational fuzzy number x? ∈ F ({ i
n , i ∈ {0, . . . , n}}) with

characterizing function ξx?(·) let

Lx? =
{

ξx?

(
i

n

)
> 0: CL

1 (x?) ≥ i

n

}
and Rx? =

{
ξx?

(
i

n

)
> 0: CU

1 (x?) ≤ i

n

}

where

CL
δ (x?) = min

{
i

n
: ξx?

(
i

n

)
≥ δ

}
and CU

δ (x?) = max
{

i

n
: ξx?

(
i

n

)
≥ δ

}
.

Furthermore, for every x? ∈ F ({ i
n , i ∈ {0, . . . , n}}) and p? ∈ F([0, 1]) let

‖x? ª p?‖ = max
{

max
δ∈Lx?

∣∣CL
δ (x?)− CL

δ (p?)
∣∣ , max

δ∈Rx?

∣∣CU
δ (x?)− CU

δ (p?)
∣∣
}

where x? ª p? = x? ⊕ (−1¯ p?) denotes the difference of two fuzzy numbers.
Let h?

n(A) denote the fuzzy relative frequencies of an interval A for a fuzzy sam-
ple x?

1, . . . , x
?
n of an underlying fuzzy random variable X? on a probability space

(Ω,A, P ). Then there exists a fuzzy number p? ∈ F([0, 1]) such that for every arbi-
trarily small ε, α > 0 there exists N(ε, α) ∈ N such that for every n > N(ε, α) the
inequality

P
{‖h?

n(A)ª p?‖ < ε
} ≥ 1− α

holds.

Proof. See Niculescu and Viertl [8]. ¤

6. Fuzzy information and decisions

In decision analysis the following mathematical descriptions are fundamental: Let
θ be the quantity of interest, D the set of possible decisions d and U(·, ·) the utility
function, i.e. U(θ, d) ≥ 0 is the utility of taking the decision d when the quantity
of interest is θ. The set Θ of all possible values can be continuous, i.e. Θ ⊆ R, or
countable, i.e. Θ = {θ1, . . . , θk}. Furthermore, let θ̃ denote the stochastic quantity
describing the knowledge about θ and π(θ) the probability density of θ̃. In standard
analysis the expected utility for the decision d is calculated by

Eπ(·)U(θ̃, d) =





∫

Θ

U(θ, d) π(θ) dθ if Θ ⊆ R
k∑

i=1

U(θi, d) π(θi) if Θ = {θ1, . . . , θk} .
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The optimal decisions dopt are defined by maximisation of the expected utility, i.e.

Eπ(·)U(θ̃, dopt) = max
d∈D

Eπ(·)U(θ̃, d) .

6.1. Fuzzy utility.

In practical applications, the usage of a real-valued utility function U(·, ·) is ques-
tionable. However a fuzzy utility function U?(·, ·) with supp [U?(·, ·)] ⊆ [0,∞) can
be used. Moreover, if the probability distribution π(·) of θ̃ is unknown and has to
be chosen or estimated, it is more suitable to use a generalized fuzzy probability
distribution π?(·).
In case of fuzzy probability density π?(·) and fuzzy utility function U?(·, ·) the gen-
eralization of expected utility in decision making is possible by using the generalized
integration (5). The expected fuzzy utility for the decision d is calculated by

Eπ?(·)U?(θ̃, d) =





∫

Θ

− U?(θ, d)¯ π?(θ) dθ if Θ ⊆ R
k∑

i=1

U?(θi, d)¯ π?(θi) if Θ = {θ1, . . . , θk} .

Denoting the δ-cuts of U?(θ, d) and π?(θ) by Cδ (U?(θ, d)) = [Uδ(θ, d), U δ(θ, d)]
resp. Cδ (π?(θ)) = [πδ(θ), πδ(θ)], the boundaries of the δ-cuts Cδ

[
Eπ?(·)U?(θ̃, d)

]
=[

EδU
?(θ̃, d),EδU

?(θ̃, d)
]

of the expected fuzzy utility Eπ?(·)U?(θ̃, d) are given by

EδU
?(θ̃, d) =





∫

Θ

U δ(θ, d) πδ(θ) dθ if Θ ⊆ R
k∑

i=1

U δ(θi, d)πδ(θi) if Θ = {θ1, . . . , θk}

and

EδU
?(θ̃, d) =





∫

Θ

Uδ(θ, d)πδ(θ) dθ if Θ ⊆ R
k∑

i=1

U δ(θi, d) πδ(θi) if Θ = {θ1, . . . , θk} .

Using equation (1), the characterizing function ξd(x) of Eπ?(·)U?(θ̃, d) is given by

ξd(x) = sup
δ∈(0,1]

δ ICδ[Eπ?(·)U?(eθ,d)](x) for all x ∈ R .

Certainly the determination of the optimal decision is more difficult than in case
of real-valued utility U(·, ·) and real-valued probability density π(·). One way of
arriving to a decision is to use so-called defuzzification. After defuzzification, it is
possible to compare the expected utilities Eπ?(·)U?(θ̃, d) of the different decisions
d ∈ D.
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6.2. Statistical tests for fuzzy data.

A special kind of decision making processes are statistical tests. In case of fuzzy
data x?

1, . . . , x
?
n also test statistics t(·, . . . , ·) become fuzzy, i.e. t? = t(x?

1, . . . , x
?
n)

with corresponding membership function ξt?(·) of the fuzzy value t? of the gener-
alized test statistic. Again, t? doesn’t have to be a fuzzy number in the sense of
definition 1.1 (see the comment in section 2.1.1).
There are two possible ways to solve the problem of making a decision:

(1) One possibility is to use p-values connected with statistical tests. It is
possible to calculate a crisp p-value even for fuzzy values t? of the test
statistic. Let ψ(·) be the characterizing function of t?. Then in case of
one-dimensional test statistics looking at the boundary of supp [ψ(·)] the
p-value in the standard way can be calculated. Then the test decision can
be made as usually. For details see chapter 20 of the handbook Voß [17].

(2) Another method is to calculate so-called fuzzy p-values (for detail see Filz-
moser and Viertl [15]).

7. Conclusions

The fuzziness of results of continuous measurements as well as the uncertainty of
informations require a more general concept than by real-valued data of real-valued
vectors. The quantification of this kind of uncertainty is possible by using so-called
fuzzy numbers and fuzzy vectors. The paper deals with the presentation of fuzzy
information and the generalization of some stochastic models and basic classical
statistical concepts to the situation of fuzzy data.
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