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A PRIMER ON FUZZY OPTIMIZATION MODELS AND
METHODS

J. M. CADENAS AND J. L. VERDEGAY

ABSTRACT. Fuzzy Linear Programming models and methods has been one of
the most and well studied topics inside the broad area of Soft Computing. Its
applications as well as practical realizations can be found in all the real world
areas. In this paper a basic introduction to the main models and methods in
fuzzy mathematical programming, with special emphasis on those developed
by the authors, is presented. As a whole, Linear Programming problems with
fuzzy costs, fuzzy constraints and fuzzy coefficients in the technological matrix
are analyzed. Finally, future research and development lines are also pointed
out by focusing on fuzzy sets based heuristic algorithms.

1. Introducction

It was in 1965, [32], that Professor Lofti A. Zadeh, an American of Iranian
extract, first put forward the idea of the fuzzy set. This enabled a member to
belong to a set in a gradual way, as opposed to absolutely, as stated by classical
set theory. In other words, membership could be could be ascribed a value within
the [0, 1] interval instead of the {0,1} set. The applications and developments that
have arisen from this simple concept have been such that it is nigh on impossible to
calculate the volume of business they generate in today’s world. The functioning of a
whole range of products depends directly on the concept, from everyday appliances
like the washing machine, the microwave oven, the camera ... to highly sophisticated
systems like braking systems in trains, control of furnaces, etc.

The need for an optimal solution, or the best solution among those available,
in a properly proposed problem is the rationale behind studying the theories and
proposing methodologies appropriate to the scientific field in which the problem
arises. More specifically, although still a very broad area, is an important type
of problems, known as optimization problems, which are generally associated to
finding the maximum or minimum value that a specific function can attain within
a previously defined set. FEverything that is relative to these problems can be
classified within the doctrinal field of Mathematical Programming, which covers a
huge range of situations, be these linear cases, non linear cases, randomness, single
decision maker, several decision makers etc.

Invited paper: Received in October 2005

Key words and phrases: Fuzzy linear programming, Fuzzy optimization, Heuristics algorithms,
Intelligent systems, Decision support systems.

This work has been partially supported by the projects T1C2002-4242-C0O3-02 and T'1C2002-
04021-C02-01 of the Spanish Ministry of Science and Technology.



2 J. M. Cadenas and J. L. Verdegay

Of all the models included in Mathematical Programming, the most and best
studied is the single objective linear case (dealt with under Linear Programming),
which has also turned out to have the most practical benefits. The methods and
models of Linear Programming have useful applications in the areas of Engineering,
Economics, Mathematics, Operative Research and Artificial Intelligence as well as
in other disciplines related to optimization to a greater or lesser degree. They
constitute a more than suitable theoretical basis on which to tackle highly complex
situations in an elegant and efficient manner.

Although, as mentioned above, Linear Programming models and techniques have
received the most attention, it is for this very reason - together with their elegance
and efficiency, which make them so adaptable to new technological contexts - that
they are key elements in the latest scientific developments, e.g. their incorporation
and implementation in systems generating models of Decision Support Systems.
Linear Programming is, therefore, firmly embedded in one of the most promising
lines of development in Artificial Intelligence and even after more than half a century
of use it remains at the leading edge of scientific progress.

Within the context of Decision Support Systems, and within the framework of
Artificial Intelligence, the main aim is to obtain automatic systems which, starting
from implementations which allow near human intelligence actions, are capable of
acting as would a person on each occasion. This means that whatever the Linear
Programming models we use under these conditions, will not in general be well
known, established ones, since they will need to be redefined to meet the new
context.

It is very well known that a real problem is usually approached that, while
perfectly comprehensible, are difficult to represent effectively: “transport costs will
be about 750 euros”, “profit will be 30%”, etc. When dealing with such figures,
which clearly do not have to be of a probabilistic nature, we generally force the
figures to take on values which we understand as being most representative of
the real figures, e.g. 750 and 30%. Hence, we deal with what can be described as
deformed problems, which can give solutions which may be optimal for the problem
considered but which differ greatly from the true solution to the original problem,
whose real values might have been 742 and 28.5%.

A correct representation of the information is, therefore, essential Decision Sup-
port Systems and Artificial Intelligence, as well as in other disciplines, since it is a
guarantee for obtaining correct solutions and also because, depending on the fuzzy
version we use, we may be dealing with different optimum concepts, and hence
different optimizations.

Hereinafter, when we refer to imprecision we understand what is generally known
as fuzziness, i.e. that linguistic vagueness that makes perfect sense to human beings
despite a lack of any exact information (“I don’t know how old he is, but he’s
young.”) We choose this version of fuzziness since we understand that it is, in
general, the closest and most suitable for the developments in Artificial Intelligence
which concern us. What we normally do when defining something is take objects
from the real world as linguistically labelled concepts in the referential domain
under consideration. The imprecision of any linguistic label reflects the distance
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between the objects labelled and a referential point, which in each case will depend
on the context. Hence, we can model human reasoning and communication in quite
a suitable way.

In such a context, a Linear Programming (LP) problem can often be formulated
much more specifically as:

Mazx {z =cx | Az < b,z > 0}

where A is a matrix of real numbers with a dimension m x n, b is a vector in R™
and c is a costs vector in R™.

From the earlier considerations, we can now suppose that the decider expresses,
knows or formulates the data of the problem in a fuzzy way which is nevertheless
perfectly clear to the decision taker: “performance this year will be better than last
year”; “there will be a high number of man hours”; “gross salary stands at around
20,000 euros” etc. It is in such an environment of optimization that Fuzzy Linear
Programming (FLP) is born.

While FLP has its theoretical precedents in 1970 in the great work on Decision
Theory by R. Bellman and L.A. Zadeh [1], FLP problems were formally born in
1974, the year in which two separate papers [25] and [35] propose the same model
to deal with LP problems, i.e. that the set of constraints be given by a fuzzy set.
Despite the coincidence, the works approached the solution from different points of
view, and, thus, employed different methods, which led to a solution constituted by
a single point, which can, therefore, be considered as outside the fuzzy context of
the calculation. Later on, it was demonstrated that these methods were particular
cases of a more general method which allowed a context-dependent fuzzy solution,
and which encompassed the solutions put forward in the studies cited [27].

Specifically, the central problem in FLP lies in solving an LP problem within the
set of fuzzy constraints.

Mazx z=czx
s.t.:
Az <sb
z >0
where it is supposed that the decision maker can accept moderate violations in the
fulfilment of the constraints, with these violations being measured through certain
membership functions
wi :R—10,1], i=1,...,m
which the decision maker himself establishes.

The lines of research which have been followed from this initial approach are

numerous but they can be grouped under the following sections:

a) Extensions of the previous model for more complex problems. This has
been the case particularly in multi-objective problems, although also wor-
thy of mention are the studies in other areas like Stochastic or Fractional
Programming.

b) Methods for solving different problems.

¢) Applications within specific domains (transport, games, hydraulic policies,
agriculture, reasoning from propositional knowledge, etc.).
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Initially, we will tackle the basic theoretical elements necessary to this article.
While not descending to the trivial level, we present the most elementary ideas on
fuzzy sets and numbers. Below, we put forward (within the fuzzy context) the most
typical problems and methods in FLP. In order to finalize we propose an important
and very promising future research line, as it is that of Fuzzy Sets based Heuristic
Algorithms to solve optimization problems.

2. Basic Concepts

One basic concept is that of the fuzzy number. From the point of view of a
fuzzy number’s being a fuzzy set in RR, it can be stated that the notion of a fuzzy
number appears in 1965 with the appearance of L.A. Zadeh’s famous paper [32].

Nevertheless, fuzzy numbers really appear on the scene around 1978, with the
papers by S. Nahmias on fuzzy variables, and D. Dubois and H. Prade on handling
imprecise quantities. Since then, the study of possible definitions of fuzzy numbers
and, in particular, how to manage and compare them, has aroused a lot of interest
within the field of fuzzy sets, [31].

This section introduces the elementary notions and operations of fuzzy sets lead-
ing to the concept of fuzzy number. Once these have been established, the remaining
part of this section is devoted to the comparison of two fuzzy numbers. This is a
complex problem since, given the imprecise nature of the quantities considered,
e.g. A and B, it cannot be guaranteed a priori that A < B or that B < A. In-
stead, these properties will be verified simultaneously and with certain degrees of
fulfilment. This means that there are many ways of comparing two fuzzy num-
bers, which in the specialist literature has been developed through the so-called
comparison indices.

2.1. Introduction to the Fuzzy Set Concept.
Let X be a set, whose elements are we will denote by x, and A a subset of X. The
membership of one element x of X to the subset A is given by the characteristic

function:
(@) = 1 iff €A
AW =0  if ¢4

where {0, 1} is the so-called valuation set.

If the valuation set is the real interval [0,1], A is called a fuzzy set [32] and p4
measures the degree of membership of element x in A. A is characterised by the
the set of pairs {(x,pa(x)), z € X}.

Two fuzzy sets, A and B are considered equal iff: Vo € X, pa(z) = pp(x).

Definition 2.1. [32] Given a fuzzy set A = {(z, pa(x))}, its support is defined as
the ordinary set Sop(A4) = {z € X / pa(z) > 0}.

Definition 2.2. [32] Given a fuzzy set A, we give the name a-cut of that set to
the ordinary set A, = {z € X / pa(x) > a} con a € [0,1].

It is clearly seen that the sets A,, « € [0,1] constitute a decreasing succession.
Ifag > oy & Aa1 - Aaz, o1, g € [0, 1].
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Theorem 2.3. (Representation Theorem) If A is a fuzzy set and A, its a-cuts,
« € [0, 1], it is verified that

A= | a4,
a€l0,1]
taking this formal notational as the equality between the membership functions of
both sets. If pa,(x) denote the characteristic function of A, a particular case of
the membership function:

! iff xe€ A,
pa, (@) = { 0 otherwise

membership function of the fuzzy set A can be expressed in terms of the character-
istic functions of its a-cuts, according to the formula

pa(z) = sup min(a, pa, (z))
ael0,1]

Definition 2.4. [32] A fuzzy set is convex iff its a-cuts are convex.
A definition equivalent to convexity is that A is convex iff Va1, 29 € X, VA € [0, 1],
pa(Azy + (1= N)z2) > min(pa(z1), pa(es)).

Definition 2.5. The height of a fuzzy set hgt(A) = sup,¢cx pa(z).
Definition 2.6. A fuzzy set is said to be normalized iff 3z € X in which p4(z) = 1.

2.2. Fuzzy Numbers.

Definition 2.7. [12] A fuzzy number A is a py4 set of the real straight, it is convex
and normalized such that

a) Jzg € R/ pa(xo) =1, which is generally called mode, and
b) pa is in parts continuous.

Any fuzzy number is therefore characterised by a membership function g4 : R —
[0,1] and any function like the above gives a fuzzy number where Vo € R, pa(x) is
the degree of membership of x to the fuzzy number A.

We will denote by F(R) the set of membership functions on R. Thus, when
talking about the fuzzy number we can refer both to the element A € F(R) and to
pua € F(R).

A fuzzy number A is said to be of the type £ — R, if and only if its membership
function p 4 is of the form

E[(m_w)} for 2 <m, a>0

’R{(m_m)} for x>m, 3>0

where m is the mode of A and « (8) is the width on the left (right), £ and R
represent a function on the left or right of m, £ is non decreasing and R is not
increasing. We will abbreviate the fuzzy number A by A = (m — a,m,m + 3)cr-
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Definition 2.8. [13] A plane fuzzy number is an A fuzzy number such that

A(my,m2) € R, my < mg and pa(x) =1, Vo € [mq, ms]

A plane fuzzy number can model a fuzzy interval. An A plane fuzzy number of
type L — R is defined as

E[(mla_x)} for <mi, a>0

(1) pia(z) = R[(“ﬁm”} for x> mso, >0
1 for mi; <z <mgy
0 otherwise

This will be more briefly denoted by (m; — «, m1, ma, ma + 5) 2R-

It is clear that depending on the £ and R functions, we will obtain different
types of fuzzy numbers.

We will consider numbers as fuzzy, plane, linear and normalised, those whose
analytical membership function is as follows.

A plane fuzzy number, which we will denote by ujf = (rj,u;,u;, R;j) will have
the membership function

(v=rj)

(w;—7;) if Tj <v< U;
(R;—v) cp —
(2) Yo eR, p r(v) = (R]Lﬂj) if u; <v<R;
J
0 otherwise

From now on we will frequently use fuzzy numbers expressed as linear combina-
tions y/ = Zju;-cxj withz; €R, j=1,...,n.

In [26] we find the membership function of those numbers, which we express
below.

Proposition 2.9. If yf = Zj uij = wlz is a linear expression in which the

u;, 7 =1,...,n, are fuzzy numbers linear membership functions given by u; =
(Tj,gj u;, R;) and x; >0, j =1,...,n, then the membership function of yl is
((;;—ngg) if ©>0andrr <z<ux
(Rx—=z) . o
w(z) =< TRe—aw) if >0 anduxr <z < Rx
1 if ur <z<ux
0 otherwise

where 1 = (T1,...,7n), w = (Ug,...,U,), = (T1,...,Uy) and R=(Ry,...,R,).
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2.3. Methods for Comparing Fuzzy Numbers.

A constant problem over the last 15 years has been that of the distribution of
imprecise quantities, and hence the comparison of fuzzy numbers. The many and
varied approaches to the problem mean that a wide range of methods exist to make
the comparison in question. An excellent collection of techniques, methods and
approaches can be found in [34] and [31].

We will use the ways of comparing fuzzy numbers exclusively to analyse the
repercussion of using various methods of comparison in a Fuzzy Linear Program-
ming problem. Thus, it is not our aim here to review all the possible ways of
comparing.

The solution to the problem can be shortened in either of the following ways,
depending on whether the method used is based on the definition of an ordering
function or on the comparison of alternatives.

2.3.1. Methods Based on the Definition of an Ordering Function.
We will consider A, B € F(R). A simple method to compare these lies in the
definition of a function g : F(R) — R. If the function g(-) is known, then

g(A) < g(B) & A is less than B
g(A) > g(B) & A is greater than B
g(A) =g(B) & Aisequal to B
g is usually called a linear ordering function if
1) VA, B € F(R), g(A + B) = g(A) + g(B)
2) VreR,r >0, g(rA) =rg(4), VA € F(R)
In this case, the indices can be classified according to whether the ordering
function is linear or not.

2.3.2. Methods Based on the Comparison of Alternatives.
These methods consist of obtaining the fuzzy set of the optimal alternatives:

O = {i,por (D)}, por(i) = pos(A'), A" € F(R)
where poys (i) represents the degree to which the ith alternative can be considered
the best.

Finally, we underline in spite of the huge wealth of methods for comparing fuzzy
numbers, as yet few indices have been studied since it is perfectly justifiable for
each human decision taker to use their own method of comparison independently
of any method described in the literature. A detailed study in this respect can be
found in [22] where an artificial neuronal network is used which learns the ordering
criteria of each decision taker considered.

3. Fuzzy Linear Programming: Methods and Models
An LP problem is generally set out as
Max {z = cx/Ax < b,x > 0}

where A is matrix m x n of real numbers, b € R™ and ¢ € R".
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Obviously, it is assumed here that the decision taker has exact information on
the elements intervening in the problem. Even were this the case, the decision
taker usually finds it more convenient to express his knowledge in linguistic terms,
i.e. through conventional linguistic labels [33], rather than by using high precision
numerical data. Thus, it makes perfect sense to talk about optimization problems
from a vague predicate approach as it is understood that this vagueness arises from
the way we use to express the decision taker’s knowledge and not from any random
event. In short, it is supposed that the imprecision of the data defining the problem
is fuzzy.

The first case of optimization problems with fuzzy approach appeared in the
literature more than three decades ago [1], in an article which put forward the now
classical, key concepts of constraint, objective and fuzzy optimal decision.

As with LP in conventional optimization, so have FLP methods been the subject
of most study in the fuzzy context. While not exhaustive, there are three main types
of FLP problem, depending on the imprecision established in the constraints, on
the coefficients of the technological matrix or on the costs which define the objective
function. The rest of this section is devoted to each of these.

Models and methods to solve these problems abound in the literature, especially
for the case in which f and g;, i € M, are linear functions [9, 10, 16, 37]. In some
cases precise solutions are obtained, while in others these are fuzzy and more in
line with the approach to the problem. The latter offer a set of good alternatives
and encompass the more precise solutions obtained using other methods. Finally
though, it is the decision taker who must choose.

While we find many FLP models in the literature [14, 6, 8, 17, 9, 20, 19] ...,
the majority only suppose vagueness for some of the elements described in the
model. At the end of this section, a general FLP model is presented in which all
the elements are fuzzy. To this end, the most important problems in fuzzy linear
programming will be presented along with the general FLP method, [5]. From the
said model it is easy to derive each particular case of the FLP problem, and these
are in agreement with its characteristics.

3.1. Linear Programming with Fuzzy Constraints.

We consider the case in which the decision taker assumes that there is a certain
tolerance in the fulfilment of constraints i.e. a certain degree of violation is allowed
and this is established by the decision maker himself, [5]. This supposition can be
represented for each constraint as follows:

a;x <sgb, te M={1,2,...,m}
and this can be modelled using a membership function

1 if a;x <b;
i R—[0,1] / pi(a;z) =< filazx) if b; < ax <b; +t;
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These functions express that the decision taker is tolerating violations in each
constraint up to a value of b; +t;, ¢ € M. Functions f; are assumed to ne non
decreasing and continuous for these constraints.

Function p; is defined for each x € X and it gives the degree of fulfilment for
each i-th constraint for z € X.

The associated problem is represented as follows

Maxr z=cx
s.t.:
(3) Angb
x>0

wheree ¢ € R™, b € R™, A is a matrix m x n of real numbers.

Although the origin of (3) is found in [1], this problem was developed in [25]
and [36], where additional hypotheses on the nature of the objective function were
considered, although these do not concern us here.

Three approaches - [25, 36, 27] - may be considered to solve (3). In particular,
and using the Representation Theorem for fuzzy sets, [27] shows how to find a fuzzy
solution for (3) through the auxiliary parametric PL problem

Max z=cz

s.t.:
Az < g(a)
x>0, a€l0,1]

where g(a) € R™ is a column vector defined by the inverse functions of the f;,
i € M. The linearity and dimension of (3) are clearly maintained in the model.
The solutions proposed in [25] and [36] arise from the fuzzy solution proposed in
[27] for particular values of the parameter a € [0, 1].
Supposing the linearity of the f;, we obtain that the auxiliary model which solves
(3) is

Max z=cx
s.t.:
(4) Az <b+t(l—«)
x>0, a€l0,1]

with t = (t1,...,tm) € R™.
If we denote S(a) = {z € R" / z(x) = max cz, z € X(«o)} with X(a) = {z €
R™ / Ax <b+1t(1l — ), a € [0,1]}, we define a fuzzy solution (3) as,

Definition 3.1. The fuzzy solution to (3) is a fuzzy set with the membership
function
sup «@ if ze| )S(a)
Az) = z€S(a) LQJ
0 otherwise
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We consider (3) and the imprecision of the constraints represented by non lineal
membership functions

ni(z) = ¢ filaiz) if b <a;x <b+1
0 if a;x >b; +t;

where the function f/(-) is supposed strictly decreasing and continuous, f/(b;) =1

If we use the approach proposed in [27] and we apply a similar discussion to
the one above for the linear case, then the optimal fuzzy solution for (3) can be
obtained from the optimal parametric solution of the problem

Max z=cx

s.t.:
Az < ¢'(a)
x>0, a€l0,1]

where ¢'(a) = f'~!(a), Va € [0,1].
A relation between the solutions obtained in the linear and non linear case is
shown in [11]. The subsequent results are shown in [11].

Proposition 3.2. Let [a,b] be a real interval and f : [a,b] — [0,1] is continuous,
linear and strictly decreasing with f(a) = 1 and f(b) = 0. For any other strictly
decreasing continuous function f': [a,b] — [0, 1], such that f'(a) =1 and f(b) =0,
there exists a function r : [0,1] — [0,1] such that r(-) o f(:) = f'(*).

Proposition 3.3. We consider the FLP problem (3). We denote x(-) and x'(-) to
the optimal fuzzy solutions for this problem using linear and non linear membership
functions for the imprecision of the constraints. Thus x'(a) = x(r~(a)), where
r(+) is the solution obtained for the previous proposition.

With these results, the value of the objective function will be 2/(a) = ca/(a) =
cx(r~(a)).

This demonstrates that by solving an LP problem with fuzzy constraints mod-
elled by linear membership functions, we can obtain the fuzzy solution to the same
problem modelled by non linear membership functions. For the case in which the
LP problem has fuzzy constraints modelled piecewise defined membership func-
tions, we obtain a similar result, [11]. Thus the generality is not lost if we always
suppose the fuzzy constraint problem as having linear membership functions.

3.2. Linear Programming with Fuzzy Costs.
In this case, the decision taker does not know the exact values of the coefficients c.
The situation is represented by the following FLP problem, [5].

Max z=clz
s.t.:
(5) Az <D
x>0
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with ¢/ € (F(R))" and supposing membership functions of the following form

(6)

0 if v<rjorv>R;
) . B ) hj(v) if r; <v<g
pi:R—10,1, je N={1,....,n} / piv)= a,(v) if ¢, <v< R
1 if ¢ <v<7

where h;(-) and g;(-) are strictly continuous increasing and decreasing functions,
respectively, such that h;(c;) = g;(¢;) =1, Vj € N.

Although there exists a wide range of h; and g; functions (linear, exponential,
logarithmic, parabolic, concave and convex, etc.), fuzzy costs are usually considered
as plane fuzzy numbers with linear functions h;(-) and g;(-). Hence, for the number

(r5,¢;,¢5, R;), these functions will be given by:

V=T . ) Rj—u =, .
hj(v) =4 577 EUSE gy =4 mw  GSUS &
0 otherwise 0 otherwise

There are various approaches [8, 23, 26] to solve (5). It is demonstrated in [10]
that the method proposed in [8] gives a formal context to find the solution of (5)
and encompasses the methods proposed in [23, 26, 20].

The fuzzy solution to this problem proposed in [8] can be obtained from the
solution to the following multiobjective parametric problem

Max z=[c'z,cPx,..., 2 1]

s.t.:
Ar <b, <0
ke {hjt(1-a)g;'(1-a)}
a€el0,1], k=1,...,2" jE€N

3.3. Linear Programming with Fuzzy Numbers in the Technological Ma-
trix.
Now we consider that the coefficients in the technological matrix and the coeffi-
cients of the right hand size are represented by fuzzy numbers, with the costs that
define the objective function being real, [5].

This type of FLP problem is set out in the following terms

Max z=cx

s.t.:
@ a{azgfb{, 1€ M
x>0
where for each i € M, azf = (a{l,...7a{n), a{j € F(R), j € N, bzf € F(R),

reX={zxeR" /alx<;bl,ie M, z>0}and c € R™

An almost identical version of (7) was the starting point for this type of models (a
similar problem was put forward in [26] but supposing imprecision in the objective
as well). In order to solve (7) with a fuzzy solution rather than a precise one, as
in (3), we can suppose that violations in its constraint coupling are admitted up
to a maximum amplitude of a value t{ , 1 € M, [9]. Note that unlike (3), t{ has to
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be a fuzzy number on account of the nature of the coefficients taking part in each
constraint.

From this viewpoint a method is proposed in [9] to solve the general model (7).
The approach is based on the substitution of the set of constraints of (7) by the
following convex, fuzzy set:
afxgg b{th{(l—oz), ieM, acl0,1]

i

where alf = (a{17 . ,alfn), t{ is a number fixed by the decision taker which sets the
violation tolerance in the constraint, and <, is a relation between these numbers.

Thus, problem (7) takes the following form

Mazx z=cx
s.t.:
alz <, bl +t/(1—a), ieM
x>0, a€l0,]1]
The solution to the original problem is obtained in [7] by particularization (in
the auxiliary problem) for each different method of comparison of fuzzy numbers.

3.4. A General Model for Fuzzy Linear Programming.
A general FLP model, [5], which encompasses all the above cases, is a problem of
the type:

n
Max z:g cfacj
J
j=1

n
! f
Z aj; 5 <5 b
j=1

r;>0,1€M, jEN

s.t.:

where the fuzzy elements considered are given by:

a) For each cost 3p; € F(R) such that u; : R — [0,1], j € N, which define
the fuzzy costs vector.

b) For each row Ju; € F(R) such that p; : R — [0,1], ¢ € M, which define
the fuzzy number on the right hand side.

c) For each i € M and j € N 3u;; € F(R) such that p;; : R — [0,1], which
define the fuzzy numbers in the technological matrix.

d) For each row 3u* € F[F(R)] such that px® : F(R) — [0,1], i € M the degree
of fulfilment for the fuzzy number a{lxl + aéxg + ...a{nmn, 1 € M with
respect to the i-th constraint, i.e. the similarity of these numbers and the
corresponding bZJ-c with respect to the i-th constraint.

One method, [4], for solving the general model (8) consists of substituting the
constraints set of (8) by a convex fuzzy set.
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Let g be an ordering function of fuzzy numbers, and function ¢ : F(R) x F(R) —
F(R) such that

tlf if a{xggblf
w(afx,b{)z tlf@a{x@blf if bl]-c §ga{x§gblf€9tlf
0 if a{xggbf@t{

with t{ € F(R) such that its support is included in R™ and <, is a relation which
measures the fact that A <, B, VA, B € F(R) and © and @& are the most usual
operations between fuzzy numbers.

Definition 3.4. The membership function associated to the fuzzy constraint alf x <y
bf , with tlf being a fuzzy number which gives maximum violation in the verification

of the i-th constraint, is the following

9 L F(®) - 0,1] / i(afabf) = 2R
9) pt: F(R) = [0,1] / p'(a; . b7) o)

where ¢ is a fuzzy number ordering function.
If we consider problem (8), <; with membership functions (9), then using the
fuzzy number representation theorem, we obtain that

srale ) | o Satze))
g(t]) g(t])

g(t]) — g(alx) + g(0]) > g(t])a & g(alz) < gb] @t/ (1 - @) &

ui(a{x,b{)za@ >ae

a{x <4 b{—l—tlf(l—a)
where <, is the relation corresponding to g.
Hence, an auxiliary problem to solve (8) is the following:

n
Mazx Z c;-cxj
j=1
s.t.:

Za{jxj <4 b‘if—i—t{(l—a)7 1e€M
Jj=1
z>0, a€[0,1], jEN

If in problem (8) there were no fuzzy numbers in its formulation, but only fuzzy
constraints, this approach would coincide with the corresponding model

Max z=cx

s.t.:
Az <b+t(1 —a)
x>0, a€l0,]1]
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In other words, in the case of a fuzzy constraint a;x <y b;, the membership
function associated to this constraint will be of the form

g(f(aiz,b;))
g(t:)

where g is the classical order in R and ¢; is the maximum violation in the fulfilment
of the i-th constraint (¢; € R).

p' e F(R) = [0,1] / p'(aiz, bi) =

1 a;xr S bi
pha;z, b)) =< (1— Wi_bl) bi <aix <bi+1;
0 a;x > by +t;

To solve this problem we can use the different comparison relations of fuzzy
numbers, both in the constraints and in the objective, or we can use comparison re-
lations in the constraints and a-cuts in the objective. This will lead to our obtaining
various conventional models, which will allow for a properly fuzzy solution.

4. Fuzzy Sets Based Heuristic

Optimization methods based on fuzzy logic do not end with FLP. Indeed, the
easy solving of real problems of ever greater dimensions, thanks to the greater
power and lower cost of computers, the impossibility of obtaining exact solutions
in all cases and the need to provide answers for a host of practical cases (sequenc-
ing problems, design of routes, location, etc.) have all led to the growing use of
heuristic type algorithms as valuable tools which can provide answers which exact
algorithms are unable to provide. Thus, in recent years a huge and varied range of
techniques has appeared which has sprung from the idea that satisfaction is better
than optimization or, in other words, that rather than being unable to find the opti-
mal solution to a problem it is preferable to provide a solution that satisfies a user’s
previously described needs. And these techniques have proved to be extraordinarily
effective. Examples of these techniques are the algorithms Tabu Search, Simulated
Annealing, GRASP (“Greedy Randomized Adaptive Search Procedure”), Genet-
ics, or the more recent, Memetics, VNS (Variable Neighbourhood Search), Ant
Colonies, Scatter Search, Constraints Programming. In short, there is a wealth of
interest in this field along with a lack of a minimal theoretical framework within
which to set, relate and compare these algorithms.

It may be stated that in the majority of cases these heuristics are inspired by some
real model in nature, society, physics..., and have been used to produce theoretical
models which meet the circumstances under consideration. Thus, solutions have
been found for cases that until very recently could not be dealt with using traditional
techniques. However, the solutions have not been optimal in the vast majority
of cases. They have been “near-optimal” solutions, which have frequently been
obtained applying criteria that differ from the classical “achieve the best value
of the objective function” since they take into account subjective characteristics
established by the decision taker.
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As has been made clear throughout this paper, when we speak about human
associated subjectivity, or even about nearness to an optimal value, the best way
of modelling these situations is through fuzzy sets (Soft Computing).

It is assumed generally that in the first level, the principals constituent of Soft
Computing are Approximate Reasoning and the Functional Approximation/Rando-
mised Search. Then in a second level we can find Probabilistic Models, Fuzzy Sets
and Systems, Heuristics and Meta-heuristics and Neural Networks. On the one
hand, it is evident that since the famous “Fuzzy Boom” of the 90s, Fuzzy Sets and
Systems have settled permanently in all the areas of R+D+I1. Their applications
can be found in several the fields of our daily life, and they are a subject of study
in different educational levels. On the other hand, there is no doubt that thanks
to the technological potential that we have nowadays, we are witness to discoveries
that were unpredictable just only a decade ago.

Computers in particular, do efficiently tasks that seemed to be very laborious,
when not impossible, just a short time ago, allowing us to approach problems of
great complexity, both in comprehension as well as in dimension, in a great variety
of fields. In spite of the huge success achieved by the Fuzzy Sets and Systems, of
the important progress produced by the heuristics in a practical way, and of the
close relationship between both methodologies, if we set apart the area of Genetic
Algorithms, or more generally of Evolutionary Algorithms, not much work has been
conducted in the development of Fuzzy Sets-based Heuristics.

To bridge this gap, in the following we will give an overview on the practical
applications that fuzzy sets based heuristics algorithms have, by describing three
particular fuzzy sets based heuristics for solving optimisation problems. First, and
as introduction, we will focus on an already explored approach which seeks the
possibility of using fuzzy rules as termination criteria in the algorithms. Second,
we will review the basic ideas of a fuzzy sets-based heuristic algorithm that looks
for solutions qualified in terms of fuzzy valuations, and whose behaviour is adapted
as a response to the state of the search. Finally, we describe a new methodology
proposal based on using fuzzy rules to coordinate a set of concurrent heuristics.

4.1. Fuzzy Stopping Rules for Terminating Algorithms.

The key point in this section is that FLP methodologies may help to find solutions
for problems in which to find an optimum solution is not easy. As it is well known
there are a lot of NP problems which cannot effectively be solved in all cases.
In these problems the decision-maker must usually accept approximate solutions
instead of optimum ones. The aim here is to show how FLP can help classical
Mathematical Programming models by providing fuzzy solutions that may be used
by the decision-maker as help to quickly obtain a good enough solution for these
problems.

Let’s justify this fact. An algorithm for solving a general optimisation problem is
an iterative process that produces a sequence of points according to a prescribed set
of instructions, together with a termination criterion. Usually we are interested in
algorithms that generate a sequence that converges to an overall, optimum solution.
However, because of the difficulties in the problem, we may have to be satisfied with
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less favourable solutions. Then the iterative procedure may stop either 1) if a point
belonging to a prefixed set (the solution set) is reached, or 2) if some prefixed
condition for satisfaction is verified.

But, the conditions for satisfaction are not to be meant as universal ones. They
depend on factors such as the decision-maker, the features of the problem, the
nature of the information available, ... In any case, assuming that a solution set is
prefixed, the algorithm will stop if a point in that solution set is reached. Frequently,
however, the convergence to a point in the solution set is not easy because, for
example, of the existence of local optimum points, and hence we must redefine
some rules for terminating the iterative procedure.

Roughly speaking, the possible criteria to be taken into account for terminating
the algorithms are nothing but control rules. Thus these rules could be associated
to the two above points: the solution set, and the criteria for terminating the
algorithm. As it is clear, fuzziness can be introduced in both points, not assuming
it as inherent in the problem, but as help for obtaining, in a more effective way,
some solution for satisfying the decision-maker’s wishes. This is meant so that
the decision-maker might be more comfortable when obtaining a solution expressed
in terms of satisfaction instead of optimisation, as is the case when fuzzy control
rules are applied to the control processes. Therefore, and in the particular case of
optimisation problems [24], it makes sense to consider fuzziness

a) In the Solution Set, i.e., there is a membership function giving the degree
with which a point belongs to that set, and

b) On the conditions for satisfaction, and hence Fuzzy Control rules on the
criteria for terminating the algorithm.

Let consider, for the sake of illustration, a conventional LP problem
Min {cx /| Az =b ,xz > 0}

the main step of the Simplex Algorithm, with the usual denotation, can be sum-
marised as follows,

Let = be an extreme point with basis B, and let R be the matrix corresponding
to the nonbasic variables. Compute cg B~'R — cp. If this vector is non positive
then stop, = is an optimal extreme point.

Else select the most positive component cg B~'a;—c¢; and compute y; = B~ 1a; :

o Ify; = B_laj is less than or equal to 0 then stop. Objective unbounded.
e If y; = B~'a; is neither less than nor equal to 0 then go to next step

Therefore, the termination criterion can be seen as a control rule, and then

- The non positivity of the vector cg B~'R — cr could be meant in a soft
sense,

- The positivity of the component cg B~'a; —¢; could be measured according
to some membership function, and

- The accomplishment of y; = Bilaj < 0, if this is viewed as a constraint,
could be fuzzified.

If the first possibility is considered, a new main step can be formulated,
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Let = be an extreme point with basis B. Compute cg B~ 'R — cg. If Vj =
1,...,n,¢epy; —¢j <5 0,cj € cr, where < stands for a fuzzy constraint.

Thus this condition would mean that the decision-maker can accept violations
in the accomplishment of the control rules, cpy; — ¢; < 0, to obtain a near, and
therefore approximate, optimal solution instead of a full optimal one. Results
obtained from the application of this heuristic to a number of NP-problems can be
seen in [24, 28, 29].

4.2. FANS: A Fuzzy Adaptive Neighbourhood Search Algorithm.

The Fuzzy Adaptive Neighborhood Search Method (FANS), [3], is a local search
procedure which differs from other local search methods in two aspects. The first
one is how solutions are evaluated; within FANS a fuzzy valuation u() representing
some (maybe fuzzy) property P is used together with the objective function to
obtain a “semantic evaluation” of the solution. In this way, we may talk about
solutions satisfying P in certain degree. Under this view, we define the semantic
neighborhood of a solution s as:

N(s) = {s/u(s) > A}

FANS moves between solutions satisfying P with at least certain degree A, until
it became trapped in a local optimum. In this situation the second novel aspect
arise: the operator used to construct solutions is changed, so solutions coming from
different neighborhoods are explored. This process is repeated once for each of a set
of available operators until some finalization criterion for the local search is met.

The fuzzy valuation also enables the algorithm to achieve the qualitative behavior
of other classical local search techniques [3].

The scheme of FANS is shown in Fig. 1. The execution of the algorithm finishes
when some external condition holds, for example, when the number of cost function
evaluations reached certain limit. Each iteration begins with a call to the so called
neighborhood scheduler (NS), which is responsible for the generation and selection
of the next solution in the optimization path. The call is done with parameters S¢,
(the current solution), p() (the fuzzy valuation), and O (a parameterized operator
which is used to construct solutions). The neighborhood scheduler can return two
alternative results; either a good enough (in terms of p()) solution (Syeq) was found
or not.

In the first case Spey is taken as the current solution and p() parameters are
adapted. In this way, the fuzzy valuation is changed as a function of the context
or, in other terms, as a function of the state of the search. If NS failed to return an
acceptable solution (no solution was good enough in the neighborhood induced by
the operator), the parameters of the operator are changed. The strategy for this
adaptation is encapsulated in the so called operator scheduler (OS). The next time
NS is executed, it will have a modified operator to search for solutions.

When the whole set of operators available was used and the search was still stag-
nated (TrappedSituation = True), a classical random restart procedure is applied,
and FANS continues the search from the new solution.
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Procedure FANS;
Begin
While (not-end) Do
/* The neighborhood scheduler NS is called */
Snew=NS(O,u(),Scur);
If (Spew is good enough in terms of u()) Then

Scur : :Snew ;
adaptFuzzy Valuation(u(),Seur);
Else

/* NS failed to return a good solution with O */
/* The operator scheduler will modify the operator */
0:=0pSchedul();
Fi
If (TrappedSituacion() Then
doEscape();
Fi
Od
End.

FIGURE 1. Pseudo Code of FANS

4.2.1. Examples of Application.

In order to apply FANS to a particular problem, the user must provide definitions
for FANS’s components. Let’s suppose we are given a problem with n variables
where each v; can take discrete values from a set S with elements s;. For example,
if we consider knapsack problems, then S = {1, 0} or {included, not included} and n
is the number of items available. Then we can obtain “canonical” implementations
of FANS methods as follows.

First, we can define a modification operator which randomly selects k variables
and produce a random assignemt as v; = random(S), where random(S) returns
any value from the set S.

The value of k, will be modified by the operator scheduler. A simple strategy
may be to start with high values for k, say k = n, and then doing kK = k — 1 each
time the search became trapped. In this way we obtain very disruptive moves at
the beginning, making them finer as the run progresses.

The fuzzy valuation will measure how Similar, or Different are two given solu-
tions, or it can measure the level of Acceptability between a neighbor solution §
and the current one s. Using the cost of both solution we can define Acceptability
as:
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If § improves the cost of s, it will get the highest value of Acceptability. If §
diminishes the cost a little it may be considered as acceptable but with lower degree.
If § is much worst than s, it will get a degree of acceptability of zero.

The last component is the neighborhood scheduler. For its definition we may use
a First strategy, which simply returns the first solution obtained with O, satysfing
1() in certain level .

Using such a simple scheme, different versions of FANS were implemented and
adapted to solve knapsack problems with single and multiple restrictions, minimiza-
tion of functions of type R™ — R , and also to solve a lattice model of the protein
structure prediction problem. For all of them, comparisons were made against other
general purpose heuristics (like genetic algorihtm or simulated annealing) and the
results were usually equal or better for FANS. The interested reader may refer to
[21] for an updated review of FANS applications.

4.3. A Fuzzy Rule-based Methodology for Coordinating Metaheuristics.
The main idea if this methodology is well explained with the following metaphore:
imagine a committee in charge to solve some concrete problem. The committee
is chaired by a Director, who knows the general aspects of the problem and the
particular features of each worker/expert of the team. Besides, the Director knows
when the problem is reasonably solved (i.e. the team found a good enough solution).
Each worker tries to solve the problem using a particular methodology (or perhaps
several ones). In this context the set of experts work concurrently, reporting to the
Director the partial results they are obtaining. Based on those partial results, the
Director may order changes to the workers in order to improve the “performance”
of the team.

Under this schematic view, we propose to implement workers as optimization
algorithms and the Director’s role by means of a fuzzy rule based system. The
Director’s knowledge could be represented by three groups of rules:

(1) Global rules: representing the knowledge of the problem (type, size, char-
acteristics, ...), and possibly who are the best experts to solve it.

(2) Worker Specific Rules: represent the specific knowledge of the Director
about the performance’s worker (if exists). Concretely, it stands for knowl-
edge about its behavior across the time, preferences, tuning, etc.

(3) Stopping Rules: set of rules representing the termination criteria that the
Director uses. Director is able to recognize when the work should be
stopped, based on objective function value and time.

These set of rules try to address the following “common sense” principles:

o If a worker goes fine, don’t touch it, but if it performance becomes bad,
change somehting to alter its behaviour.

e Keep closer to the good ones and you will be as good as them, simply,
communicate to workers the good solutions already found.

e A good food don’t change with a microgram more of salt, which esentially
address the problem of when to stop
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At the time of writing this article, the methodology is being tested on a bioinfor-
matic problem called protein structure prediction. The main preliminary conclusion
is that the use of several coordinated and concurrent implementations of FANS, lead
to a significant speed up of the computation times.
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