15

POINTWISE PSEUDO-METRIC ON THE L-REAL LINE

F. -G. SHI

ABSTRACT. In this paper, a pointwise pseudo-metric function on the L-real line is constructed. It is proved that the topology induced by this pointwise pseudo-metric is the usual topology.

1. Introduction

The *L*-fuzzy unit interval and the *L*-fuzzy real line are two important *L*-topological spaces. The *L*-fuzzy unit interval was defined by Hutton [2]. The *L*-fuzzy real line was respectively defined by Höhle [3] and Gantner et al. [4]. They are important not only in *L*-topology, but also in other fields.

To reflect the characteristics of pointwise L-topology, i.e., the relation between a fuzzy point and its Q-neighborhoods (or R-neighborhoods) [5], a theory of pointwise uniformities and a theory of pointwise metrics were introduced on completely distributive lattices and in L-fuzzy set theory(see [6, 7, 8, 9]). Many ideal results in general topology were generalized to L-topology. In [9], it was proved that the L-fuzzy real line is pointwise pseudo-metrizable, but no pointwise pseudo-metric function on the L-fuzzy real line was given. In this paper, our aim is to construct a pointwise pseudo-metric function in the L-real line and prove that the topology induced by this pointwise pseudo-metric function is the usual topology.

2. Preliminaries

Throughout this paper, L always denotes a completely distributive lattice with an order-reversing involution. $M(L^X)$ denotes the set of all non-zero \vee -irreducible elements in L^X . For $A \in L^X$, $\beta(A)$ denotes the maximal minimal family of A (see [5]) and $\beta^*(A) = \beta(A) \bigcap M(L^X)$. It is easy to verify that for $e \in M(L)$, $e \in \beta^*(A)$ if and only if $a \ll A$, where \ll is the way below relation ([1]).

Definition 2.1 ([9]). A pointwise pseudo-quasi-metric on L^X is a mapping $d : M(L^X) \times M(L^X) \to [0, +\infty)$ satisfying the following (M1)–(M3):

 $(M1) \forall a \in M(L^X), \ d(a,a) = 0.$

(M2) $\forall a, b, c \in M(L^X), \ d(a, c) \le d(a, b) + d(b, c).$

Received: November 2004; Accepted: May 2005

 $Key\ words\ and\ phrases:$ L-topology, Pointwise pseudo-metric, The L-real line.

Mathematics Subject Classification (2000): 54A40

This work was supported by National Natural Science Foundation of China (10371079) and Basic Research Foundation of Beijing Institute of Technology.

16

F.-G. Shi

$$(\mathrm{M3}) \; \forall a,b \in M(L^X), \; d(a,b) = \bigwedge_{c \ll b} d(a,c).$$

A pointwise pseudo-quasi-metric d is called a pointwise pseudo-metric if it satisfies the following conditions.

(M4) $\forall a, b, c \in M(L^X), a \leq b \text{ implies } d(a, c) \leq d(b, c).$ (M5) $\forall \lambda, \mu \in M(L^X), \bigwedge_{a \leq \lambda'} d(a, \mu) < r \text{ if and only if } \bigwedge_{b \leq \mu'} d(b, \lambda) < r.$

Theorem 2.2 ([9]). Let d be a pointwise pseudo-metric on L^X . $\forall r \in (0, +\infty)$, define a mapping $P_r : M(L^X) \to L^X$ by

$$P_r(a) = \bigvee \{ b \in M(L^X) \mid d(a, b) \ge r \}.$$

Then the family $\{P_r \mid r \in (0, +\infty)\}$ of R-nbd mappings of d satisfies the following conditions.

 $\begin{array}{l} (R1) \ \forall a \in M(L^X), \ \bigwedge_{r>0} P_r(a) = 0; \\ (R2) \ \forall a \in M(L^X), \forall r \in (0, +\infty), a \not\leq P_r(a); \\ (R3) \ \forall r, s \in (0, +\infty), P_s \odot P_r \geq P_{r+s}; \\ (R4) \ \forall a \in M, P_r(a) = \bigwedge_{s < r} P_s(a); \\ (R5) \ \forall r \in (0, +\infty), P_r \ is \ symmetric. \end{array}$

Theorem 2.3 ([9]). If $\{P_r \mid P_r : M(L^X) \to L^X, r \in (0, +\infty)\}$ is a family of mappings satisfying (R1)–(R5), and we define $d : M(L^X) \times M(L^X) \to [0, +\infty)$ by

$$d(a,b) = \bigwedge \{ r \mid b \not\leq P_r(a) \},\$$

then d is a pointwise pseudo-metric on L^X and the family of R-nbd mappings of d is exactly $\{ P_r \mid r \in (0, +\infty) \}.$

Theorem 2.4 ([9]). If d is a pointwise pseudo-quasi-metric on L^X , then

(1) $\{P_r(a) \mid a \in M(L^X), r \in (0, +\infty)\}$ is a base for a co-topology on L^X . This co-topology is denoted by η_d ;

(2) $\{P_r(a) \mid r > 0\}$ is a locally *R*-neighborhood base at *a* in the co-topology η_d .

Definition 2.5 ([3, 4]). The *L*-(fuzzy) real line $\mathbb{R}(L)$ is defined as the set of all equivalence classes of antitone maps $\lambda : \mathbb{R} \to L$ satisfying

$$\bigvee_{t\in R}\lambda(t)=1 \text{ and } \bigwedge_{t\in R}\lambda(t)=0,$$

where the equivalence identifies two maps $\lambda and\mu$ if and only if $\forall t \in I$, $\lambda(t+) = \mu(t+)$. The canonical *L*-topology on $\mathbb{R}(L)$ is generated from the subbase $\{\mathcal{L}_t, \mathcal{R}_t \mid t \in \mathbb{R}\}$, where

$$\mathcal{L}_t: I(L) \to L$$
 by $\mathcal{L}_t(\lambda) = \lambda(t-)'$

 $\mathcal{R}_t: I(L) \to L$ by $\mathcal{R}_t(\lambda) = \lambda(t+).$

www.SID.ir

3. Pointwise Pseudo-metric on the *L*-real Line

Lemma 3.1. Let $\mathbb{R}(L)$ be the L-real line. Define a mapping $\varepsilon : M(L^{\mathbb{R}(L)}) \to \mathbb{R}$ and a mapping $\sigma: M(L^{\mathbb{R}(L)}) \to \mathbb{R}$ such that for all $e \in M(L^{\mathbb{R}(L)})$,

 $\varepsilon(e) = \sup \left\{ t \mid e \leq \mathcal{L}'_t \right\}, \quad \sigma(e) = \inf \left\{ t \mid e \leq \mathcal{R}'_t \right\},$

Then we have the following results:

- (1) $\varepsilon(e) = \max\{t \mid e \leq \mathcal{L}'_t\}, \ \sigma(e) = \min\{t \mid e \leq \mathcal{R}'_t\}.$ (2) If $a, b \in M(L^{\mathbb{R}(L)})$ and $a \leq b$, then $\varepsilon(a) \geq \varepsilon(b)$ and $\sigma(a) \leq \sigma(b)$. (3) If $b \in M(L^{\mathbb{R}(L)})$, then $\varepsilon(b) = \bigwedge_{c \ll b} \varepsilon(c)$ and $\sigma(b) = \bigvee_{c \ll b} \sigma(c)$.

(4) $\forall \lambda, \mu \in M(L^{\mathbb{R}(L)})$, there exists $a \leq \lambda'$ such that $\varepsilon(\mu) < \varepsilon(a) + r$ if and only if there exists $b \leq \mu'$ such that $\sigma(\lambda) > \sigma(b) - r$.

Proof. (1) and (2) are obvious. By (2) we can obtain that $\varepsilon(b) \leq \bigwedge_{c \ll b} \varepsilon(c)$ and $\sigma(b) \ge \bigvee_{c \ll b} \sigma(c)$. Thus in order to prove (3) we need only to prove that

$$\varepsilon(b) \ge \bigwedge_{c \ll b} \varepsilon(c) \text{ and } \sigma(b) \le \bigvee_{c \ll b} \sigma(c).$$

Suppose that $\varepsilon(b) < \bigwedge_{c \ll b} \varepsilon(c)$. Then there exists $s \in \mathbb{R}$ such that

$$\varepsilon(b) = \max\{t \mid b \le \mathcal{L}'_t\} < s < \bigwedge_{c \ll b} \varepsilon(c).$$

This implies that $b \not\leq \mathcal{L}'_s$. Further there exists $c \ll b$ such that $c \not\leq \mathcal{L}'_s$. Thus we have that $\varepsilon(c) < s$. By $s < \bigwedge_{c \ll b} \varepsilon(c)$ we obtain a contradiction. Therefore $\varepsilon(b) \ge \bigwedge_{c \ll b} \varepsilon(c)$. Similarly we can prove that $\sigma(b) \le \bigvee_{c \ll b} \sigma(c)$. Hence (3) follows.

To prove (4) suppose that $\varepsilon(\mu) < \varepsilon(a) + r$. Then there is t > 0 such that $\varepsilon(\mu) < \varepsilon(a) + r - t$. This implies that

$$\mu \not\leq \mathcal{L}'_{\varepsilon(a)+r-t}$$
 or $\mathcal{L}_{\varepsilon(a)+r-t} \not\leq \mu'$.

So there exists a point $b \leq \mathcal{L}_{\varepsilon(a)+r-t}$ such that $b \not\leq \mu'$. We obtain

$$\sigma(b) \le \varepsilon(a) + r - t \text{ or } \sigma(b) - r < \varepsilon(a)$$

since $\mathcal{L}_{\varepsilon(a)+r-t} \leq \mathcal{R}'_{\varepsilon(a)+r-t}$. By $a \leq \mathcal{L}'_{\varepsilon(a)}$ we have that

$$\lambda \not\leq a' \geq \mathcal{L}_{\varepsilon(a)} \geq \mathcal{R}'_{\sigma(b)-r}.$$

Therefore $\sigma(\lambda) > \sigma(b) - r$.

Theorem 3.2. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{\mathbb{R}(L)})$, define

$$d_1(a,b) = \max\{\varepsilon(b) - \varepsilon(a), 0\}, \ d_2(a,b) = \max\{\sigma(a) - \sigma(b), 0\},\$$

Then d_1, d_2 are pointwise pseudo-quasi-metrics, $\{\mathcal{L}_t \mid t \in \mathbb{R}\}$ is the topology induced by d_1 and $\{\mathcal{R}_t \mid t \in \mathbb{R}\}$ is the topology induced by d_2 .

www.SID.ir

18

F.-G. Shi

Proof. We only prove that d_1 is a pointwise pseudo-quasi-metric. The proof for d_2 is similar. Obviously, by (2) in Lemma 3.1 we know that $a \leq b \Rightarrow d_1(a,b) = 0$. Thus (M1) is true. (M2) can be obtained as follows.

$$d_1(a,c) = \max\{\varepsilon(c) - \varepsilon(a), 0\}$$

= $\max\{\varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), 0\}$
 $\leq \max\{\varepsilon(b) - \varepsilon(a), 0\} + \max\{\varepsilon(c) - \varepsilon(b), 0\}$
= $d_1(a,b) + d_1(b,c)$

(M3) can be obtained as follows:

$$d_{1}(a,b) = \max\{\varepsilon(b) - \varepsilon(a), 0\}$$

=
$$\max\{\bigwedge_{c \ll b} \varepsilon(c) - \varepsilon(a), 0\}$$

=
$$\max\{\bigwedge_{c \ll b} (\varepsilon(c) - \varepsilon(a)), 0\}$$

=
$$\bigwedge_{c \ll b} \max\{\varepsilon(c) - \varepsilon(a), 0\} = \bigwedge_{c \ll b} d_{1}(a, c).$$

In order to prove that $\{\mathcal{L}_t \mid t \in \mathbb{R}\}$ is the topology induced by d_1 and $\{\mathcal{R}_t \mid t \in \mathbb{R}\}$ is the topology induced by d_2 , we only need to prove that the family $\{P_r^{d_1} \mid r > 0\}$ of R-nbd mappings of d_1 and the family $\{P_r^{d_2} \mid r > 0\}$ of R-nbd mappings of d_2 satisfy the following condition:

$$P_r^{d_1}(a) = \mathcal{L}'_{\varepsilon(a)+r}$$
 and $P_r^{d_2}(a) = \mathcal{R}'_{\sigma(a)-r}$.

In fact, $\forall a, b \in M(L^{\mathbb{R}(L)})$, we have:

$$\begin{array}{lll} b \leq P_r^{d_1}(a) & \Leftrightarrow & d_1(a,b) \geq r \\ & \Leftrightarrow & \varepsilon(b) - \varepsilon(a) \geq r \\ & \Leftrightarrow & \varepsilon(b) \geq \varepsilon(a) + r & \Leftrightarrow & b \leq \mathcal{L}'_{\varepsilon(a) + r} \end{array}$$

and

$$\begin{split} b &\leq P_r^{d_2}(a) &\Leftrightarrow \quad d_2(a,b) \geq r \\ &\Leftrightarrow \quad \sigma(a) - \sigma(b) \geq r \\ &\Leftrightarrow \quad \sigma(b) \leq \sigma(a) - r \quad \Leftrightarrow \quad b \leq \mathcal{R}'_{\sigma(a) - r} \end{split}$$

The result follows.

Remark 3.3. When L = 2, d_1 and d_2 are conjugate pseudo-quasi-metrics in the usual sense.

Theorem 3.4. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{\mathbb{R}(L)})$, define

$$d(a,b) = \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\} = \max\{d_1(a,b), d_2(a,b)\}.$$

Then d is a pointwise pseudo-metric and d exactly induces the topology on $\mathbb{R}(L)$.

Proof. By (2) in Lemma 3.1 it is obvious that we know that $a \le b \Rightarrow d(a, b) = 0$. Thus (M1) is true. (M2) can be obtained as follows:

$$d(a,c) = \max\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\}$$

=
$$\max\{\varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b) + \sigma(b) - \sigma(c), 0\}$$

$$\leq \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\} + \max\{\varepsilon(c) - \varepsilon(b), \sigma(b) - \sigma(c), 0\}$$

=
$$d(a,b) + d(b,c)$$

(M3) can be obtained as follows:

$$d(a,b) = \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\}$$

= $\max\{\bigwedge_{c \ll b} \varepsilon(c) - \varepsilon(a), \sigma(a) - \bigvee_{c \ll b} \sigma(c), 0\}$ by Lemma 3.1
= $\max\{\bigwedge_{c \ll b} (\varepsilon(c) - \varepsilon(a)), \bigwedge_{c \ll b} (\sigma(a) - \sigma(c)), 0\}$
= $\bigwedge_{c \ll b} \max\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\} = \bigwedge_{c \ll b} d(a, c)$

(M4) can be obtained from (2) in Lemma 3.1. To prove (M5), we note that $\forall \lambda, \mu \in M(L^{\mathbb{R}(L)})$, if

$$\bigwedge_{a \not\leq \lambda'} d(a, \mu) = \bigwedge_{a \not\leq \lambda'} \max\{\varepsilon(\mu) - \varepsilon(a), \sigma(a) - \sigma(\mu), 0\} < r,$$

then there exists $a \not\leq \lambda'$ such that

$$\max\{\varepsilon(\mu) - \varepsilon(a), \sigma(a) - \sigma(\mu), 0\} < r,$$

i.e.,

$$\varepsilon(\mu) - \varepsilon(a) < r, \ \sigma(a) - \sigma(\mu) < r.$$

Hence we have that

$$\varepsilon(\mu) < \varepsilon(a) + r, \ \sigma(\mu) > \sigma(a) - r.$$

By (4) in Lemma 3.1 we know that there exist $b \not\leq \mu'$ and $c \not\leq \mu'$ such that

$$\sigma(\lambda) > \sigma(b) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r.$$

Thus, since μ' is a prime element, $b \wedge c \not\leq \mu'$. Take a point $d \leq b \wedge c$ such that $d \not\leq \mu'$. Then

$$\sigma(\lambda) > \sigma(b) - r \ge \sigma(d) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r \le \varepsilon(d) + r.$$

This implies that

$$\bigwedge_{d \not \leq \mu'} d(d, \lambda) = \bigwedge_{d \not \leq \mu'} \max \{ \varepsilon(\lambda) - \varepsilon(d), \sigma(d) - \sigma(\lambda), 0 \} < r.$$

In order to prove that $\{\mathcal{L}_t, \mathcal{R}_t \mid t \in \mathbb{R}\}$ is a subbase of the topology induced by d, we only need to prove that the family $\{P_r^d \mid r > 0\}$ of R-nbd mappings of d satisfies the following condition:

$$P_r^d(a) = \mathcal{L}'_{\varepsilon(a)+r} \vee \mathcal{R}'_{\sigma(a)-r}.$$

F.-G. Shi

In fact, $\forall a, b \in M(L^{\mathbb{R}(L)})$ we have:

$$\begin{split} b &\leq P_r^d(a) &\Leftrightarrow \quad d(a,b) \geq r \\ &\Leftrightarrow \quad \varepsilon(b) - \varepsilon(a) \geq r \quad \text{or} \quad \sigma(a) - \sigma(b) \geq r \\ &\Leftrightarrow \quad \varepsilon(b) \geq \varepsilon(a) + r \quad \text{or} \quad \sigma(b) \leq \sigma(a) - r \\ &\Leftrightarrow \quad b \leq \mathcal{L}'_{\varepsilon(a)+r} \lor \mathcal{R}'_{\sigma(a)-r} \end{split}$$

The result follows. \Box

Remark 3.5. When L = 2, the pointwise pseudo-metric d in Theorem 3.4 can be regarded as the usual pseudo-metric defined by d(a, b) = |a - b|.

References

- [1] G. Gierz et al., A compendium of continuous lattice, Springer-Verlag, Berlin, 1980.
- [2] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50 (1975) 74-79.
- [3] U. Höhle, Probabilistsche Metriken auf der Menge nicht negativen verteilungsfunktionen, Aequationes Math., 18(1978) 345–356.
- [4] T. E. Gantner, Steinlage R C and Warren R H, Compactness in fuzzy topological spaces, J. Math. Anal. Appl., 62(1978) 547-562.
- [5] Y.-M. Liu and M.-K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
- F. -G. Shi, Pointwise quasi-uniformities and p.q. metrics on completely distributive lattices, Acta Math. Sinica, 39(1996) 701–706.
- [7] F. -G. Shi, Pointwise uniformities and metrics on fuzzy lattices, Chinese Sci. Bull., 42 (1997) 718–720.
- [8] F. -G. Shi, Pointwise uniformities in fuzzy set theory, Fuzzy Sets and Systems, 98(1998) 141-146.
- [9] F.-G. Shi, Pointwise metrics in fuzzy set theory, Fuzzy Sets and Systems, 121(2001) 209–216.

FU-GUI SHI, DEPARTMENT OF MATHEMATICS, BEIJING INSTITUTE OF TECHNOLOGY, BEIJING, 100081, P.R. CHINA

E-mail address: fuguishi@bit.edu.cn or f.g.shi@263.net

20