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ABSTRACT. In this paper, we deal with fuzzy random variables for inputs and 
outputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzy 
random flat LR numbers with known distribution. The problem is to find a method for 
converting the imprecise chance-constrained DEA model into a crisp one. This can be 
done by first, defuzzification of imprecise probability by constructing a suitable 
membership function, second, defuzzification of the parameters using an α-cut and 
finally, converting the chance-constrained DEA into a crisp model using the method 
of Cooper [4]. 

 
 

1. Introduction 

     Most research work in DEA deals with precise and deterministic information. The 
papers related to uncertainty are either deal with random information see [1, 4, 5, 6 &18] 
or fuzzy information for inputs and outputs see [9, 10, 12, 20, 21 & 22]. However, we 
have not noticed any contribution that may incorporate the hybrid uncertainty (i.e. 
fuzziness and randomness) in DEA. When the parameters (inputs and outputs) of a DEA 
model are fuzzy random variables we have a fuzzy chance-constrained DEA problem. 
Therefore, we consider a DEA model to evaluate the efficiency of DMUs when data are 
fuzzy random variables. In addition, the probability of the constraints may also be 
described as fuzzy relation. Kawakernaak [13] and Puri & Ralescu [19], introduced fuzzy 
random variables and Guangyuan & Yue [7&8], Liu [14&15], Chakraborti [2&3] and 
Luhandjula [16&17] presented some important methods for solving mathematical 
programming with fuzzy random variable coefficients. 

     In this paper, we consider the CCR model of DEA with chance-constrained 
programming approach, in which inputs and outputs are fuzzy random variables; we 
assume that these fuzzy random variables are flat LR fuzzy numbers. Our objective is to 
convert the fuzzy chance-constraint DEA into crisp DEA. For this purpose, first of all, 
the model is defuzzified by using a suitable membership function for the fuzzy relation 
of the probability. In the second stage the fuzziness of the parameters is removed by an 
α-cut approach and finally the randomness is rectified by classical mean-variance method 
of Cooper [4]. The structure of this paper is as follows: Section 2 presents the fuzzy 
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chance-constrained DEA and the procedure of its conversion into a crisp DEA model. To 
demonstrate the process, a numerical example is given in section 3. Section 4 consists of 
a  conclusion. 

 

2. Fuzzy Chance Constrained DEA 

    We formulate the fuzzy chance-constrained DEA as follows: 

Let T
mjjj xxx ))(~),...,(~()(~

1 ωωω =  and T
sjjj yyy ))(~),...,(~()(~

1 ωωω =  represent )1( ×m   
a )1( ×s  fuzzy random input and output vectors, for each DMUj (j=1,…,n), where 
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are LR flat fuzzy random variables related to a random variable ω (p and q are the left 
and right spreads ). We present the fuzzy chance-constrained CCR model as follows: 
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(1) 
"~"> signifies that the constraints are fuzzily satisfied with probability p. Next we 

demonstrate a view of the efficient frontier of such a model for single input and single 
output. For simplicity of presentation, we consider 0y to be a random variable and 

)(~
0 ωx to be a triangular fuzzy random variable. In Figure 1, the lines 1, 2 and 3 represent 

the inner part, mean and the outer part of the efficiency frontier. Each α-cut intersects 
this frontier in random variables. For instance, the abscissa of the point R for is a random 
variable x with distribution )),(( 0 σωmxN and its ordinate is a random variable y with 
distribution ),( 0 σyN . 

    In what follows, the process of conversion has been developed in three phases. In 
phase I the imprecise probability is defuzzified. In phase II defuzzification of the 
parameters is carried  out, thereby converting the problem into a chance-constrained 

Archive of SID

www.SID.ir



Data Envelopment Analysis with Fuzzy Random Inputs and Outputs:  A Chance-constrained 
Programming Approach 

 

23 

DEA. Finally the conversion of this chance-constrained DEA into a crisp model is  
performed in phase III. 

 

 

 

 

 

 

 

 

 
 

 
 

FIGURE 1. Efficiency frontier of a fuzzy chance-constrained CCR model. 
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According to [2], we define the membership function for the pCl ~ )(Prob >  as follows: 
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Therefore, 

                        m,...,1,          )(~)(~ Prob
1

0 =∆−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥ ∑

=

ippxx
n

j
ijji ωλωθ  

and similarly, 

                        s,...,1,          )(~  )(~Prob
1

0 =∆−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤ ∑

=

rppyy
n

j
rjjr ωλω  

So, (1) can be converted into:  
 

n 1,...,j,                                                             0             

s,...,1,           )(~  )(~Prob            

             

m,...,1,          )(~)(~ Prob       :s.t

Min     

1
0

1
0

=≥

=∆−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

=∆−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

∑

∑

=

=

j

n

j
rjjr

n

j
ijji

rppyy

ippxx

λ

ωλω

ωλωθ

θ

                

(2) 

Phase II: In this phase the fuzziness of the coefficients are dealt with. For this, we apply 
the concept of α-cut as in [20]. By introducing the α-cut of constraints and summation of 
LR flat fuzzy numbers, we will have the following problem:  
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     According to Saati et al. [20], to evaluate the efficiency of DMUs, the lower level of 
inputs and upper level of outputs (that is the best part of DMUs) for each DMU are 
compared with the inner part of efficiency frontier. 
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    Therefore, model (3) can be written as follows: 
 

  (4) 

   This problem is a parametric chance-constrained DEA, while ]1 ,0(∈α is a parameter. 

Phase III: Now we can convert the chance-constrained DEA (4) into the following 
crisp nonlinear programming by Cooper [4]: 
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where : 
 

ω  is the mean of the random variable ω , 
       ϕ  is the standard normal distribution function ,  
       1−ϕ is inverse of ϕ , 
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     We have an optimal solution for each α . Thus, for different ]1 ,0(∈α , the optimal 
solutions can be obtained based on the choice of decision maker with regard toα , and 
the appropriate solution may be selected. 
    The non-linearity in (5) is due to i

xσ  and r
yσ . The 2)( r

yσ and 2)( i
xσ  are as follows: 
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where V and V′ are variance-covariance matrices for each set of the constraints 
respectively. Since these matrices are positive definite, so i

xσ  and r
yσ  are convex [11]. 

Therefore we can claim that the problem (5) is convex programming problem. 

     As a special case when the data are triangular fuzzy random numbers, i.e. 
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r=1, … ,s  the model (5) is as follows: 
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3. Illustration Example 

    The efficiency of 4 farms D1, D2, D3 and D4 , with areas of 5, 5, 4 and 7 acres 
respectively, are to be evaluated. In all the farms, the crop cultivated is wheat. The 
amount of the yield is a random variable normally distributed with mean 2.5, 3, 5 and 
3.5. The variance is 1 for all. The amount of rainfall is estimated as a fuzzy random 
variable with parameters )1,1,(~ +−= ωωωω , )1,1,(~ +−= ρρρρ , )1,1,(~ +−= λλλγ  and 

)1,1,(~ +−= ηηηη  where )1,6(~ Nω , )1,2(~ Nρ , )1,4(~ Nγ  and )1,5.1(~ Nη . The 
yield is the output of the model and the area and rainfall are inputs. The data are listed in 
table 1 and the efficiencies of DMUs with the proposed method for different α values are 
listed in Table 2. 
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 D1 D2 D3 D4 

I1 
I2 
O1 

ω~  
5 

)1,5.2(N  

ρ~  
5 

)1,3(N  

γ~  
4 

)1,5(N  

η~  
7 

)1,5.3(N  

TABLE 1. Data for  Numerical  Example 

 
α  D1 D2 D3 D4 

0.00 

0.25 

0.50 

0.75 

1.00 

1 

0.94 

0.86 

0.81 

0.75 

1 

0.99 

0.95 

0.91 

   0.87 

1 

1 

1 

1 

1 

1 

0.90 

0.81 

0.74 

0.63 

TABLE  2. The Efficiencies by Proposed Method 

     As seen, the efficiencies are decreased by increasing α, but D3 is efficient for all α. In 
case of  α=1, (6) is equvalent to the chance-constrained CCR model. Furthermore, DMUs 
are ranked as D3, D2 , D1 and D4 . 
 

4. Conclusion 

      In this paper a CCR model is suggested for chance-constrained DEA with fuzzy 
random data. We assume that the fuzzy random variables are flat LR fuzzy numbers. For 
non-linear cases after α-cut, the relation (3) and (4) must be modified according to the 
distribution of the fuzzy number. We propose a method for converting this problem into 
a crisp chance-constrained DEA model based on α-cut and fuzzy probability measure. In 
this method the lower level of inputs and upper level of outputs are compared with the 
inner part of efficiency frontier. The illustrative example shows the applicability of the 
model. It is suggested that the efficiency of this algorithm be studied for larger problems. 
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