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GENERALIZED FUZZY POLYGROUPS

B. DAVVAZ AND P. CORSINI

Abstract. small Polygroups are multi-valued systems that satisfy group-like

axioms. Using the notion of “belonging (∈)” and “quasi-coincidence (q)” of

fuzzy points with fuzzy sets, the concept of (∈,∈ ∨q)-fuzzy subpolygroups is
introduced. The study of (∈,∈ ∨q)-fuzzy normal subpolygroups of a polygroup

are dealt with. Characterization and some of the fundamental properties of

such fuzzy subpolygroups are obtained. (∈,∈ ∨q)-fuzzy cosets determined by
(∈,∈ ∨q)-fuzzy subpolygroups are discussed. Finally, a fuzzy subpolygroup

with thresholds, which is a generalization of an ordinary fuzzy subpolygroup
and an (∈,∈,∨q)-fuzzy subpolygroup, is defined and relations between two

fuzzy subpolygroups are discussed.

1. Introduction

In this section, we describe the motivation for our study and survey related works.
The theory of algebraic hyperstructures which is a generalization of the concept of
ordinary algebraic structures was first introduced by Marty [38]. Since then many
researchers have studied and developed the theory of algebraic hyperstructures.
A short review of this theory appears in [16,44]. A recent book [19] contains a
wealth of applications. In this book, Corsini and Leoreanu presented some of the
numerous applications of algebraic hyperstructures, especially those from the last
fifteen years, to the following subjects: geometry, hypergraphs, binary relations,
lattices, fuzzy sets and rough sets, automata, cryptography, codes, median alge-
bras, relation algebras, artificial intelligence and probabilities. This paper deals
with a certain algebraic system called a polygroup. Application of hypergroups
have mainly appeared in special subclasses. For example, polygroups which are
certain subclasses of hypergroups are studied in [34] by Ioulidis and are used to
study color algebra [11,13]. Quasi-canonical hypergroups (called “polygroups” by
Comer) were introduced in [10], as a generalization of canonical hypergroups, in-
troduced in [39]. Some algebraic and combinatorial properties were developed in
[11-15] by Comer. Davvaz and Poursalavati in [26] introduced matrix representa-
tions of polygroups over hyperrings; they also introduced the notion of a polygroup
hyperring, thus generalizing the notion of a group ring. Davvaz , using the concept
of generalized permutation, defined permutation polygroups and concepts related
to it [32]. The reader will find an extensive discussion of polygroup theory in [10-
15,26-32,33,39,42,48-51].
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60 B. Davvaz and P. Corsini

A reconsideration of the concepts of classical mathematics began After the in-
troduction of fuzzy sets by Zadeh [47 ]. In particular, because of the importance of
group theory in mathematics, as well as its many areas of application, the notion
of fuzzy subgroup was defined by Rosenfeld [41] and its structure was investigated.
This subject has been studied further in [1,3,4-10,22,46] and by many other re-
searchers. Das characterized fuzzy subgroups by their level subgroups in [22] and
since then many notions of fuzzy group theory can also be characterized equivalently
with the help of notion of level subgroups. In [3], Anthony and Sherwood redefined
fuzzy subgroups using statistical functions. Fuzzy quasinormality was introduced
by Ajmal and Thomas [1]. A new type of fuzzy subgroup (viz, (∈,∈ ∨q)-fuzzy
subgroup) was introduced in an earlier paper of Bhakat and Das [6,7] by using the
combined notions of “belonging” and “quasicoincidence” of fuzzy points and fuzzy
sets. In fact, a (∈,∈ ∨q)-fuzzy subgroup is an important and useful generalization
of Rosenfeld’s fuzzy subgroup. This concept has been studied further in [4,5,8].
Also, a generalization of Rosenfeld’s fuzzy subgroup, and Bhakat and Das’s fuzzy
subgroup is given in [46].

Fuzzy sets and hyperstructures introduced by Zadeh and Marty, respectively, are
now used in the world both from the theoretical point of view and for their many
applications. The relations between fuzzy sets and hyperstructures have been al-
ready considered by Corsini, Davvaz, Leoreanu, Zahedi, Ameri, Tofan, Kehagias
and others [2,17-21,23-25,29-31,33,35-37,43,48-51]. In [23,24], Davvaz applied the
concept of fuzzy sets to the theory of algebraic hyperstructures and defined a fuzzy
subhypergroup (resp. Hv-subgroup) of a hypergroup (resp. Hv-group). Zahedi,
Bolurian and Hasankhani in [48] introduced the concept of a fuzzy subpolygroup
of a polygroup.

Now, in this paper, using the notion of “belonging (∈)” and “quasi-coincidence
(q)” of fuzzy points with fuzzy sets, the concept of an (∈,∈ ∨q)-fuzzy subpolygroup
is introduced. The (∈,∈ ∨q)-fuzzy normal subpolygroups of a polygroup also stud-
ied and a characterization and some of the fundamental properties of such fuzzy
subpolygroups are obtained. (∈,∈ ∨q)-fuzzy cosets determined by (∈,∈ ∨q)-fuzzy
subpolygroups are discussed. Finally, a fuzzy subpolygroup with thresholds, which
is a generalization of an ordinary fuzzy subpolygroup and an (∈,∈,∨q)-fuzzy sub-
polygroup, is defined and relations between two fuzzy subpolygroups are discussed.

2. Polygroups

hypergroupoid (P, ◦) is a non-empty set P with a hyperoperation ◦ defined on P ,
i.e. a mapping of P × P into the family of non-empty subsets of P . If (x, y) ∈
P × P, its image under ◦ is denoted by x ◦ y. If A,B ⊆ P then A ◦ B is given by
A ◦B =

⋃
{x ◦ y | x ∈ A, y ∈ B}. The notation x ◦A is used for {x} ◦A and A ◦ x

for A ◦ {x}.

Definition 2.1. A polygroup is a multi-valued system ρ =< P, ◦, e,−1 > where
e ∈ P, −1 : P −→ P, ◦ : P ×P −→ ρ∗(P ), and the following axioms hold for all
x, y, z in P .

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z),
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Generalized Fuzzy Polygroups 61

(ii) e ◦ x = x ◦ e = x,
(iii) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

In the above definition, ρ∗(P ) is the set of all the non-empty subsets of P . The
following elementary facts about polygroups follow easily from the axioms:

e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1,

where A−1 = {a−1 | a ∈ A}.
Let K be a non-empty subset of P , then K is called a subpolygroup of P if e ∈ K

and < K, ◦, e,−1 > is a polygroup. The subpolygroup N of P is said to be normal
in P if and only if

a−1 ◦N ◦ a ⊆ N for every a ∈ P .
If N is a normal subpolygroup of P , the following elementary facts follows easily

from the axioms:
(i) N ◦ a = a ◦N for all a ∈ P ,
(ii) (N ◦ a) ◦ (N ◦ b) = N ◦ a ◦ b for all a, b ∈ P ,
(iii) N ◦ a = N ◦ b for all b ∈ N ◦ a.
For a subpolygroup K of P and x ∈ P , the right coset of K is defined as

usual and is denoted by K ◦ x; P/K is the set of all right cosets of K in P . If
N is a normal subpolygroup of P , then < P/N,�, N,−I > is a polygroup, where
N ◦ a�N ◦ b = {N ◦ c|c ∈ N ◦ a ◦ b} and (N ◦ a)−I = N ◦ a−1.

Examples of polygroups, such as double set algebras, Prenowitz algebras, conju-
gacy class polygroups, and character polygroups, can be found in [12,14,15,26,40,42].
These examples show how polygroups occur naturally in various context.

Rosenfeld [41] applied the concept of fuzzy sets to the theory of groups and de-
fined the concept of fuzzy subgroups of a group. Since than many papers concerning
various fuzzy algebraic structures have appeared in the literature. Zahedi and et.
al. in [48] defined the concept of fuzzy subpolygroups of a polygroup which is a
generalization of the concept of Rosenfeld’s fuzzy subgroups.

Definition 2.2. [48]. Let (P, ◦) be a polygroup and let A be a fuzzy subset of P .
Then A is said to be a fuzzy subpolygroup of P if the following axioms hold:

(1) A(x) ∧A(y) ≤ A(z) for all z ∈ x ◦ y and x, y ∈ P ,
(2) A(x) ≤ A(x−1) for all x ∈ P .

For any fuzzy set A in P and any t ∈ (0, 1], we define the set

At = {x ∈ P | A(x) ≥ t}
which is called a t-level cut of A.

Theorem 2.3. [48]. Let P be a polygroup and A a fuzzy subset of P . Then A is a
fuzzy subpolygroup of P if and only if for every t ∈ (0, 1], At (6= ∅) is a subpolygroup
of P .

When A is a fuzzy subpolygroup of P , At is called a level subpolygroup of P .
The concept of level subpolygroup has been used extensively to characterize various
properties of fuzzy subpolygroups.
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62 B. Davvaz and P. Corsini

Let K ⊆ P . Then the characteristic function χK is a fuzzy subpolygroup of P
if and only if K is a subpolygroup of P .

3. (∈,∈ ∨q)-fuzzy Subpolygroups

A fuzzy subset A of P of the form

A(y) =
{

t(6= 0) if y = x
0 if y 6= x

is said to be a fuzzy point with support x and value t and is denoted by xt. A fuzzy
point xt is said to belong to (resp. be quasi-coincident with) a fuzzy set A, written
as xt ∈ A (resp. xtqA) if A(x) ≥ t (resp. A(x) + t > 1). If xt ∈ A or xtqA, then
we write xt ∈ ∨qA. The symbol ∈ ∨q means ∈ ∨q does not hold.

Using the notion of “belonging (∈)” and “quasi-coincidence (q)” of fuzzy points
with fuzzy sets, the concept of an (α, β)-fuzzy subgroup where α, β are any two of
{∈, q,∈ ∨q,∈ ∧q} with α 6=∈ ∧q is introduced in [6]. It is noteworthy that the most
viable generalization of Rosenfeld’s fuzzy subgroup is (∈,∈ ∨q)-fuzzy subgroup. A
detailed study of (∈,∈,∨q)-fuzzy subgroups has been considered in [7]. Based on
[7], we can extend the concept of (∈,∈ ∨q)-fuzzy subgroups to the concept of
(∈,∈ ∨q)-fuzzy subpolygroups in the following way:

Definition 3.1. A fuzzy subset A of a polygroup P is said to be an (∈,∈ ∨q)-fuzzy
subpolygroup of P if for all t, r ∈ (0, 1] and x, y ∈ P ,

(i) xt, yr ∈ A implies zt∧r ∈ ∨qA for all z ∈ x ◦ y,
(ii) xt ∈ A implies (x−1)t ∈ ∨qA.

We note that if A is a fuzzy subpolygroup of P according to Definition 2.2, then
A is an (∈,∈ ∨q)-fuzzy subpolygroup of P according to Definition 3.1. However,
as the following example shows, the converse is not true .

Example 3.2. Let P = {e, a, b} be the polygroup defined by the multiplication
table:

◦ e a b
e e a b
a a {e, b} {a, b}
b b {a, b} {e, a}

If A : P −→ [0, 1] is defined by

A(e) = 0.8, A(a) = 0.7, A(b) = 0.6,

then it is easy to see that A is an (∈,∈ ∨q)-fuzzy subpolygroup of P , but is not a
fuzzy subpolygroup of P .

Proposition 3.3. Conditions (i) and (ii) in Definition 3.1, are respectively equiv-
alent to the following:

(1) A(x) ∧A(y) ∧ 0.5 ≤
∧

z∈x◦y

A(z) for all x, y ∈ P ;

(2) A(x) ∧ 0.5 ≤ A(x−1) for all x ∈ P .
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Proof. (i =⇒ 1): Suppose that x, y ∈ P . We consider the following cases:

(a) A(x) ∧A(y) < 0.5,
(b) A(x) ∧A(y) ≥ 0.5.

Case a: Assume that there exists z ∈ x ◦ y such that A(z) < A(x) ∧ A(y) ∧ 0.5;
this implies A(z) < A(x)∧A(y). Choose t such that A(z) < t < A(x)∧A(y). Then
xt, yt ∈ A, but zt∈ ∨qA which contradicts (i).

Case b: Assume that A(z) < 0.5 for some z ∈ x ◦ y. Then x0.5, y0.5 ∈ A, but
z0.5∈ ∨qA, a contradiction. Hence (1) holds.

(ii =⇒ 2): Suppose that x ∈ P , we consider the following cases:
(a) A(x) < 0.5,
(b) A(x) ≥ 0.5.
Case a: Assume that A(x) = t < 0.5 and A(x−1) = r < A(x). Choose s such

that r < s < t and r + s < 1. Then xs ∈ A, but (x−1)s∈ ∨qA which contradicts
(ii). So A(x−1) ≥ A(x) = A(x) ∧ 0.5.

Case b: Let A(x) ≥ 0.5. If A(x−1) < A(x)∧0.5, then x0.5 ∈ A, but (x−1)0.5∈ ∨qA,
which contradicts (ii). So A(x−1) ≥ A(x) ∧ 0.5.

(1 =⇒ i): Let xt, yr ∈ A, then A(x) ≥ t and A(y) ≥ r. For every z ∈ x ◦ y we
have

A(z) ≥ A(x) ∧A(y) ∧ 0.5 ≥ t ∧ r ∧ 0.5.

If t ∧ r > 0.5, then A(z) ≥ 0.5 which implies A(z) + t ∧ r > 1.
If t ∨ r ≤ 0.5, then A(z) ≥ t ∧ r.
Therefore zt∧r ∈ ∨qA for all z ∈ x ◦ y.
(2 =⇒ ii): Let xt ∈ A. Then A(x) ≥ t. Now, we have A(x−1) ≥ A(x) ∧ 0.5 ≥

t ∧ 0.5, which implies A(x−1) ≥ t or A(x−1) ≥ 0.5 according as t ≤ 0.5 or t > 0.5.
Therefore (x−1)t ∈ ∨qA. �

By Definition 3.1 and Proposition 3.3, we immediately get:

Corollary 3.4. A fuzzy subset A of a polygroup P is an (∈,∈ ∨q)-fuzzy subpoly-
group of P if and only if the conditions (1) and (2) in Proposition 3.3 hold.

If A is an (∈,∈ ∨q)-fuzzy subpolygroup of a polygroup P , then it is easy to see
that A(e) ≥ 0.5.

Let P be a polygroup and χK be the characteristic function of a subset K of
P . Then it is not difficult to see that χK is an (∈,∈ ∨q)-fuzzy subpolygroup if and
only if K is a subpolygroup.

Now, we characterize (∈,∈ ∨q)-fuzzy subpolygroups by their level subpoly-
groups.

Theorem 3.5. Let A be an (∈,∈ ∨q)-fuzzy subpolygroup of P . Then for all 0 <
t ≤ 0.5, At is a non-empty set or a subpolygroup of P . Conversely, if A is a fuzzy
subset of P such that At (6= ∅) is a subpolygroup of P for all 0 < t ≤ 0.5, then A
is an (∈,∈ ∨q)-fuzzy subpolygroup of P .
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Proof. Let A be an (∈,∈ ∨q)-fuzzy subpolygroup of P and 0 < t ≤ 0.5. Let
x, y ∈ At. Then A(x) ≥ t and A(y) ≥ t. Now∧

z∈x◦y

A(z) ≥ A(x) ∧A(y) ∧ 0.5 ≥ t ∧ 0.5 = t.

Therefore for every z ∈ x ◦ y we have A(z) ≥ t or z ∈ At, so x ◦ y ⊆ At. Also, we
have A(x−1) ≥ A(x) ∧ 0.5 = t ∧ 0.5 = t, and so x−1 ∈ At.

Conversely, let A be a fuzzy subset of P such that At (6= ∅) is a subpolygroup
of P for all 0 < t ≤ 0.5. For every x, y ∈ P , we can write

A(x) ≥ A(x) ∧A(y) ∧ 0.5 = t0,
A(y) ≥ A(x) ∧A(y) ∧ 0.5 = t0,

then x ∈ At0 and y ∈ At0 , so x ◦ y ⊆ At0 . Therefore for every z ∈ x ◦ y we have
A(z) ≥ t0 which implies ∧

z∈x◦y

A(z) ≥ t0,

and hence the condition (1) of Proposition 3.3 is verified. To verify the second
condition, let x ∈ P . We can write A(x) ≥ A(x)∧ 0.5 = t0, and hence x ∈ At0 , and
x−1 ∈ At0 . Therefore A(x−1) ≥ A(x) ∧ 0.5. �

Naturally, a corresponding result should be considered when At is a subpolygroup
of P for all t ∈ (0.5, 1].

Theorem 3.6. Let A be a fuzzy subset of a polygroup P . Then At (6= ∅) is a
subpolygroup of P for all t ∈ (0.5, 1] if and only if

(1) A(x) ∧A(y) ≤
∧

z∈x◦y

(A(z) ∨ 0.5) for all x, y ∈ P ;

(2) A(x) ≤ A(x−1) ∨ 0.5 for all x ∈ P .

Proof. (=⇒): If there exist x, y, z ∈ P with z ∈ x ◦ y such that

A(z) ∨ 0.5 < A(x) ∧A(y) = t,

then t ∈ (0.5, 1], A(z) < t, x ∈ At, and y ∈ At. Since x, y ∈ At and At is a
subpolygroup, so x ◦ y ⊆ At and A(z) ≥ t for all z ∈ x ◦ y, which contradicts
A(z) < t. Therefore

A(x) ∧A(y) ≥ A(z) ∨ 0.5 for all x, y, z ∈ P with z ∈ x ◦ y,

which implies

A(x) ∧A(y) ≥
∧

z∈x◦y

(A(z) ∨ 0.5) for all x, y ∈ P.

Hence (1) holds.
Now, assume that for some x ∈ P, A(x−1) ∨ 0.5 < A(x) = t, then t ∈ (0.5, 1],

A(x−1) < t and x ∈ At. Since x ∈ At, we get x−1 ∈ At or A(x−1) ≥ t, which is a
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contradiction. Hence (2) holds.
(⇐=): Assume that t ∈ (0.5, 1] and x, y ∈ At. Then

0.5 < t ≤ A(x) ∧A(y) ≤
∧

z∈x◦y

(A(z) ∨ 0.5).

It follows that for every z ∈ x ◦ y, 0.5 < t ≤ A(z) ∨ 0.5 and so t ≤ A(z), which
implies z ∈ At. Hence x ◦ y ⊆ At.

Now, let t ∈ (0.5, 1] and x ∈ At. Then using condition (2), we have

0.5 < t ≤ A(x) ≤ A(x−1) ∨ 0.5 < A(x−1),

and so x−1 ∈ At. Therefore At is a subpolygroup of P for all t ∈ (0.5, 1]. �

Let A be a fuzzy subset of a polygroup P and

J = {t | t ∈ (0, 1] and At is an empty − set or a subpolygroup of P}.

When J = (0, 1], A is an ordinary fuzzy subpolygroup of the polygroup P (Theorem
2.3). When J = (0, 0.5], A is an (∈,∈ ∨q)-fuzzy subpolygroup of the polygroup P
(Theorem 3.5).

In [46], Yuan, Zhang and Ren gave the definition of a fuzzy subgroup with
thresholds which is a generalization of Rosenfeld’s fuzzy subgroup as well as Bhakat
and Das’s fuzzy subgroup. Based on [46], we can extend the concept of a fuzzy
subgroup with thresholds to the concept of fuzzy subpolygroup with thresholds in
the following way:

Definition 3.7. Let α, β ∈ [0, 1] and α < β. Let A be a fuzzy subset of a polygroup
P . Then A is called a fuzzy subpolygroup with thresholds of P if for all x, y ∈ P ,

(1) A(x) ∧A(y) ∧ β ≤
∧

z∈x◦y

(A(z) ∨ α) for all x, y ∈ P ;

(2) A(x) ∧ β ≤ A(x−1) ∨ α for all x ∈ P .

If A is a fuzzy subpolygroup with thresholds of P , then we can conclude that A
is an ordinary fuzzy subpolygroup when α = 0, β = 1; and A is an (∈,∈ ∨q)-fuzzy
subpolygroup when α = 0, β = 0.5.

Now, we characterize fuzzy subpolygroups with thresholds by their level sub-
polygroups.

Theorem 3.8. A fuzzy subset A of a polygroup P is a fuzzy subpolygroup with
thresholds of P if and only if At (6= ∅) is a subpolygroup of P for all t ∈ (α, β].

Proof. Let A be a fuzzy subpolygroup with thresholds of P and t ∈ (α, β]. Let
x, y ∈ At. Then A(x) ≥ t and A(y) ≥ t. Now∧

z∈x◦y

(A(z) ∨ α) ≥ A(x) ∧A(y) ∧ β ≥ t ∧ β ≥ t > α.

So for every z ∈ x ◦ y we have A(z)∨α ≥ t > α which implies A(z) ≥ t and z ∈ At.
Hence x ◦ y ⊆ At. Now let x ∈ At, then A(x−1) ∨ α ≥ A(x) ∧ β ≥ t > α. So
A(x−1) ≥ t and x−1 ∈ At. Therefore At is a subpolygroup of P for all t ∈ (α, β].
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Conversely, let A be a fuzzy subset of P such that At (6= ∅) is a subpolygroup
of P for all t ∈ (α, β]. If there exist x, y, z ∈ P with z ∈ x ◦ y such that

A(z) ∨ α < A(x) ∧A(y) ∧ β = t,

then t ∈ (α, β], A(z) < t, x ∈ At and y ∈ At. Since At is a subpolygroup of P and
x, y ∈ At, so x ◦ y ⊆ At. Hence A(z) ≥ t for all z ∈ x ◦ y. This is a contradiction
with A(z) < t. Therefore

A(x) ∧A(y) ∧ β ≤ A(z) ∨ α for all x, y, z ∈ P with z ∈ x ◦ y,

which implies

A(x) ∧A(y) ∧ β ≤
∧

z∈x◦y

(A(z) ∨ α) for all x, y ∈ P.

Hence condition (1) of Definition 3.7 holds.
Now, assume that there exists x0 ∈ P such that A(x0) ∧ β > t = A(x−1

0 ) ∨ α.
Then x ∈ At, t ∈ (α, β] and A(x−1

0 ) < t. Since At is a subpolygroup of P , so
A(x−1

0 ) ≥ t. This contradicts A(x−1
0 ) < t. Therefore A(x) ∧ β ≤ A(x−1) ∨ α for

any x ∈ P . Hence the second condition of Definition 3.7 holds. �

4. (∈,∈ ∨q)-fuzzy Normal Subgroups

In this section we first define an (∈,∈ ∨q)-fuzzy normal subpolygroup of a poly-
group and then obtain the relation between (∈,∈ ∨q)-fuzzy normal subpolygroups.
Finally (∈,∈ ∨q)-fuzzy cosets determined by (∈,∈ ∨q)-fuzzy subpolygroups are
discussed.

Definition 4.1. [48] Let A be a fuzzy subset of a polygroup P . Then A is said to
be normal if and only if for all x, y ∈ P ,

A(z) = A(z′), ∀z ∈ x ◦ y, ∀z′ ∈ y ◦ x.

It is obvious that if A is a fuzzy normal subpolygroup of P , then

A(z) = A(z′), ∀z, z′ ∈ x ◦ y, ∀x, y ∈ P.

Theorem 4.2. [48] Let A be a fuzzy subpolygroup of a polygroup P . Then the
following conditions are equivalent:

(1) A is a fuzzy normal subpolygroup of P ,
(2) For all x, y ∈ P , A(z) = A(x), ∀z ∈ y ◦ x ◦ y−1,
(3) For all x, y ∈ P , A(z) ≥ A(x), ∀z ∈ y ◦ x ◦ y−1,
(4) For all x, y ∈ P , A(z) ≥ A(x), ∀z ∈ y−1 ◦ x−1 ◦ y ◦ x.

Now, we give the definition of (∈,∈ ∨q)-fuzzy normal subpolygroup of a poly-
group, which is a generalization of the notion of fuzzy normal subpolygroup defined
by Zahedi and et. al. [48].

Definition 4.3. An (∈,∈ ∨q)-fuzzy subpolygroup of a polygroup P is said to be
(∈,∈ ∨q)-fuzzy normal if for every x, y ∈ P and t ∈ (0, 1],

xt ∈ A implies zt ∈ ∨qA for all z ∈ y ◦ x ◦ y−1.
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Theorem 4.4. For an (∈,∈ ∨q)-fuzzy subpolygroup of P , the following statements
are equivalent:

(1) A is an (∈,∈ ∨q)-fuzzy normal subpolygroup of P ,
(2)

∧
z∈y◦x◦y−1

A(z) ≥ A(x) ∧ 0.5 for all x, y ∈ P ,

(3) A(z) ≥ A(z′) ∧ 0.5, ∀z ∈ x ◦ y, ∀z′ ∈ y ◦ x,
(4)

∧
z∈x−1◦y−1◦x◦y

A(z) ≥ A(x) ∧ 0.5 for all x, y ∈ P .

Proof. (1 =⇒ 2): Suppose that A is an (∈,∈ ∨q)-fuzzy normal subpolygroup of
P and x, y ∈ P . We consider the following cases:

(a) A(x) < 0.5,
(b) A(x) ≥ 0.5.
Case a: Assume that there exists z ∈ y ◦ y−1 such that A(z) < A(x)∧ 0.5, which

implies A(z) < A(x). Choose t such that A(z) < t < A(x). Then xt ∈ A, but
zt∈ ∨qA which contradicts (1).

Case b: Assume that A(z) < 0.5 for some z ∈ y ◦ x ◦ y−1. Then we have
A(z) < 0.5 < A(x), which implies x0.5 ∈ A, but z0.5∈ ∨qA, a contradiction. Hence
(2) holds.

(2 =⇒ 1): Suppose that xt ∈ A and y ∈ P , then A(x) ≥ t. For every
z ∈ y ◦ x ◦ y−1, we have A(z) ≥ A(x) ∧ 0.5 ≥ t ∧ 0.5 which implies A(z) ≥ t or
A(z) ≥ 0.5 according as t ≤ 0.5 or t > 0.5. Therefore zt ∈ ∨qA.

(2 =⇒ 3): Let c, y ∈ P , for every z ∈ x ◦ y and z′ ∈ y ◦ x, we get x ∈ y−1 ◦ z′,
which implies z ∈ y−1 ◦ z′ ◦ y. Now, by using (2), we have A(z) ≥ A(z′) ∧ 0.5.

(3 =⇒ 2): Suppose that there exist x, y, z ∈ P with z ∈ y ◦ x ◦ y−1 such that
A(z) < A(x)∧0.5. Since z ∈ y ◦x◦y−1, there exists a ∈ x◦y−1 such that z ∈ y ◦a.
Since a ∈ x ◦ y−1, then x ∈ a ◦ y. Therefore by (3), we have A(x) ∧ 0.5 ≤ A(z),
which is a contradiction.

(2 =⇒ 4): Let x, y ∈ P . For every z ∈ x−1 ◦ y−1 ◦ x ◦ y, there exists z′ ∈
y−1 ◦ x ◦ y such that z ∈ x−1 ◦ z′.Since A is an (∈,∈ ∨q)-fuzzy subpolygroup, then
A(z) ≥ A(x−1) ∧A(z′) ∧ 0.5. By (2), we have A(z) ≥ A(x−1) ∧A(x) ∧ 0.5, and so
A(z) ≥ A(x) ∧ 0.5. Therefore

∧
z∈x−1◦y−1◦x◦y

A(z) ≥ A(x) ∧ 0.5.

(4 =⇒ 2): Let x, y ∈ P . For every z ∈ y◦x◦y−1, we have z ∈ y◦x◦y−1◦x−1◦x.
Hence there exists z′ ∈ y ◦ x ◦ y−1 ◦ x−1 such that z ∈ z′ ◦ x. So

A(z) ≥ A(z′) ∧A(x) ∧ 0.5 ≥ A(x) ∧ 0.5 ∧A(x) ∧ 0.5 = A(x) ∧ 0.5.

Therefore
∧

z∈y◦x◦y−1

A(z) ≥ A(x) ∧ 0.5. �
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Corollary 4.5. Let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . Then for
all x, y ∈ P , we have

(
∧

z∈x◦y

A(z)) ∧ 0.5 = (
∧

z′∈y◦x

A(z)) ∧ 0.5.

Proof. Let x, y ∈ P . For every z ∈ x ◦ y, we have z ∈ y−1 ◦ (y ◦ x) ◦ y. So there
exists z′ ∈ y ◦ x such that z ∈ y−1 ◦ z′ ◦ y. Since A is (∈,∈ ∨q)-fuzzy normal,
we have A(z) ≥ A(z′) ∧ 0.5, which implies A(z) ≥ (

∧
z′∈y◦x

A(z)) ∧ 0.5, and so∧
z′∈y◦x

A(z)) ≥ (
∧

z′∈y◦x

A(z)) ∧ 0.5. Therefore

(
∧

z′∈y◦x

A(z)) ∧ 0.5 ≥ (
∧

z′∈y◦x

A(z)) ∧ 0.5.

Similarly we obtain

(
∧

z′∈y◦x

A(z)) ∧ 0.5 ≤ (
∧

z′∈y◦x

A(z)) ∧ 0.5.

�

Theorem 4.6. Let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . Then At

(6= ∅) is a normal subpolygroup of P for all t ∈ (0, 0.5]. Conversely, if A is a fuzzy
subset of P such that At (6= ∅) is a normal subpolygroup of P for all t ∈ (0, 0.5],
then A is (∈,∈ ∨q)-fuzzy normal.

Proof. First, let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . That At is
a subpolygroup of P follows from Theorem 3.5. Now, we show that At is normal.
Assume that x ∈ At and y ∈ P . Then for every z ∈ y ◦ x ◦ y−1, we have

A(z) ≥ A(x) ∧ 0.5 (since A is (∈,∈ ∨q)− fuzzy normal)
≥ t ∧ 0.5 = t

and so z ∈ At. Therefore y ◦ x ◦ y−1 ⊆ At, i.e. At is normal for all t ∈ (0, 0.5].
Conversely, Let A be a fuzzy subset of P such that At is a normal subpolygroup

of P for all t ∈ (0, 0.5]. That A is an (∈,∈ ∨q)-fuzzy subpolygroup of P follows
from Theorem 3.5. Now, we show that A is (∈,∈ ∨q)-fuzzy normal. Assume that
x, y ∈ P , we have A(x) ≥ A(x) ∧ 0.5 = t0, hence x ∈ At0 . Since At0 is normal, we
have y ◦ x ◦ y−1 ⊆ At0 . So

z ∈ At0 for all z ∈ y ◦ x ◦ y−1,

which implies
A(z) ≥ t0 for all z ∈ y ◦ x ◦ y−1.

Therefore ∧
z∈y◦x◦y−1

A(z) ≥ A(x) ∧ 0.5.

�
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Definition 4.7. Let A be an (∈,∈ ∨q)-fuzzy subpolygroup of P . For any x ∈ P ,
Ax (resp. Ax) is define by

Ax(a) = (
∧

z∈a◦x−1

A(z)) ∧ 0.5,

(resp. Ax(a) = (
∧

z∈x−1◦a

A(z)) ∧ 0.5), ∀a ∈ P

and is called (∈,∈ ∨q)-fuzzy left (resp. right) coset of P determined by x and A.

The following example shows that for an (∈,∈ ∨q)-fuzzy subpolygroup A of a
polygroup P , the (∈,∈ ∨q)-fuzzy left coset need not be equal to the corresponding
(∈,∈ ∨q)-fuzzy right coset.

Example 4.8. Let P be the polygroup defined in Example 3.2, and let S3 =
{e, (12), (13), (23), (123), (132)} be the symmetric group of order 3. We consider
the polygroup S3[P ] (the extension of S3 by P , see [13]). We define A : S3[P ] −→
[0, 1] by

A(e) = 0.8,
A(a) = 0.3,
A(b) = 0.3,
A((12)) = 0.8,
A(x) = 0.4, ∀x ∈ S3 − {e, (12)}.

Then it is not difficult to see that A is an (∈,∈ ∨q)-fuzzy subpolygroup of S3[P ].
We have

A(132)((13)) = 0.4 and A(132)((13)) = 0.5.

Hence A(132) 6= A(132). This happens because A is not an (∈,∈ ∨q)-fuzzy normal
subpolygroup of S3[P ]. However we gave the following proposition:

Proposition 4.9. Let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . Then

Ax = Ax for all x ∈ P.

Proof. The proof follows from Corollary 4.5. �

Proposition 4.10. Let x, y ∈ P and for any a ∈ P , Ax(a) = Ay(a). Then for any
non-empty subset S of P , we have

(
∧

a∈S◦x−1

A(a)) ∧ 0.5 = (
∧

a∈S◦y−1

A(a)) ∧ 0.5.

Proof. We have

(
∧

a∈S◦x−1

A(a)) ∧ 0.5 ≤ (
∧

a∈s◦x−1

A(a)) ∧ 0.5 = (
∧

a∈s◦y−1

A(a)) ∧ 0.5, ∀s ∈ S.

Therefore

(
∧

a∈S◦x−1

A(a)) ∧ 0.5 ≤
∧
s∈S

((
∧

a∈s◦y−1

A(a)) ∧ 0.5) = (
∧

a∈S◦y−1

A(a)) ∧ 0.5.

The proof of converse inequality is similar. �
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The following is due to Theorem 5.3 of [48]. We shall give a proof for complete-
ness.

Theorem 4.11. Let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . Then

Aa = Ab ⇐⇒ A0.5 ◦ a = A0.5 ◦ b for all a, b ∈ P.

Proof. Assume that Aa = Ab. Then

Ab(b) = (
∧

z∈b◦b−1

A(z)) ∧ 0.5

≥ A(z′) ∧ 0.5, ∀z′ ∈ b−1 ◦ b (since A is (∈,∈ ∨q)− fuzzy normal).

Since e ∈ b−1 ◦ b and A(e) ≥ 0.5, we get

Ab(b) ≥ A(e) ∧ 0.5 ≥ 0.5.

Hence Aa(b) ≥ 0.5, and so

0.5 ≤ Aa(b) = (
∧

z∈b◦a−1

A(z)) ∧ 0.5

= A(z0) ∧ 0.5, for some z0 ∈ b ◦ a−1,

which implies 0.5 ≤ A(z0). For every z ∈ a−1 ◦ b, we have

0.5 ≤ A(z0) ∧ 0.5 ≤ A(z) (since A is (∈,∈ ∨q)− fuzzy normal),

which implies z ∈ A0.5. Therefore a−1 ◦ b ⊆ A0.5. Suppose that y0 ∈ a−1 ◦ b, then
a ∈ b ◦ y−1

0 .
Now, let x be an arbitrary element of A0.5 ◦a. By Theorem 4.6, A0.5 is a normal

subpolygroup, so x ∈ a ◦A0.5. Therefore x ∈ a ◦ c for some c ∈ A0.5, and hence

x ∈ a ◦ c ⊆ b ◦ y−1
0 ◦ c ⊆ b ◦A0.5 = A0.5 ◦ b.

So A0.5 ◦ a ⊆ A0.5 ◦ b. Similarly, we can show that A0.5 ◦ b ⊆ A0.5 ◦ a.
Conversely, suppose that A0.5 ◦ a = A0.5 ◦ b. Then for x ∈ P , we have

x ◦ a−1 ◦A0.5 = x ◦ b−1 ◦A0.5.

Also, we have

Aa(x) = (
∧

z∈x◦a−1

A(z)) ∧ 0.5 = A(z0) ∧ 0.5 for some z0 ∈ x ◦ a−1,

and
Ab(x) = (

∧
z∈x◦b−1

A(z)) ∧ 0.5 = (
∧

z∈b−1◦x

A(z)) ∧ 0.5

= A(z′0) ∧ 0.5 for some z′0 ∈ b−1 ◦ x.

Now, we show that

(A(z0) < 0.5 and A(z′0) < 0.5) or (A(z0) ≥ 0.5 and A(z′0) ≥ 0.5).

Assume that A(z0) < 0.5 and A(z′0) ≥ 0.5. Since A is an (∈,∈ ∨q)-fuzzy normal
subpolygroup, by definition for any c ∈ x ◦ b−1 we have A(c) ≥ A(z′0) ∧ 0.5 = 0.5,
so x ◦ b−1 ⊆ A0.5, which implies x ◦ b−1 ◦ A0.5 = A0.5. Since z0 6∈ A0.5, hence
x◦a−1 6⊆ A0.5 and so x◦a−1 ◦A0.5 6= A0.5. Therefore x◦a−1 ◦A0.5 6= x◦ b−1 ◦A0.5,
which is a contradiction. Similarly we can show that it is not possible to have
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A(z0) ≥ 0.5 and A(z′0) < 0.5.
Now, if A(z0) ≥ 0.5 and A(z′0) ≥ 0.5, then Aa(x) = 0.5 = Ab(x) for all x ∈ P .
If A(z0) < 0.5 and A(z′0) < 0.5, then

Aa(x) = A(z0) for some z0 ∈ x ◦ a−1,
Ab(x) = A(z′0) for some z′0 ∈ b−1 ◦ x.

In this case, we show that A(z0) = A(z′0). Since A0.5 ◦a = A0.5 ◦b, then b ∈ A0.5 ◦a,
and so there exists y ∈ A0.5 such that b ∈ y ◦ a, hence b−1 ∈ a−1 ◦ y−1. Since
z0 ∈ x ◦ a−1, then x ∈ z0 ◦ a. Therefore we get

z′0 ∈ a−1 ◦ y−1 ◦ z0 ◦ a.

Since A is an (∈,∈ ∨q)-fuzzy normal subpolygroup of P , we have

A(z′0) ≥ A(c) ∧ 0.5 for some c ∈ y−1 ◦ z0

≥ A(y−1) ∧A(z0) ∧ 0.5.

Since A(y−1 ≥ 0.5 and A(z0) < 0.5, we get A(z′0) ≥ A(z0). Similarly, we get
A(z0) ≥ A(z′0). Therefore Aa = Ab. �

Theorem 4.12. Let A be an (∈,∈ ∨q)-fuzzy normal subpolygroup of P . Let P/A
be the set of all (∈,∈ ∨q)-fuzzy left cosets of A in P . Then P/A is a polygroup if
the hyperoperation is defined by

Ax �Ay = {Az | z ∈ A0.5 ◦ x ◦ y}

and (Ax)−I = Ax−1 .

Proof. It is straightforward. �

Naturally, a corresponding result should be considered when At is a normal
subpolygroup of P for all t ∈ (0.5, 1].

Theorem 4.13. Let A be a fuzzy subset of a polygroup P . Then At (6= ∅) is a
normal subpolygroup of P for all t ∈ (0.5, 1], if and only if the conditions (1) and
(2) in Theorem 3.6 and the following condition hold:

A(x) ≤
∧

z∈y◦x◦y−1

(A(z) ∨ 0.5) for all x, y ∈ P.

Proof. The proof is similar to the proof of Theorem 4.6. �

Theorem 4.14. Let α, β ∈ [0, 1], α < β and A a fuzzy subset of P . Then At

(6= ∅) is a normal subpolygroup of P for all t ∈ (α, β] if and only if A is a fuzzy
subpolygroup with thresholds of P and the following condition holds:

(∗)
∧

z∈y◦x◦y−1

(A(z) ∨ α) ≥ A(x) ∧ β.

Proof. First, let A be a fuzzy subpolygroup with thresholds of P and assume that
condition (∗) holds. That At is a subpolygroup of P follows from Theorem 3.8.
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Now, we show that At is normal. Assume that x ∈ At and y ∈ P . Then for every
z ∈ y ◦ x ◦ y−1, we have

A(z) ∨ α ≥ A(x) ∧ β ≥ t ∧ β ≥ t > α.

So for every z ∈ y ◦ x ◦ y−1 we have A(z) ∧ α ≥ t > α, which implies A(z) ≥ t and
z ∈ At. Hence y ◦ x ◦ y−1 ⊆ At, i.e. At is normal for all t ∈ (α, β].

Conversely, let A be a fuzzy subset of P such that At (6= ∅) is a normal sub-
polygroup of P for all t ∈ (α, β]. That A is a fuzzy subpolygroup with thresholds
of P follows from Theorem 3.8. Now, we verify the condition (∗). If there exist
x, y, z ∈ P with z ∈ y ◦ x ◦ y−1 such that A(z) ∨ α < A(x) ∧ β = t, then t ∈ (α, β],
A(z) < t and x ∈ At. Since At is normal, so y ◦ x ◦ y−1 ⊆ At. Hence A(z) ≥ t for
all z ∈ y ◦ x ◦ y−1. This is a contradicts A(z) < t. Therefore

A(z) ∨ α ≥ A(x) ∧ β for all x, y ∈ P with z ∈ y ◦ x ◦ y−1,

and so (∗) holds. �

5. Implication-based Fuzzy Subpolygroup

Fuzzy logic is an extension of set theoretic multivalued logic in which the truth
values are linguistic variables (or terms of the linguistic variable truth). Some
operators, like ∧, ∨, ¬, −→ in fuzzy logic are also defined by using truth tables
and the extension principle can be applied to derive definitions of the operators.

In fuzzy logic, the truth value of the fuzzy proposition P is denoted by [P ]. In the
following, we display the fuzzy logical and corresponding set-theoretical notions.

[x ∈ A] = A(x),
[x 6∈ A] = 1−A(x),
[P ∧Q] = min{[P ], [Q]},
[P ∨Q] = max{[P ], [Q]},
[P −→ Q] = min{1, 1− [P ] + [Q]},
[∀xP (x)] = inf[P (x)],
|= P if and only if [P ] = 1 for all valuations.

Of course, various implication operators have been defined. We only show a
selection of them in the next table. α denotes the degree of truth (or degree of
membership) of the premise, β the respective values for the consequence, and I the
resulting degree of truth for the implication.

Name Definition of Implication Operator
Lukasiewicz Ia (α, β) = min{1, 1− α + β}

Standard Star (Godel) Ig (α, β) =
{

1 α ≤ β
β elsewhere

Contraposition of Godel Icg(α, β) =
{

1 α ≤ β
1− α elsewhere

Gaines-Rescher Igr(α, β) =
{

1 α ≤ β
0 elsewhere
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The “quality” of these implication operators may be evaluated either empirically
or axiomatically.

In the following definition we considered the definition of implication operator
in the Lukasiewicz system of countinuous-valued logic.

Definition 5.1. If a fuzzy subset A of a polygroup P satisfies the conditions (1)
and (2) below, then A is called a fuzzifying subpolygroup of P .:

(1) for any x, y ∈ P , |= [ [x ∈ A] ∧ [y ∈ A] −→ [∀z ∈ x ◦ y, z ∈ A] ],
(2) for any x ∈ P , |= [[ x ∈ A] −→ [x−1 ∈ A]],

Clearly, Definition 5.1 is equivalent to Definition 2.2. Therefore, a fuzzifying
subpolygroup is an ordinary fuzzy subpolygroup.

In [45], the concept of t-tautology is introduced, i.e.,

|=t P if and only if [P ] ≥ t for all valuations.

Based on [46], we can extend the concept of implication-based fuzzy subgroups
to the concept of implication-based fuzzy subpolygroups in the following way:

Definition 5.2. Let A be a fuzzy subset of a polygroup P and t ∈ (0, 1] be a fixed
number. If

(1) for any x, y ∈ P , |=t [ [x ∈ A] ∧ [y ∈ A] −→ [∀z ∈ x ◦ y, z ∈ A] ],
(2) for any x ∈ P , |=t [ [x ∈ A] −→ [x−1 ∈ A]],

then A is called a t-implication-based fuzzy subpolygroup of P .

Now, let I be an implication operator. Then

Corollary 5.3. A is a t-implication-based fuzzy subpolygroup of a polygroup P if
and only if

(i) I(A(x) ∧A(y),
∧

z∈x◦y

A(z)) ≥ t for all x, y ∈ P ,

(ii) for any x ∈ P , I(A(x) ∧A(x−1)) ≥ t.

Let A be a fuzzy subset of a polygroup P . Then we have the following results:

Theorem 5.4.

(1) Let I = Igr. Then A is an 0.5-implication-based fuzzy subpolygroup of P if
and only if A is a fuzzy subpolygroup with thresholds (α = 0, β = 1) of P.

(2) Let I = Ig. Then A is an 0.5-implication-based fuzzy subpolygroup of P if
and only if A is a fuzzy subpolygroup with thresholds (α = 0, β = 0.5) of
P.

(3) Let I = Icg. Then A is an 0.5-implication-based fuzzy subpolygroup of P if
and only if A is a fuzzy subpolygroupgroup with thresholds (α = 0.5, β = 1)
of P.

Proof. The proof follows directly from the definitions. �
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