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A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

S. ABBASBANDY AND M. ALAVI

Abstract. In this paper we present a method for solving fuzzy linear systems
by two crisp linear systems. Also necessary and sufficient conditions for exis-

tence of solution are given. Some numerical examples illustrate the efficiency

of the method.

1. Introduction

Systems of simultaneous linear equations play a major role in various areas as
such as mathematics, physics, statistics, neural network and etc. A general model
for solving an n × n fuzzy linear system which coefficients matrix is crisp and the
right-hand side column is an arbitrary fuzzy number vector was given by Friedman
et al. [7]. They used the embedding method given in [5] and replace the original
n × n fuzzy linear system by a 2n × 2n crisp function linear system. Some other
numerical procedures, for example, Jacobi, Gauss-Seidel, SOR iterative methods
and Adomian decomposition method for solving fuzzy linear systems are designed
by [1],[2],[3]. In this paper we present a method for solving n×n fuzzy linear system
whose coefficients matrix is crisp and the right-hand side column is an arbitrary
fuzzy number vector. For solving n×n fuzzy linear system we solve two n×n crisp
function linear systems (in comparison with Friedman’s procedure). Numerical
examples are provided to illustrate the efficiency of the method.

2. Preliminaries

Here we recall the basic notations for symmetric fuzzy numbers and symmetric
fuzzy linear systems.

Definition 2.1. [8] A fuzzy number is a map u : R → I = [0, 1] which satisfies:
(i) u is upper semi-continuous.
(ii) u(x) = 0 outside some interval [c, d] ⊂ R.
(iii) There exist real numbers a, b such that c ≤ a ≤ b ≤ d where

1: u(x) is monotonic increasing on [c, a].
2: u(x) is monotonic decreasing on [b, d].
3: u(x) = 1, a ≤ x ≤ b.

Also u is called symmetric fuzzy number if u(uc + x) = u(uc − x) for ∀x ∈ R,
where uc = a+b

2 .
An equivalent parametric definition of fuzzy numbers is given in [5, 4] as:
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Definition 2.2. An arbitrary fuzzy number in parametric form is represented by
an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the following
requirements:

1: u(r) is a bounded left-continuous non-decreasing function over [0, 1].
2: u(r) is a bounded left-continuous non-increasing function over [0, 1].
3: u(r) ≤ u(r), 0 ≤ r ≤ 1.

Also u = (u, u) is called a symmetric fuzzy number in parametric form if

uc(r) =
u(r) + u(r)

2
,

is a real constant for all 0 ≤ r ≤ 1. For example u = (2 + r, 5 − 2r) is a fuzzy
number and v = (1 + r, 3− r) is a symmetric fuzzy number in parametric form. A
crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1, [5].

Definition 2.3. The n× n linear system

(1)



a11x1 + ... + a1nxn = y1,
a21x1 + ... + a2nxn = y2,

.

.

.
an1x1 + ... + annxn = yn,

where the coefficients matrix A = (aij), 1 ≤ i, j ≤ n is a crisp n×n matrix and each
yi, 1 ≤ i ≤ n, is fuzzy number in parametric form, is called a fuzzy linear system
in parametric form (FLS) [7]. One recalls [5] that for arbitrary fuzzy numbers
x = (x(r), x(r)), y = (y(r), y(r)) in parametric form and scalar k

1: x = y if and only if x(r) = y(r) and x(r) = y(r).
2: x + y = (x(r) + y(r), x(r) + y(r)).
3: kx = (kx(r), kx(r)) if k is nonnegative and kx = (kx(r), kx(r)) if k is

negative.

Definition 2.4. A fuzzy number vector X = (x1, x2, ..., xn)t given by xi = (xi(r),
xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1, is called (in parametric form) a solution of the FLS
(1) if

(2)


∑n

j=1 aijxj =
∑n

j=1 aijxj = y
i
,

∑n
j=1 aijxj =

∑n
j=1 aijxj = yi.

Definition 2.5. For fuzzy linear system AX = Y , like FLS (1), let matrix B
contains the positive entries of A and matrix C contains the absolute value of the
negative entries of A. Then A = B − C and we define A+ = B + C.

Definition 2.6. The permutation matrix be a square matrix with one unit element
in each row and column and all other entries zero.
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Definition 2.7. An arbitrary matrix A is said to be absolutely permutation matrix
if A+ is a permutation matrix.

Remark 2.8. If A is an absolutely permutation matrix then A−1 is an absolutely
permutation matrix and A−1 = AT .

Theorem 2.9. [6] The inverse of nonnegative matrix A is nonnegative if and only
if A is a permutation matrix.

3. Fuzzy Solution

The ith equation in (1) is representable in the following equivalent form:∑
aij≥0

aijxj +
∑

aij<0

aijxj = y
i
,(3)

∑
aij≥0

aijxj +
∑

aij<0

aijxj = yi,

and hence

(4)
∑

aij≥0

aij(xj − xj)−
∑

aij<0

aij(xj − xj) = yi − y
i
.

If wj = xj − xj and vi = yi − y
i

then (4) has the form∑
aij≥0

aijwj −
∑

aij<0

aijwj = vi, i = 1, . . . , n,

and in the matrix form
(B + C)W = V,

where W = (w1, w2, ..., wn)t, V = (v1, v2, ..., vn)t and A = B − C. Let Xc =
(xc

1, x
c
2, ..., x

c
n) and Y c = (yc

1, y
c
2, ..., y

c
n) where xc

i = (xi(r) + xi(r))/2 and yc
i =

(y
i
(r) + yi(r))/2 for 1 ≤ i ≤ n.

Theorem 3.1. Let X be a fuzzy solution of FLS (1) where coefficients matrix A
is nonsingular matrix and Y is a fuzzy number vector. Then AXc = Y c.

Proof. Due to Eq.(3), we have for each i, 1 ≤ i ≤ n∑
aij≥0

(aij

(xj(r) + xj(r))
2

) +
∑

aij<0

(aij

(xj(r) + xj(r))
2

) =
(yi(r) + y

i
(r))

2

and hence ∑
aij≥0

aijx
c
j +

∑
aij<0

aijx
c
j = yc

i ,

i.e., (B − C)Xc = Y c, which completes the proof. �

Remark 3.2. In Theorem 3.1, if Y is symmetric fuzzy vector then X is symmetric
fuzzy vector.
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Remark 3.3. For finding the solution of FLS (1), we must solve the following crisp
linear systems,

(5)
{

(B + C)W = V,
(B − C)Xc = Y c.

Because after solving (5), it is enough we take

xi = xc
i − 0.5wi

xi = xc
i + 0.5wi

for each i, 1 ≤ i ≤ n.

Theorem 3.4. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if both (B + C)−1 and (B − C)−1 exist and (B + C)−1

is a nonnegative matrix.

Proof. The Eq.(5) has a unique solution if and only if both (B+C)−1 and (B−C)−1

exist. Now let we consider D = 0.5[(B + C)−1 + (B − C)−1] and E = 0.5[(B +
C)−1 + (B − C)−1] and let we take

S =
(

B C
C B

)
,

hence

S−1 =
(

D E
E D

)
.

By referring to Theorem 3.3 in [7], we observe that the unique solution of FLS (1) is
a fuzzy vector (in parametric form) for arbitrary Y if and only if S−1 ≥ 0, therefore
it is sufficient to show that S−1 ≥ 0 if and only if (B + C)−1 ≥ 0. If S−1 ≥ 0 then
D ≥ 0 and E ≥ 0 and hence

(B + C)−1 + (B − C)−1 ≥ 0,

(B + C)−1 − (B − C)−1 ≥ 0,

which implies (B + C)−1 ≥ 0. Now let (B + C)−1 ≥ 0 therefore by Theorem 2.9,
(B + C) is a permutation matrix and hence (B − C) is absolutely permutation
matrix. It shows that

Dij = 0.5[(B + C)T
ij + (B − C)T

ij ] ≥ 0,

Eij = 0.5[(B + C)T
ij − (B − C)T

ij ] ≥ 0,

which completes the proof. �

Example 3.5. Consider the 2× 2 symmetric fuzzy system{
x1 − x2 = (r, 2− r),
x1 + 3x2 = (4 + 2r, 8− 2r).

Hence
x1 − x2 = r, x1 + 3x2 = 4 + 2r,

x1 − x2 = 2− r, x1 + 3x2 = 8− 2r,
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and therefore {
(x1 − x1) + (x2 − x2) = 2− 2r,
(x1 − x1) + 3(x2 − x2) = 4− 4r,

which is equivalent to

(6)
{

w1 + w2 = v1,
w1 + 3w2 = v2,

where v1 = 2− 2r, v2 = 4− 4r. Another crisp system is

(7)
{

xc
1 − xc

2 = 1 = yc
1,

xc
1 + 3xc

2 = 6 = yc
2.

By solving (6) and (7), we have w1 = 1 − r, w2 = 1 − r, xc
1 = 9

4 , xc
2 = 5

4 and
therefore

x1 =
9
4
− 1

2
(1− r), x1 =

9
4

+
1
2
(1− r),

x2 =
5
4
− 1

2
(1− r), x2 =

5
4

+
1
2
(1− r).

Here x1 ≤ x1, x2 ≤ x2 and x1, x2 are monotonic non-increasing and x1, x2 are
monotonic non-decreasing functions.

Remark 3.6. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B + C)−1 and (B − C)−1 exist and (B + C) is a
permutation matrix.

Remark 3.7. The unique solution X of FLS (1) is a fuzzy vector for arbitrary
fuzzy vector Y if and only if (B +C)−1 and (B−C)−1 exist and A is an absolutely
permutation matrix.

4. Weak Fuzzy Solution

We now restrict the discussion to triangular fuzzy numbers, i.e., y
i
(r), yi(r) and

consequently xi(r), xi(r) are all linear functions of r, y
i
(1) = yi(1) and xi(1) =

xi(1) for all 1 ≤ i ≤ n. By virtue of Theorem 3.4, since (B + C) is nonnegative,
(B+C)−1 may be negative, in this case wi may be negative for some i and therefore
xi − xi < 0. The fact that xi is not a fuzzy number and we define a fuzzy number
vector

U = ((u1, u1), · · · , (un, un))t,

where
ui(r) = min{xi(r), xi(r), xi(1)},

ui(r) = max{xi(r), xi(r), xi(1)}.
If (xi(r), xi(r)), 1 ≤ i ≤ n, are all fuzzy numbers then ui(r) = xi(r), ui(r) = xi(r),
1 ≤ i ≤ n, and U is called a strong fuzzy solution. Otherwise, U is called a weak
fuzzy solution. In Example 3.5, the obtained solution was strong.
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Example 4.1. [7] Consider the 3× 3 fuzzy system x1 + x2 − x3 = (r, 2− r),
x1 − 2x2 + x3 = (2 + r, 3),
2x1 + x2 + 3x3 = (−2,−1− r).

The two crisp linear systems are w1 + w2 + w3 = 2− 2r,
w1 + 2w2 + w3 = 1− r,
2w1 + w2 + 3w3 = 1− r,

and  xc
1 + xc

2 − xc
3 = 1,

xc
1 − 2xc

2 + xc
3 = 0.5(5 + r),

2xc
1 + xc

2 + 3xc
3 = 0.5(−3− r).

The solution vectors in parametric form are W = (7 − 7r,−1 + r,−4 + 4r)t and
Xc = (1.19 + 0.12r,−1.12− 0.27r,−0.92− 0.15r)t, then

x1 = (−2.31 + 3.62r, 4.69− 3.38r),

x2 = (−0.62− 0.77r,−1.62 + 0.23r),
x3 = (1.08− 2.15r,−2.92 + 1.85r).

The fact that x2, x3 are not fuzzy numbers because, W2 and W3 are negatives , the
fuzzy solution in this case is a weak solution given by

u1 = (−2.31 + 3.62r, 4.69− 3.38r),

u2 = (−1.62 + 0.23r,−0.62− 0.77r),
u3 = (−2.92 + 1.85r, 1.08− 2.15r).

5. Conclusions

In this work we propose an efficient method for solving a system of n fuzzy linear
equations with n variables. The original system with matrix A is replaced by two
n × n crisp linear systems. The new system is then solved by two n × n crisp
systems. The solution vector be symmetric solution if the right hand side vector
be symmetric.
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