POINTWISE PSEUDO-METRIC ON THE L-REAL LINE

F. -G. SHI

ABSTRACT. In this paper, a pointwise pseudo-metric function on the L -real line is constructed. It is proved that the topology induced by this pointwise pseudo-metric is the usual topology.

1. Introduction

The L-fuzzy unit interval and the L-fuzzy real line are two important L-topological spaces. The L-fuzzy unit interval was defined by Hutton [2]. The L-fuzzy real line was respectively defined by Höhle $[3]$ and Gantner et al. $[4]$. They are important not only in L-topology, but also in other fields.

To reflect the characteristics of pointwise L-topology, i.e., the relation between a fuzzy point and its Q-neighborhoods (or R-neighborhoods) [5], a theory of pointwise uniformities and a theory of pointwise metrics were introduced on completely distributive lattices and in L-fuzzy set theory(see $[6, 7, 8, 9]$). Many ideal results in general topology were generalized to L -topology. In [9], it was proved that the L-fuzzy real line is pointwise pseudo-metrizable, but no pointwise pseudo-metric function on the L-fuzzy real line was given. In this paper, our aim is to construct a pointwise pseudo-metric function in the L-real line and prove that the topology induced by this pointwise pseudo-metric function is the usual topology.

2. Preliminaries

Throughout this paper, L always denotes a completely distributive lattice with an order-reversing involution. $M(L^X)$ denotes the set of all non-zero ∨-irreducible elements in L^X . For $A \in L^X$, $\beta(A)$ denotes the maximal minimal family of A (see [5]) and $\beta^*(A) = \beta(A) \bigcap M(L^X)$. It is easy to verify that for $e \in M(L)$, $e \in \beta^*(A)$ if and only if $a \ll A$, where \ll is the way below relation ([1]).

Definition 2.1 ([9]). A pointwise pseudo-quasi-metric on L^X is a mapping d: $M(L^X) \times M(L^X) \to [0, +\infty)$ satisfying the following (M1)–(M3):

(M1) ∀a ∈ $M(L^X)$, $d(a, a) = 0$.

(M2) ∀a, b, c ∈ M(L^X), $d(a, c) \le d(a, b) + d(b, c)$.

Received: November 2004; Accepted: May 2005

Key words and phrases: L-topology, Pointwise pseudo-metric, The L-real line.

Mathematics Subject Classification (2000): 54A40

This work was supported by National Natural Science Foundation of China (10371079) and Basic Research Foundation of Beijing Institute of Technology.

 16 F.-G. Shi

$$
(M3) \ \forall a, b \in M(L^X), \ d(a, b) = \bigwedge_{c \ll b} d(a, c).
$$

A pointwise pseudo-quasi-metric d is called a pointwise pseudo-metric if it satisfies the following conditions.

(M4) $\forall a, b, c \in M(L^X), a \leq b$ implies $d(a, c) \leq d(b, c)$. (M5) $\forall \lambda, \mu \in M(L^X)$, \bigwedge $a\not\leq\lambda'$ $d(a, \mu) < r$ if and only if Λ $b\not\leq\mu'$ $d(b, \lambda) < r$.

Theorem 2.2 ([9]). Let d be a pointwise pseudo-metric on L^X . $\forall r \in (0, +\infty)$, define a mapping $P_r: M(L^X) \to L^X$ by

$$
P_r(a) = \bigvee \{b \in M(L^X) \mid d(a, b) \ge r\}.
$$

Then the family $\{P_r \mid r \in (0, +\infty)\}\$ of R-nbd mappings of d satisfies the following conditions.

 $(R1) \; \forall a \in M(L^X), \; \Lambda$ $\bigwedge_{r>0} P_r(a) = 0;$ $(R2) \; \forall a \in M(L^X), \forall r \in (0, +\infty), a \not\leq P_r(a);$ $(R3) \forall r, s \in (0, +\infty), P_s \odot P_r \geq P_{r+s};$ $(R4) \ \forall a \in M, P_r(a) = \bigwedge_{s < r} P_s(a);$ $(R5) \forall r \in (0, +\infty), P_r$ is symmetric.

Theorem 2.3 ([9]). If $\{P_r \mid P_r : M(L^X) \to L^X, r \in (0, +\infty)\}\$ is a family of mappings satisfying (R1)–(R5), and we define $d : M(L^X) \times M(L^X) \to [0, +\infty)$ by

$$
d(a,b) = \bigwedge \{ r \mid b \nleq P_r(a) \},
$$

then d is a pointwise pseudo-metric on L^X and the family of R-nbd mappings of d is exactly { P_r | $r \in (0, +\infty)$ }.

Theorem 2.4 ([9]). If d is a pointwise pseudo-quasi-metric on L^X , then

(1) $\{P_r(a) \mid a \in M(L^X), r \in (0, +\infty)\}\$ is a base for a co-topology on L^X . This co-topology is denoted by η_d ;

(2) $\{P_r(a) | r > 0\}$ is a locally R-neighborhood base at a in the co-topology η_d .

Definition 2.5 ([3, 4]). The L-(fuzzy) real line $\mathbb{R}(L)$ is defined as the set of all equivalence classes of antitone maps $\lambda : \mathbb{R} \to L$ satisfying

$$
\bigvee_{t \in R} \lambda(t) = 1 \text{ and } \bigwedge_{t \in R} \lambda(t) = 0,
$$

where the equivalence identifies two maps λ andu if and only if $\forall t \in I$, $\lambda(t+)$ $\mu(t+)$. The canonical L-topology on $\mathbb{R}(L)$ is generated from the subbase $\{\mathcal{L}_t, \mathcal{R}_t\}$ $t \in \mathbb{R}$, where

$$
\mathcal{L}_t: I(L) \to L
$$
 by $\mathcal{L}_t(\lambda) = \lambda(t-)'$

 $\mathcal{R}_t : I(L) \to L$ by $\mathcal{R}_t(\lambda) = \lambda(t+).$

3. Pointwise Pseudo-metric on the L-real Line

Lemma 3.1. Let $\mathbb{R}(L)$ be the L-real line. Define a mapping $\varepsilon : M(L^{\mathbb{R}(L)}) \to \mathbb{R}$ and a mapping $\sigma : M(L^{\mathbb{R}(L)}) \to \mathbb{R}$ such that for all $e \in M(L^{\mathbb{R}(L)}),$

 $\varepsilon(e) = \sup \{ t \mid e \leq \mathcal{L}'_t \}, \quad \sigma(e) = \inf \{ t \mid e \leq \mathcal{R}'_t \},$

Then we have the following results:

- (1) $\varepsilon(e) = \max\{t \mid e \leq \mathcal{L}'_t\}, \ \sigma(e) = \min\{t \mid e \leq \mathcal{R}'_t\}.$
- (2) If $a, b \in M(L^{\mathbb{R}(L)})$ and $a \leq b$, then $\varepsilon(a) \geq \varepsilon(b)$ and $\sigma(a) \leq \sigma(b)$.
- (3) If $b \in M(L^{\mathbb{R}(L)})$, then $\varepsilon(b) = \bigwedge$ $c \ll b$ $\varepsilon(c)$ and $\sigma(b) = \bigvee$ $c \ll b$ $\sigma(c)$.

(4) $\forall \lambda, \mu \in M(L^{\mathbb{R}(L)})$, there exists $a \not\leq \lambda'$ such that $\varepsilon(\mu) < \varepsilon(a) + r$ if and only if there exists $b \nleq \mu'$ such that $\sigma(\lambda) > \sigma(b) - r$.

Proof. (1) and (2) are obvious. By (2) we can obtain that $\varepsilon(b) \leq \Lambda$ $c \ll b$ $\varepsilon(c)$ and $\sigma(b) \geq \sqrt{ }$ $c \ll b$ $\sigma(c)$. Thus in order to prove (3) we need only to prove that

$$
\varepsilon(b) \ge \bigwedge_{c \ll b} \varepsilon(c)
$$
 and $\sigma(b) \le \bigvee_{c \ll b} \sigma(c)$.

Suppose that $\varepsilon(b) < \Lambda$ $c \ll b$ $\varepsilon(c)$. Then there exists $s \in \mathbb{R}$ such that

$$
\varepsilon(b) = \max\{t \mid b \le \mathcal{L}'_t\} < s < \bigwedge_{c \ll b} \varepsilon(c).
$$

This implies that $b \nleq \mathcal{L}'_s$. Further there exists $c \ll b$ such that $c \nleq \mathcal{L}'_s$. Thus we have that $\varepsilon(c) < s$. By $s < \Lambda$ $c \ll b$ $\varepsilon(c)$ we obtain a contradiction. Therefore

 $\varepsilon(b) \geq \Lambda$ $c \ll b$ $\varepsilon(c)$. Similarly we can prove that $\sigma(b) \leq \sqrt{b}$ $c \ll b$ $\sigma(c)$. Hence (3) follows.

To prove (4) suppose that $\varepsilon(\mu) < \varepsilon(a) + r$. Then there is $t > 0$ such that $\varepsilon(\mu) < \varepsilon(a) + r - t$. This implies that

$$
\mu \nleq \mathcal{L}'_{\varepsilon(a)+r-t}
$$
 or $\mathcal{L}_{\varepsilon(a)+r-t} \nleq \mu'.$

So there exists a point $b \leq \mathcal{L}_{\varepsilon(a)+r-t}$ such that $b \nleq \mu'$. We obtain

$$
\sigma(b) \le \varepsilon(a) + r - t \quad \text{or} \quad \sigma(b) - r < \varepsilon(a)
$$

since $\mathcal{L}_{\varepsilon(a)+r-t} \leq \mathcal{R}'_{\varepsilon(a)+r-t}$. By $a \leq \mathcal{L}'_{\varepsilon(a)}$ we have that

$$
\lambda \not\leq a' \geq \mathcal{L}_{\varepsilon(a)} \geq \mathcal{R}'_{\sigma(b)-r}.
$$

Therefore $\sigma(\lambda) > \sigma(b) - r$.

Theorem 3.2. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{\mathbb{R}(L)})$, define

$$
d_1(a,b) = \max{\{\varepsilon(b) - \varepsilon(a), 0\}}, d_2(a,b) = \max{\{\sigma(a) - \sigma(b), 0\}},
$$

Then d_1, d_2 are pointwise pseudo-quasi-metrics, $\{\mathcal{L}_t | t \in \mathbb{R}\}\$ is the topology induced by d_1 and $\{ \mathcal{R}_t \mid t \in \mathbb{R} \}$ is the topology induced by d_2 .

 \Box

18 F.-G. Shi

Proof. We only prove that d_1 is a pointwise pseudo-quasi-metric. The proof for d_2 is similar. Obviously, by (2) in Lemma 3.1 we know that $a \leq b \Rightarrow d_1(a, b) = 0$. Thus (M1) is true. (M2) can be obtained as follows.

$$
d_1(a, c) = \max{\{\varepsilon(c) - \varepsilon(a), 0\}}
$$

=
$$
\max{\{\varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), 0\}}
$$

$$
\leq \max{\{\varepsilon(b) - \varepsilon(a), 0\}} + \max{\{\varepsilon(c) - \varepsilon(b), 0\}}
$$

=
$$
d_1(a, b) + d_1(b, c)
$$

(M3) can be obtained as follows:

$$
d_1(a,b) = \max{\{\varepsilon(b) - \varepsilon(a), 0\}}
$$

=
$$
\max{\{\bigwedge_{c \ll b} \varepsilon(c) - \varepsilon(a), 0\}}
$$

=
$$
\max{\{\bigwedge_{c \ll b} (\varepsilon(c) - \varepsilon(a)), 0\}}
$$

=
$$
\bigwedge_{c \ll b} \max{\{\varepsilon(c) - \varepsilon(a), 0\}} = \bigwedge_{c \ll b} d_1(a, c).
$$

In order to prove that $\{\mathcal{L}_t | t \in \mathbb{R}\}$ is the topology induced by d_1 and $\{\mathcal{R}_t | t \in \mathbb{R}\}$ is the topology induced by d_2 , we only need to prove that the family $\{P_r^{d_1} \mid r > 0\}$ of R-nbd mappings of d_1 and the family $\{P_r^{d_2} \mid r > 0\}$ of R-nbd mappings of d_2 satisfy the following condition:

$$
P_r^{d_1}(a) = \mathcal{L}'_{\varepsilon(a)+r} \quad \text{and} \quad P_r^{d_2}(a) = \mathcal{R}'_{\sigma(a)-r}.
$$

In fact, $\forall a, b \in M(L^{\mathbb{R}(L)})$, we have:

$$
b \le P_r^{d_1}(a) \quad \Leftrightarrow \quad d_1(a, b) \ge r
$$

\n
$$
\Leftrightarrow \quad \varepsilon(b) - \varepsilon(a) \ge r
$$

\n
$$
\Leftrightarrow \quad \varepsilon(b) \ge \varepsilon(a) + r \quad \Leftrightarrow \quad b \le \mathcal{L}'_{\varepsilon(a) + r}
$$

and

$$
\begin{array}{rcl}\nb \leq P_r^{d_2}(a) & \Leftrightarrow & d_2(a, b) \geq r \\
& \Leftrightarrow & \sigma(a) - \sigma(b) \geq r \\
& \Leftrightarrow & \sigma(b) \leq \sigma(a) - r \quad \Leftrightarrow & b \leq \mathcal{R}'_{\sigma(a) - r}\n\end{array}
$$

The result follows. $\hfill \square$

Remark 3.3. When $L = 2$, d_1 and d_2 are conjugate pseudo-quasi-metrics in the usual sense.

Theorem 3.4. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{\mathbb{R}(L)})$, define

$$
d(a,b) = \max{\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\}} = \max\{d_1(a,b), d_2(a,b)\}.
$$

Then d is a pointwise pseudo-metric and d exactly induces the topology on $\mathbb{R}(L)$.

Proof. By (2) in Lemma 3.1 it is obvious that we know that $a \leq b \Rightarrow d(a, b) = 0$. Thus (M1) is true. (M2) can be obtained as follows:

$$
d(a, c) = \max{\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\}}
$$

=
$$
\max{\{\varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b) + \sigma(b) - \sigma(c), 0\}}
$$

$$
\leq \max{\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\}} + \max{\{\varepsilon(c) - \varepsilon(b), \sigma(b) - \sigma(c), 0\}}
$$

=
$$
d(a, b) + d(b, c)
$$

(M3) can be obtained as follows:

$$
d(a,b) = \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\}
$$

\n
$$
= \max\{\bigwedge_{\substack{c \ll b}} \varepsilon(c) - \varepsilon(a), \sigma(a) - \bigvee_{\substack{c \ll b}} \sigma(c), 0\} \text{ by Lemma 3.1}
$$

\n
$$
= \max\{\bigwedge_{\substack{c \ll b}} (\varepsilon(c) - \varepsilon(a)), \bigwedge_{\substack{c \ll b}} (\sigma(a) - \sigma(c)), 0\}
$$

\n
$$
= \bigwedge_{\substack{c \ll b}} \max\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\} = \bigwedge_{\substack{c \ll b}} d(a, c)
$$

(M4) can be obtained from (2) in Lemma 3.1. To prove (M5), we note that $\forall \lambda, \mu \in M(L^{\mathbb{R}(L)})$, if

$$
\bigwedge_{a \not\leq \lambda'} d(a,\mu) = \bigwedge_{a \not\leq \lambda'} \max \{\varepsilon(\mu) - \varepsilon(a), \sigma(a) - \sigma(\mu), 0\} < r,
$$

then there exists $a \nleq \lambda'$ such that

$$
\max\{\varepsilon(\mu)-\varepsilon(a),\sigma(a)-\sigma(\mu),0\}
$$

i.e.,

$$
\varepsilon(\mu)-\varepsilon(a) < r, \ \sigma(a)-\sigma(\mu) < r.
$$

Hence we have that

$$
\varepsilon(\mu) < \varepsilon(a) + r, \ \sigma(\mu) > \sigma(a) - r.
$$

By (4) in Lemma 3.1 we know that there exist $b \nleq \mu'$ and $c \nleq \mu'$ such that

$$
\sigma(\lambda) > \sigma(b) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r.
$$

Thus, since μ' is a prime element, $b \wedge c \not\leq \mu'$. Take a point $d \leq b \wedge c$ such that $d \nleq \mu'$. Then

$$
\sigma(\lambda) > \sigma(b) - r \ge \sigma(d) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r \le \varepsilon(d) + r.
$$

This implies that

$$
\bigwedge_{d \nleq \mu'} d(d, \lambda) = \bigwedge_{d \nleq \mu'} \max \{ \varepsilon(\lambda) - \varepsilon(d), \sigma(d) - \sigma(\lambda), 0 \} < r.
$$

In order to prove that $\{\mathcal{L}_t, \mathcal{R}_t \mid t \in \mathbb{R}\}$ is a subbase of the topology induced by d, we only need to prove that the family ${P_r^d \mid r > 0}$ of R-nbd mappings of d satisfies the following condition:

$$
P_r^d(a) = \mathcal{L}'_{\varepsilon(a)+r} \vee \mathcal{R}'_{\sigma(a)-r}.
$$

 $P - G$. Shi

In fact, $\forall a, b \in M(L^{\mathbb{R}(L)})$ we have:

$$
b \le P_r^d(a) \Leftrightarrow d(a, b) \ge r
$$

\n
$$
\Leftrightarrow \varepsilon(b) - \varepsilon(a) \ge r \text{ or } \sigma(a) - \sigma(b) \ge r
$$

\n
$$
\Leftrightarrow \varepsilon(b) \ge \varepsilon(a) + r \text{ or } \sigma(b) \le \sigma(a) - r
$$

\n
$$
\Leftrightarrow b \le \mathcal{L}'_{\varepsilon(a)+r} \vee \mathcal{R}'_{\sigma(a)-r}
$$

The result follows. \Box

Remark 3.5. When $L = 2$, the pointwise pseudo-metric d in Theorem 3.4 can be regarded as the usual pseudo-metric defined by $d(a, b) = |a - b|$.

REFERENCES

- [1] G. Gierz et al.. , A compendium of continuous lattice, Springer-Verlag, Berlin, 1980.
- [2] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. , 50 (1975) 74–79.
- [3] U. Höhle, Probabilistsche Metriken auf der Menge nicht negativen verteilungsfunktionen, Aequationes Math. , 18(1978) 345–356.
- [4] T. E. Gantner, Steinlage R C and Warren R H, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. , 62(1978) 547-562.
- [5] Y. -M. Liu and M. -K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
- [6] F. -G. Shi, Pointwise quasi-uniformities and p.q. metrics on completely distributive lattices, Acta Math. Sinica, 39(1996) 701–706.
- [7] F. -G. Shi, Pointwise uniformities and metrics on fuzzy lattices, Chinese Sci. Bull. , 42 (1997) 718–720.
- [8] F. -G. Shi, Pointwise uniformities in fuzzy set theory, Fuzzy Sets and Systems, 98(1998) 141–146.
- [9] F. -G. Shi, Pointwise metrics in fuzzy set theory, Fuzzy Sets and Systems, 121(2001) 209–216.

Fu-Gui Shi, Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R. China

E-mail address: fuguishi@bit.edu.cn or f.g.shi@263.net