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FIXED POINT THEOREM ON INTUITIONISTIC FUZZY
METRIC SPACES

M. RAFI AND M. S. M. NOORANI

Abstract. In this paper, we introduce intuitionistic fuzzy contraction map-
ping and prove a fixed point theorem in intuitionistic fuzzy metric spaces.

1. Introduction

The notion of intuitionistic fuzzy metric spaces was introduced and studied by
Park in [5]. Saadati and Park in [6], further developed the theory of intutionistic
fuzzy topology (both in metric and normed) spaces. In this paper, we introduce
an intuitionistic fuzzy contraction mapping and prove a fixed point theorem in
intuitionistic fuzzy metric spaces. For the basic notions and concepts, we refer to
[1, 3, 4, 5, 6].

2. Preliminaries

We review some basic concepts in intuitionistic fuzzy metric spaces as well as
the intuitionistic fuzzy topology due to Saadati and Park [6].

Definition 2.1. [5, 6] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions: (i) ∗ is associative and commutative;
(ii) ∗ is continuous; (iii) a ∗ 1 = a for all a ∈ [0, 1] ; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c
and b ≤ d , for each a, b, c, d ∈ [0, 1]. Two typical examples of continuous t-norm
are

a ∗ b = ab,

a ∗ b = min(a, b).

Definition 2.2. [5, 6] A binary operation � : [0, 1]× [0, 1] → [0, 1] is a continuous t-
conorm if it satisfies the following conditions: (i) � is associative and commutative;
(ii) � is continuous; (iii) a � 0 = a for all a ∈ [0, 1] ; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c
and b ≤ d , for each a, b, c, d ∈ [0, 1] . Two typical examples of t-conorm are

a � b = min(a + b, 1),

a � b = max(a, b).

Received: July 2005; Accepted: November 2005
Key words and Phrases: Intuitionistic fuzzy metric spaces, Fuzzy metric spaces, Fixed point

theorem.

This work was supported by IRPA Grant No.: 09-02-02-0092-EA236.

Archive of SID

www.SID.ir



24 M. Rafi and M. S. M. Noorani

Lemma 2.3. [5, 6] If ∗ is a continuous t-norm and � is continuous t-conorm, then:
(i) For every a,b ∈ [0, 1], if a > b, there are c, d ∈ [0, 1] such that a ∗ c ≥ b and
a ≥ b � d.
(ii) If a ∈ [0, 1], there are b, c∈ [0, 1] such that b ∗ b ≥ a and a ≥ c � c.

The following definition is obtained from Mihet in [4].

Definition 2.4. [4] A fuzzy metric space in the sense of Kramosil and Michalek
is a triple (X, M, ∗) where X is a nonempty set, ∗ is a continuous t-norm and
M : X2 × [0,∞) → [0, 1] is a mapping which satisfies the following properties for
every x, y, z ∈ X:
(FM-1) M(x, y, 0) = 0;
(FM-2) M(x, y, t) = 1,∀t > 0 ⇔ x = y;
(FM-3) M(x, y, t) = M(y, x, t),∀t > 0;
(FM-4) M(x, y, ·) : [0,∞) → [0, 1] is left continuous;
(FM-5) limt→∞M(x, y, t) = 1;
(FM-6) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s),∀t, s > 0.

In (X, M, ∗), the open ball Bx(r, t) for t > 0 with center x ∈ X and radius
r ∈ (0, 1) is defined as

(1) Bx(r, t) = {y ∈ X | M(x, y, t) > 1− r}.
The family {Bx(r, t) | x ∈ X, r ∈ (0, 1), t > 0} is a neighborhood system for a
Hausdorff topology on X induced by the fuzzy metric M . In a similar fashion, the
dual space of (X, M, ∗) is the fuzzy metric space (X, N, �) defined below:

Definition 2.5. (New) A fuzzy metric space (X, N, �), where X is a nonempty
set, � is a continuous t-conorm and N : X2 × [0,∞) → [0, 1] is a mapping assumed
to satisfies the following properties for all x, y, z ∈ X:
(FM-D1) N(x, y, 0) = 1;
(FM-D2) N(x, y, t) = 0,∀t > 0 ⇔ x = y;
(FM-D3) N(x, y, t) = N(y, x, t),∀t > 0;
(FM-D4) N(x, y, ·) : [0,∞) → [0, 1] is left continuous;
(FM-D5) limt→∞N(x, y, t) = 0;
(FM-D6) N(x, z, t + s) ≤ N(x, y, t) �N(y, z, s),∀t, s > 0.

In (X, N, �), the open ball Dx(r, t) for t > 0 with center x ∈ X and radius
r ∈ (0, 1) is defined as

(2) Dx(r, t) = {y ∈ X | N(x, y, t) < r}.
The family {Dx(r, t) | x ∈ X, r ∈ (0, 1), t > 0} is a neighborhood’s system for a
Hausdorff topology on X induced by the fuzzy metric N . The following definition
is introduced and studied by Park in [5].

Definition 2.6. [5] A 5-tuple (X, M, N, ∗, �) is called a intuitionistic fuzzy metric
space if X is an arbitrary nonempty set, ∗ a continuous t-norm, � a continuous t-
conorm and M , N are fuzzy sets on X2×(0,∞), satisfying the following conditions
for each x, y, z ∈ X and t, s > 0:
(a)M(x, y, t) + N(x, y, t) ≤ 1;
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(b)M(x, y, t) > 0;
(c)M(x, y, t) = 1 ⇔ x = y;
(d)M(x, y, t) = M(y, x, t);
(e)M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(f)M(x, y, ·) : [0,∞) → [0, 1] is left continuous;
(g)N(x, y, t) = N(y, x, t);
(h)N(x, y, t) �N(y, z, s) ≥ N(x, z, t + s);
(i)N(x, y, ·) : [0,∞) → [0, 1] is continuous..

The pair (M,N) is called an intuitionistic fuzzy metric on X. Every fuzzy metric
space (X, M, ∗) is an intuitionistic fuzzy metric space of the form (X, M, 1−M, ∗, �)
such that t-norm ∗ and t-conorm � are associated [6], i.e x�y = 1− [(1−x)∗(1−y)]
for any x, y ∈ X.

Let (X, M, N, ∗, �) be a intuitionistic fuzzy metric space. For t > 0, the open
ball Gx(r, t) with center x ∈ X and radius r ∈ (0, 1) is defined by

(3) Gx(r, t) = {y ∈ X | M(x, y, t) > 1− r, N(x, y, t) < r}.
Note that it can be easily seen that Gx = Bx ∩Dx where Bx and Dx as given

by (1) and (2) respectively.
Since ∗ and � are respectively a continuous t-norm and t-conorm, the family

{Gx(r, t) | x ∈ X, r ∈ (0, 1), t > 0} generates a topology T(M,N), called the (M,N)-
topology (see [3, 6]). We have:
A ∈ T(M,N) if and only if ∀x ∈ A,∃t > 0,∃r ∈ (0, 1) such that Gx(r, t) ⊂ A.

We denote the (M,N)-uniformity (or the uniformity generated by M , and N)
by U(M,N). The family {Ur,t}r∈(0,1),t>0, where

Ur,t = {(x, y) ∈ X2 | M(x, y, t) > 1− r, N(x, y, t) < r},
is a base for this uniformity.

Definition 2.7. [5, 6] Let (X, M, N, ∗, �) be the intuitionistic fuzzy metric space
endowed with (m,n)-topology and {xn} in X. Then
(i) xn → x ⇔ M(xn, x, t) → 1 and N(xn, x, t) → 0 as n →∞, for each t > 0.
(ii) {xn} is called a (M,N)-Cauchy sequence if for each r ∈ (0, 1) and t > 0, there
exists an integer n0 such that M(xn, xm, t) > 1 − r and N(xn, xm, t) < r for each
n,m ≥ n0.
(iii) The intuitionistic fuzzy metric space (X, M, N, ∗, �) is said to be (M,N)-
complete if every (M,N)-Cauchy sequence is convergent.

3. Main Results

In the following sequel the letters N and R+ denote the sets of positive integer
numbers and positive real numbers, respectively.

Definition 3.1. [2] A quasi-metric on a set X is a function d : X2 → R+ satisfying
the following conditions for every x, y, z ∈ X:
(QM-1)d(x, y) = 0;
(QM-2)d(x, y) = d(y, x);
(QM-3)d(x, z) ≤ d(x, y) + d(y, z).

Archive of SID

www.SID.ir



26 M. Rafi and M. S. M. Noorani

Proposition 3.2. Let (X, M, N, ∗, �) be the intuitionistic fuzzy metric space. For
any r ∈ (0, 1] , we define d : X2 → R+ as follows:

(4) dr(x, y) = inf{t > 0 | M(x, y, t) > 1− r, N(x, y, t) < r}

Then,
(1) (X, dr : r ∈ (0, 1]) is a generating space of a quasi-metric family.
(2) the topology T(dr) on (X, dr : r ∈ (0, 1]) coincides with the (M,N)-topology on
(X, M, N, ∗, �), (i.e., dr is a compatible symmetric for T(M,N)).

Proof. (1)From the definition of {dr : r ∈ (0, 1]}, it is easy to see that {dr :
r ∈ (0, 1]} satisfies the condition (QM-1) and (QM-2) of Definiton 3.1. Now we
prove that {dr : r ∈ (0, 1]} also satisfies the condition (QM-3). Since ∗ and � are
continuous, by Lemma 2.3.(ii), for any given r ∈ (0, 1), there exists r′ ∈ (0, r) such
that

(1− r′) ∗ (1− r′) > 1− r

and
r′ � r′ < r

. Setting dr(x, y) = a and dr(y, z) = b, in equation (4),it follows that for any given
t > 0,

M(x, y, a + t) > 1− r′, N(x, y, a + t) < r′

and
M(x, z, b + t) > 1− r′, N(y, z, b + t) < r′.

Whence

M(x, z, a + b + 2t) ≥ M(x, y, a + t) ∗M(y, z, b + t) > (1− r′) ∗ (1− r′) > 1− r

and
N(x, z, a + b + 2t) ≤ N(x, y, a + t) �N(y, z, b + t) < r′ � r′ < r.

Hence, we have

dr(x, z) ≤ a + b + 2t = dr(x, y) + dr(y, z) + 2t.

By the arbitrariness of t > 0, we have

dr(x, z) ≤ dr(x, y) + dr(y, z).

(2) To prove this condition, it is only necessary to show that for any t > 0 and
r ∈ (0, 1)

dr(x, y) < t ⇔ M(x, y, t) > 1− r, N(x, y, t) < r.

In fact, if dr(x, y) < t, then by (4), we have M(x, y, t) > 1 − r and N(x, y, t) < r.
Conversely, if M(x, y, t) > 1− r and N(x, y, t) < r, since M and N are continuous
functions, there exists an s > 0 such that M(x, y, t−s) > 1−r and N(x, y, t−s) < r
and so dr(x, y) ≤ t− s < t. This completes the proof. �
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In fuzzy metric spaces (X, M, ∗), the map f : X → X is said to be a fuzzy
contraction if there exists k ∈ (0, 1) such that

(5)
1

M(f(x), f(y), t)
− 1 ≤ k(

1
M(x, y, t)− 1

),∀x, y ∈ X,∀t > 0.

Several fixed point theorem has been proved by using (5) in a fuzzy metric spaces
(see [1, 7]).
If the fuzzy metric space (X, N, �) is a dual space of (X, M, ∗), the map f : X → X
in (X, N, �) may also enjoy a fuzzy contractive condition. Since the definition of
the dual space (X, N, �) is similar in the sense of metric space, we can consider the
following new contractive condition for a self mapping f in (X, N, �).

Definition 3.3. (New) Let (X, N, �) be a fuzzy metric space. The map f : X → X
is a fuzzy contraction in (X, N, �) if there exists k ∈ (0, 1) such that

(6) N(f(x), f(y), t) ≤ kN(x, y, t),∀x, y ∈ X,∀t > 0.

By using the contractive conditions (5) and (6), now we are able to define an
intuitionistic fuzzy contractive map f as follow:

Definition 3.4. (New) Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space.
We say that the mapping f : X → X is intuitionistic fuzzy contractive if there
exists k ∈ (0, 1) such that

1
M(f(x), f(y), t)

− 1 ≤ k(
1

M(x, y, t)− 1
)

and

N(f(x), f(y), t) ≤ kN(x, y, t),

for each x, y ∈ X and t > 0.

We give a definition for a intuitionistic fixed point theorem in intuitionistic fuzzy
metric space (X, M, N, ∗, �).

Definition 3.5. (New) Let (X, M, N, ∗, �) be an intuitionistic fuzzy metric space
and let f : X → X be an intuitionistic fuzzy contractive mapping. Then there
exists z ∈ X such that z = f(z) (We call z an intuitionistic fuzzy fixed point of f).

Now, we prove the following theorem.

Theorem 3.6. Let (X, M, N, ∗, �) be a complete intuitionistic fuzzy metric space.
Let f : X → X be an intuitionistic fuzzy contractive mapping. Then f has a unique
intuitionistic fixed point.
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Proof. We fix x0 ∈ X. Let xn+1 = f(xn), n ∈ N. We have for n > m and t > 0,
1

M(xn, xn+m, t)
− 1 =

1
M(f(xn−1), f(xn+m−1), t)

− 1

≤ k

(
1

M(xn−1, xn+m−1, t)
− 1

)
= k

(
1

M(f(xn−2), f(xn+m−2), t)
− 1

)
...

≤ kn

(
1

M(x0, xm, t)
− 1

)
.

Whence, for n > m, 1
M(xn,xn+m,t) − 1 → 0 as n → ∞, that is M(xn, xn+m, t) → 1

as n →∞. Also, for n > m and t > 0, by (6) we have

N(xn, xn+m, t) = N(f(xn−1), f(xn+m−1), t)
≤ kN(xn−1, xn+m−1, t)
= kN(f(xn−2), f(xn+m−2), t)

...
≤ knN(x0, xm, t).

Whence, for n > m, N(xn, xn+m, t) → 0 as n → ∞. Therefore, we can conclude
that {xn} is a Cauchy sequence in X. Since (X, M, N, ∗, �) is complete, the sequence
{xn} converges to some y ∈ X. We show that y is an intuitionistic fixed point of
f , i.e y = f(y). By the contractive condition (5) of f , we have

1
M(f(y), f(xn), t)

− 1 ≤ k

(
1

M(y, xn, t)
− 1

)
→ 0, asn →∞.

Hence,limn→∞M(f(y), f(xn), t) = 1 for every t > 0. And by (6), we have:

N(f(y), f(xn), t) ≤ kN(y, xn, t) → 0asn →∞
. Thus, limn→∞N(f(y), f(xn), t) = 0 for every t > 0. In both cases, we have
limn→∞ f(xn) = f(y), i.e., limn→∞ xn+1 = f(y) , therefore y = f(y). For unique-
ness, assume z = f(z) for some z ∈ X. Then for t > 0, we have

1
M(y, z, t)

− 1 =
1

M(f(y), f(z), t)
− 1

leq k

(
1

M(y, z, t)
− 1

)
...

leq kn

(
1

M(y, z, t)
− 1

)
→ 0asn →∞.

whence, for every t > 0 we have M(y, z, t) = 1, it follows that z = y . This
completes the proof. �
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