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ABSTRACT. This paper presents the application of the fuzzy-neuro method to 
investigate transformer inrush current. Recently, the frequency environment of 
power systems has been made more complicated and the magnitude of the second 
harmonic in inrush current has been decreased because of the improvement of cast 
steel. Therefore, traditional approaches will likely mal-operate in the case of 
magnetizing inrush with low second component and internal faults with high 
second harmonic. The proposed scheme enhances the inrush detection sensitivity of 
conventional techniques by using a fuzzy-neuro approach. Details of the design 
procedure and the results of performance studies with the proposed detector are 
given in the paper. The results of performance studies show that the proposed 
algorithm is fast and accurate. 

 

 
1. Introduction 

      The phenomenon of magnetizing inrush is a transient condition, which occurs 
primarily when a transformer is energized. It is not a fault condition, and therefore, it 
does not necessitate the operation of protection system, which, to the contrary, must 
remain stable during the inrush transient. This requirement imposes certain difficulties 
on the design of protective systems for transformers [3]. 

      To this day, the differential current protection principle remains the most popular 
protection principle for power transformers. This principle has been proved to be a 
reliable method. To ensure correct operation of the differential current relay, an 
important preliminary task is to identify the inrush current. 

      There are many identification methods. The most popular method is the second 
harmonic component of three phase currents. The second harmonic is very low if the 
transformer is connected to a long transmission line. Also, there are cases in which the 
presence of differential currents cannot make a clear distinction between fault and 
inrush [2]-[15]-[20]-[22]. A new relaying technique with high degree of reliability is 
required for flexibility in spite of change of condition in power system.  

      Recently, to advance the conventional approaches, several new AI (artificial-
intelligence) features for protective relaying have been developed [4]-[11]. A number 
of applications of ANNs to power system protection have been reported so far                 
[8]-[10-12] including differential protection for power transformers [7]-[13]-[16-18]. 
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Also, differential protective relay based on fuzzy logic are proposed for solving some 
of problems of power transformer protection by researchers [4]-[6]-[21]. Most of these 
approaches are liable to mal-operate in the case of magnetizing inrush with low second 
harmonic component and internal faults with high second harmonic component. 

     This paper presents a fuzzy-neuro application for an inrush detector in the 
differential protection of  three-phase power transformers. The different conditions are 
considered as different patterns and fuzzy-neuro algorithms will be used to recognize 
these patterns. Utilization of fuzzy-neuro algorithms in pattern recognition of such a 
transformer enables it to be robust against specific phenomena related to the three-
phase power transformers and provides a better response and consequently improves 
relay performance in comparison with traditional approaches. In this paper, the ability 
of the fuzzy-neuro to operate in a high sensitivity manner against both inrush current 
with and without internal faults will be shown. 
 

2.  Simulation of the Power System to Prepare the Patterns 

     A three-phase 230/63 kV power system including a 60-km transmission line, as 
shown in Figure 1, has been used to produce the required test and training patterns. 
The simulation was done by means of PSCAD/EMTDC software package [19]. The 
power transformer was simulated using the transformer model reported in [9]. 
Different internal winding faults have been simulated using this model. Here the 
transformer connection is considered as delta-star. Table 1 presents the data associated 
with this power system. The current transformer has been also modeled as shown in 
Figure 1 and its parameters are shown in Table 2. This component models a current 
transformer based on the Jiles-Atherton theory of ferromagnetic hysteresis. The effects 
of saturation, hysteresis, remnance and minor loop formation are modeled based on the 
physics of the magnetic material [19]. The accuracy of CT model based on the Jiles-
Atherton theory of ferromagnetic hysteresis has been checked by means of many tests 
in [1]. The test results confirm a high degree of accuracy for this CT model. CT ratios  
are chosen as 1000:1 and 250:1 for secondary and primary of the transformer, 
respectively. 

     The combinations of system conditions, shown in Table 3, have been produced 
using this system to train the fuzzy syatem. As can be seen, all types of the terminal 
faults and internal winding faults have been considered. Also, they involve inrush 
current with and without internal faults and different remnant fluxes in the power 
transformer core. The effect of CT saturation is also studied. 
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FIGURE 1. Simulated Power System Model 
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FIGURE 2. Current Transformer Circuit Diagram 

 

 
Transformer Reactance (P.U.) j 0.13 

Line Impedance (+ and – sequences) 
Ω/km  0.072 + j 0.416 

Line Impedance (zero sequence) 
Ω/km  0.346 + j 1.066 

 
TABLE 1. Simulated Power System Parameters 

 
 

Secondary winding resistance and 
leakage inductance (Ω) 

 
0.5, 8×10-4 

Turn ratio 2000:1 

Area (m2) 6.5×10-4 

Path length (m) 0.5 
Frequency (Hz)  50 
Rated voltage (kV) 230 

 
TABLE 2. Simulated Current Transformer Parameters 
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System conditions 

Fault: AG, BG, ABC, … at points 
F1, F2 and F3  
Inrush: In Different Voltage angle 
with different remnant flux 

Turn to turn 
fault Different percentage of winding   Internal winding 

faults Turn to ground 
fault Different percentage of winding   

Voltage angle 0, 30, 60, and 90 
Remnant flux in Transformer Core  -80% - 80% 
Source Impedance Ω 12-42 
Remnant flux in CT Core -80% - 80% 
Power angle (deg) -10_10 

 
TABLE 3. Patterns Data Generation 

 
3. Determination of the Characteristics of the Inrush Current 

     The classical second harmonic restraint compares the magnitude of the second 
harmonic with the magnitude of the fundamental frequency component.  

The proposed technique is based on the concept of symmetrical components of the 
second harmonic. The symmetrical components can provide better recognition 
between magnetizing inrush currents and internal fault currents.  

     The symmetrical components technique is a powerful tool for analysing power 
networks under unbalanced operations. Symmetrical components allow unbalanced 
phase quantities such as currents and voltages to be replaced by three separately 
balanced symmetrical components. Based on this theory, three-phase unbalanced 
phasors of a three-phase system can be resolved into three balanced systems of phasors 
as follows: 

    1- Positive-sequence components consisting of a set of balanced three-phase 
components with a phase sequence a-b-c and exit during all system conditions. 

    2- Negative-sequence components consisting of a set of balanced three-phase 
components with a phase sequence a-c-b and exit during unbalanced conditions. 

    3- Zero-sequence components consisting of three single-phase components, all 
equal in magnitude and with the same phase angles and exit when ground is involved 
in an unbalanced condition. 

      In order to evaluate the recognition power of the quality symmetrical component 
method, the power system in Figure 1 has been used and the amplitude ratio of the 
second and the first harmonics has been derived. The performed simulations have 
shown improved identification ability of the inrush current. 

      To illustrate this, Figures 3-7 show the amplitude ratio of symmetrical components 
between the second and first harmonics for two inrush cases and two internal faults. 
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As seen from these figures, the values of the symmetrical component ratios of inrush 
cases are quite different from the values of the symmetrical component ratios of 
internal faults. These ratios can be used to identify inrush cases.  
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FIGURE 3. Inrush Current with  Closing Angle 135 Degrees 
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FIGURE 4.  Inrush Current with Closing Angle 0 Degree 
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FIGURE 5. Internal ABG Fault with Inception Angle 90 Degrees 
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FIGURE 6.  Internal ABCG Fault  with Inception Angle 0 Degree 
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FIGURE 7.  Internal AG Fault with CT Saturation 
 

4. Fuzzy-neuro Techniques 

    In this paper, the architecture of adaptive fuzzy network has been utilized. In 
general, fuzzy sets and neural networks deal efficiently with the two very distinct areas 
of information processing. Fuzzy sets are good at various aspects of uncertain 
knowledge representation, while fuzzy-neuro is an efficient structure capable of 
learning from examples. Both techniques have their advantages and disadvantages, 
and they can also be complementary  [14]. 

    Adaptive fuzzy network is inflected in three basic elements: fuzzification, fuzzy 
inference and defuzzification. In neural nets, the weights between the input and the 
first hidden layer as well as the last hidden layer and output layer, determine the 
input/output behavior. In a fuzzy system, these parameters are found in the 
fuzzification and defuzzification routines and can thus be trained. Calculated degrees 
of membership in the rule layers are according to IF-THEN rules. The network uses 
the least-squares method and the back propagation gradient descent method to learn 
from the data sets, and find a suitable adaptive fuzzy network [5]. A fuzzy 
technologies map is shown in Figure 8. 
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Output
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FIGURE 8.  Neuro Fuzzy Technologies Map a Neural Net to a Fuzzy Neuro System 

 

5. Design of Fuzzy-neuro Inrush Detector 

    Figure 9 shows the block diagram of the proposed inrush detector. First, primary 
and secondary three phase current input signals were processed by 2nd-order low-pass 
Butterworth filters. The anti-aliasing filters had a cut-off frequency of 450 Hz. Then, 
the magnitudes of harmonics of symmetrical components of current were obtained by 
the DFT algorithm.  
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FIGURE  9.  The Structure of the Proposed Inrush Detector   
     
      As can be seen, the detector consists of a FN unit. Also a logical unit is embedded 
into this structure to provide the appropriate blocking commands based on the output 
of the previous unit. The inputs of this unit consist of the second harmonic component 
of the different sequence differential current to the first harmonic component of the 
differential current ratio.  
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5.1 Training 

      An adaptive fuzzy network was chosen to process the input data set. In this work 
the Takagi-Sugeno model with multiple inputs and a single output is used. This model 
is composed of linguistic variables in the premise part and polynominal variables in 
the consequent part. The generic fuzzy rule used under this scheme has the following 
structure:  

R1: IF x is A1 and y is B1 and z is C1 THEN f1=p1x+q1y+r1z+o1 

R2: IF x is A2 and y is B2 and z is C2 THEN f2=p2x+q2y+r2z+o2 

R3: IF x is A3 and y is B3 and z is C3 THEN f3=p3x+q3y+r3z+o3 

Where x, y and z are inputs, Ai, Bi, Ci are membership functions, and pi, qi, ri, oi are 
consequent parameters. In the learning procedure, the forward pass learning estimates 
the consequent parameters and backward pass learning updates the premise 
parameters.  

Id2(+)/Id1(+), Id2(-)/Id1(-) and Id2(0)/Id1(0) are considered as input vector to the network. 
Where, Id2(+), Id2(-) and Id2(0) are positive, negative and zero sequences of second 
harmonic of differential current respectively and  Id1(+), Id1(-) and Id1(0) are positive, 
negative and zero sequences of basic component of differential current respectively. 
An output in final layer was chosen for the network. If only an inrush phenomenon 
occurs, the detector output must be 1, otherwise, it must be 0.   

     The training sets include data for different types of shunt faults, different fault 
inception angles, inrush current with and without internal faults and at different 
conditions of the system. 

     Membership functions and suitable fuzzy rules were obtained by a data set resulting 
from the simulation. For training, Matlab software was used. The parameters 
associated with the membership functions will change through the learning process. 
The computation of these parameters (or their adjustment) is facilitated by a gradient 
vector, which provides a measure of how well the neuro fuzzy system models the 
input/output data for a given set of parameters. Once the gradient vector is obtained, 
any of several optimization routines can be applied to adjust the parameters so as to 
reduce some error measure (usually defined by the sum of the squared difference 
between actual and desired outputs). 

      As shown in Figure 10, final membership functions of inputs are guessing 
functions. Membership functions include three functions (low, medium and high). The 
fuzzy- neuro applied is assumed to produce output equal to 1 for INRUSH patterns 
and 0 for other conditions. For classification purposes, a threshold value set to 0.5 is 
introduced. All cases for which the FN output is lower than 0.5 are classified as NO-
INRUSH and those for which the treshould is exceeded are recognized as INRUSH 
cases and a blocking signal is produced. The FN uses the least-squares method and the 
back propagation gradient descent method to learn from the data sets, and hence find a 
suitable adaptive fuzzy network. 

Archive of SID

www.SID.ir



54                                                  H. Khorashadi-Zadeh and M. R. Aghaebrahimi 

 
FIGURE 10. Membership Functions of  Inputs of Unit 

 
      Training fuzzy rules are shown in Table 4. All the rules are derived from the 
training of the fuzzy-neuro model based on the prior database.  

      Once trained, the FN performance was tested using test patterns that were different 
from the training patterns. Some of the simulation results are presented in the next 
section.   

 
IF THEN 

Id2(+)/I1(+) Id2(-)/Id1(-) Id2(0)/Id1(0) Output 
High Low|High|Me Low|High|Me BLK 
Medium  Low  Low BLK 
Low Low|High|Me Low|High|Me NO_BLK 
Medium  High High NO_BLK 
Medium  Medium  Medium  NO_BLK 

 

TABLE 4. Fuzzy Rules 
(BLK: Blocking, NO_BLK: No Blocking) 

 
5.2 Test Results 

       A validation data set consisting of about 200 different states was generated using 
the power system model shown in Figure 1.  For different conditions of the validation 
set, fault type, fault inception time, closing angle source impedance and remnant flux 
were changed to investigate the effects of these factors on the performance of the 
proposed algorithm. 

       The proposed inrush detector for several different power system conditions is 
presented in Table 5 and Table 6. Table 5 shows the test results of the detector for 
different inrush currents with different conditions. These conditions include inrush 
with and without fault with different closing angles and remnant fluxes. Table 5 shows 
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that the detector has detected inrush conditions correctly. For cases where internal 
fault and inrush have both occurred , the output has been NO_BLK.   

 

 
DISTURBANCE 

 
OUTPUT 

CLOSING 
ANGLE 

(deg) 

REMNANT 
FLUX (%) 

 
0 -60 BLK 
45 50 BLK 
135 -40 BLK 
180 35 BLK 
60 -75 BLK 

 
 
 
INRUSH 

30 45 BLK 
 

INCEP. 
ANGLE 

(deg) 

 
TYPE 

FAULT 
 

 
OUTPUT 

0 AG NO_BLK 
30 Turn -Turn NO_BLK 
90 ACG NO_BLK 
180 Turn-Ground NO_BLK 

 
 
 
 
INTERNAL FAULT 
WITH 
INRUSH 

60 BCG NO_BLK 
 

TABLE 5. Inrush Detector Operation Test Results 
 

      Table 6 shows the test results of the detector for different internal faults including 
internal faults with CT saturation, winding faults and terminal faults. As shown in 
Table 6, the detector performs quite reliably for all conditions. The detector has 
responded correctly and remained stable, even when internal faults with CT saturation 
has occurred.  

      The detector output for a few cases with different power system conditions is 
presented in this section. The main emphasis is on checking the detector’s 
performance under different power system conditions. In general, the detector 
performance is accurate and suitable. 

      The performance of the newly designed inrush detector is further evaluated by 
comparing its results with the results obtained from a conventional digital differential 
relay. Initial results indicate that, in general, the proposed detector performs faster and 
more reliably. More studies are being conducted under a wide range of system 
conditions. 
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INCEPTION 
ANGLE (deg) 

 
TYPE FAULT 

 

 
OUTPUT 

90 AG NO_BLK 
60 ACG NO_BLK 
65 BCG NO_BLK 
135 ABCG NO_BLK 
180 CG NO_BLK 
120 ABC NO_BLK 

 
 
 

INTERNAL 
FAULT WITH 

CT SATURATION 

45 AG NO_BLK 
percentage of 
winding   

 
TYPE FAULT 

 
OUTPUT 

15.8 Turn to Turn NO_BLK 
3.14 Turn to Ground NO_BLK 
6.34 Turn to Ground NO_BLK 
9.45 Turn to Ground NO_BLK 

 
 
WINDING FAULT 

39.3 Turn to Turn NO_BLK 
 
INCEPTION 
ANGLE (deg) 

 
TYPE FAULT 
 

 
OUTPUT 

45 AG NO_BLK 
90 ABCG NO_BLK 
-45 AC NO_BLK 
-90 ABG NO_BLK 

 
 

TERMINAL 
FAULT 

135 ABC NO_BLK 
 

TABLE 6. Inrush Detector Operation Test Results for Different Faults 
 

6. Conclusion 

     This paper presents a new inrush detector algorithm for differential protection of 
power transformer based on  the fuzzy-neuro method. The results show that the 
proposed fuzzy-neuro based inrush detector represents a proper action. It can operate 
with proper sensitivity and even when internal faults with CT saturation occur. Thus, 
the use of fuzzy-neuro can make it possible to extend the use of reliable and sensitive 
differential relays to power transformer protection. 
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