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FUZZY SETS FROM A META-SYSTEM-THEORETIC
POINT OF VIEW

A. DANESHGAR AND A. HASHEMI

ABSTRACT. In this paper we present, for the first time, complete proofs of
the facts that have already been announced in [A. Daneshgar, A. Hashemi,
A general model for I/0 system theory, Proc. AIMC31, 2000, 292-299]. Our
approach here is to focus on the aspects related to fuzzy set theory and we
leave other connections to mathematical disciplines such as quantum groups,
categorical logic, homological algebra and measure theory to appear elsewhere.
The main contribution is to introduce a general framework based on enriched
category theory that covers the theory of translation invariant systems as a
special case, as well as the construction of the Haar fraction on a locally
compact group.

1. The General Idea and Some Basic Concepts

The general I/O system theory deals with modeling (i.e identifying) a system as
a black box with given input/output characteristics. In this approach the space of
inputs and the outputs is traditionally modeled as a function space with suitable
topological and algebraic properties, and the system itself is usually modeled as
a special type of an operator, mapping the elements of the input space to the
elements of the output space. The functions in the input/output spaces are usually
called signals and the maps are called operators (or systems), where the algebraic
and topological structure of the function space as well as the invariance constraints
are strong enough to guarantee a reconstruction property. Strictly speaking, if the
outputs for a certain specified set of signals are known, this reconstruction means
that one should be able to compute the output, for any input signal.
To be more specific, let us assume that a subspace ® of real functions is chosen
to be a model for the space of signals and (by abuse of language) assume that
it is rich enough to be a Banach space containing distributions (for more details
and generalizations see [16, 22, 36]). Also we assume that the class of systems
under consideration is the space of linear and shift invariant (LSI) operators such
as T : & — ® that satisfy

T(af +bg) =aT(f)+0T(g), T(f(z—=,))=T(f)(z-x).
Invited paper: Received in July 2006

Key words and phrases: L-fuzzy sets, Enriched category, I/O system theory, Morphological
filtering, Translation invariant system.



2 A. Daneshgar and A. Hashemi

Then it is well known that, under certain conditions, such an operator can be
represented as a convolution integral [32, 36], i.e.

(1) T(f)(@) = /R F(@ —y)h(y) dy & Conv(f, h)(@),

where h & T'(6) is the impulse response of the system and the input is the Dirac
impulse § (more general formulations can be traced in the theory of harmonic anal-
ysis on locally compact groups). This reconstruction property is strong enough to
characterize any LSI system as an integral operator that is completely determined
by a fized function as a very special output of the system. Therefore, for any such
system, one can identify the system just by knowing about one special output (i.e.
the impulse response h(z)).

It is instructive to note that in the above-mentioned setup, since the structure of
the input and output spaces are considered to be that of a topological vector space
in which addition and scalar multiplication operations play a central role, the ele-
ments of these spaces are treated as functions. However, it is conceivable to think of
weaker frameworks in which one uses only addition and possibly a weaker substitute
for multiplication (say comparison). Needless to say, by this change of settings one
loses linearity. But if one can still prove a reconstruction property, then one may
be successful enough to identify a broader class of systems that also contains some
nonlinear ones. On the other hand, it is quite natural to expect a weaker form of
reconstruction since in the new setup one has weakened the operational properties
of the signal space.

The next example considers such a framework in which we focus mainly on signals
as objects that can be compared or added together, and this is a good justification
for treating them as generalized sets rather than functions. In the sequel, it will
become more clear that this sort of approach can also be expressed as an extension
property from the Boolean algebra of sets to a Heyting algebra (justified by the
Strong Reconstruction Theorem below).

Morphological mathematics and translation invariant (TT) systems have been used
in signal processing [23, 24, 25|, since Matheron studied morphological operators
and random closed sets [26, 27, 29] and Tukey used median filters for noise can-
celation [37] (also see [33, 34, 35]). Considering recent developments in ordered
structures and category theory, the theory of TI systems has got the distinction of
being one of the new areas of research where there is a nice coalition of mathemati-
cal structures such as ordered groups and semigroups, topologies and locals as well
as fuzzy sets and categories [10, 14, 15, 17, 23, 24, 25, 38|.

A general model for TT systems, based on residuated semigroups, is introduced in
[11], and a reconstruction theorem is proved to show the consistency of the frame-
work. Also, duality, thresholding and representation theorems are considered in
this model [12, 13, 14] as important concepts in the theory.

We briefly review this reconstruction theorem [8, 9, 14, 25, 26]. Let G be an Abelian
group with binary operation + and let O be the identity element. We consider
the function space ® = {4 : G — QU {—o0}}, where Q is a complete lattice
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ordered group, say (2, <,*,+,0). We define the extension of group operations to
QU {—o00, 400}, for the virtual universal bounds —co and +oo as follows:

+(—00) = 400, +(4+00) = —0o0,

(=00) * (+00) = (+00) * (—00) = (+00) * (+00) = (+00),

(—00) * (—00) = (—00),

(+00) xp=p* (+00) = +00, (—00)*p=p* (—00) = —00 VpeN.

Hereafter, ® will be called the space of LG-fuzzy sets, and the subspace
{A:G— {0,—0}}

the space of crisp sets. The complement of an ordered pair (g,p)’ is defined to be
(—g,+p). The translated version of an LG-fuzzy set A = {(z, A(z)) |z € G } by
an ordered pair (g, p) is defined to be the LG-fuzzy set

Alg,p] = {(z +g,A(z) xp) | z € G}.

The reflection of an LG-fuzzy set A is defined as A®* = {(—z, A(z)) | x € G}, while
its complement is defined to be the set A° = {(z,+A(z)) | x € G}. Accordingly,
Minkowski addition and subtraction of LG-fuzzy sets A and B are defined as follows,

A& B =sup Alg, B(g)], A& B =inf Alg,+B(g)].
g

Also, the most important morphological operators Dilation and Erosion (morpho-
logical convolution) of A and B are defined to be

Di(A,B)=A®B°, Er(A,B)=AoDB°.
Now, consider the crisp set

0 r=0
Py _{ —oo otherwise.

Then one can easily check that (®,®) is a residuated semigroup with identity Py,
involution A® and residuation Er [3]. Moreover, the Galois connection (&, Er)
gives rise to a closure operator C(A, B) = Er(A ® B, B) and an opening operator
O(A,B) = Er(A, B) ® B as its dual.
An isotone operator is an order preserving map on ®. In other words T : & — &
is isotone if
VABe®d® A<B = T(A) <T(B).

Moreover, an operator T': & — & is translation invariant (TT) if

VgeG, VpeQU{-oo} T(Alg,p])=T(A)g,p]

The Kernel of an operator T is defined to be the set

Ker(T) ¥ {A€®|0<T(4)0).

In [11] it is proved that, under certain conditions, one has the Strong Reconstruction

Theorem for any isotone TI-operator T, i.e.

(2) T(A)= sup Er(A,D)= sup Er(4,D),
DeKer(T) DeB(T)
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where B(T'), the set of minimal elements of Ker(T'), is called the base of the system
and usually contains more than one element. This is quite natural since, intuitively,
linearity in LSI systems is weakened to “DC gain one” in T1 systems (i.e. translation
invariance on the valuation domain).

In what follows we discuss two simple examples in the discrete case to illustrate
some basic facts.

Example 1.1. In this example we consider the discrete system

def 1

T(f)n) = 3(f(n) +f(n —1) + f(n —2))

as a smoother (low-pass filter) on discrete signals f : Z — R.. Note that the design
of this filter is strongly dependent on the property of being able to divide by 3.
The first important observation is that T is an LSI system and its impulse response

h is the following;:
1 =
h(n) d:ef{ L n=0,1,2

0 n#0,1,2.
Therefore, T' can be expressed as the convolution
T(f)(n) =" f(n—m)h(m) = %(f(n) +fln—1)+ f(n-2)).
m=0

An important observation is that in this setting, 0 as the identity of addition, plays
the very important role of being the benign element.

On the other hand, one may note that 7' is also an isotone TT system with the basis
consisting of all maps h__, (r,s € R) defined as follows:

-r—s n=-2
def S n=-—1
ORI S
—00 otherwise.

Hence, by the Strong Reconstruction Theorem (Equation 2) we have:

T(f)(n) = sup Er(f,h,,)(n)
r,s€ER

= sup inf (f(n+m)—h, (m))
r,s€R meZ '

= sup inf (f(n)—r,f(n—1)—s,f(n—2)+7r+s).
r,s€ER
It is interesting to note that, in this case, since we are mainly using the comparison
as the basic operator, —oo is used as the benign value (also see the definition of
crisp sets above). Moreover, it is interesting to see how division is simulated by an
infinite number of comparisons (i.e. sup as an ordered limit).

The above example shows that an LSI system may have a simple representation
when multiplication and division are allowed, while it may not even have a finite
representation as a TI system. On the other hand, it may still be feasible to look
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for similar nonlinear systems that have simple representations as TI systems. The
next example illustrates such a case and may be compared with Example 1.1.

Example 1.2. In this example we consider the three point median filter which is
a nonlinear TT system quite similar to the three point mean filter of Example 1.1,
and have a very concise representation in terms of comparison operators.
The median filter on three points is defined as
def .

T(f)(n) = Medlan(f(n)v f(n - 1)5 f(n - 2))5
which is clearly an isotone TI operator with a basis consisting of three maps h, ,
for r,s € {—2,—1,0} defined as

def 0 n=rmrs:s
hr,s(n) = { —o0  otherwise.

Therefore, by the Strong Reconstruction Theorem (Equation 2) we have
T(f)(n) =  sap  Er(fh,,)(n)

r,se{—2,—1,0}

= sup (lnf(f(n)a f(n - 1))71nf(f(n - 1)7 f(n - 2))71nf(f(n - 2)7 f(n)))
It is interesting to note that the final expression is a fuzzy extension of the sum of
products form of the Boolean Median expression

xle + 1.21.3 + 1.31.17
in which multiplication (Boolean A) is replaced by (inf) and summation (Boolean
V) is replaced by (sup). From this point of view the space of all isotone TI systems
is the fuzzy extension of the space of isotone Boolean expressions (i.e. Boolean

expressions that only contain positive Boolean variables and the A and V operators
(for more on this see [13, 30, 38])).

Note that both Equations 1 and 2 express the system as a limit of convolutions
(in Equation 1 the limit is over a one element set!). In the rest of this paper our
main objective is to show that the convolution operator can be expressed as a Hom
functor in an enriched setup, and that the reconstruction is closely related to the
enriched Yoneda lemma. In Section 2.1 we prove this completely for the case of TT
systems. We introduce an approach to the theory of LSI operators in Section 2.2,
where we show that the Haar fraction can also be expressed in the enriched setup.
We postpone the rest of the discussion to Section 3.

2. The Main Meta-theory

In this section we generalize the basic setup discussed in the last section to a
categorical framework. For all basic concepts and definitions that do not appear in
the sequel we refer to the celebrated books of F. Borceux and G. M. Kelly [4, 19].
In Section 2.1 we introduce a general meta-model that covers the theory of TI sys-
tems as a special case. In Section 2.2 we introduce a step toward a meta-model that
might be developed to a meta-theory of integration, where as a piece of evidence
we show that this model covers the construction of the Haar fraction on a locally
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compact group.

In what follows we assume that V = (V,.,+,1,a,l,7,¢) is a symmetric closed
monoidal category enriched over itself, with identity I, and natural isomorphisms
a,l and r for associativity, left inverse and right inverse, respectively, for which
A.— 4 —+ Afor any A € V and the base category V, is complete and cocomplete.
We also assume that V = [I, _]Vo :V, — Set is the base functor and we adapt the
multiplicative notation in V. Note that under these assumptions V is also complete
and cocomplete as a V—category, I is a dense generator for V (in the enriched sense)
and consequently V is locally presentable as a V—category since — + [ is a right
adjoint and preserves all colimits. Also, note that by the cocompleteness of V,, 1
is the left adjoint of the base functor.

On the other hand, let D be a class of diagram—schemes and assume that V, C V,
is a small full subcategory such that V, is a free D—cocompletion of V; in the sense
that (see Theorem 5.35 of [19]),

e The totality of all D—colimits constitute a density presentation for the in-
clusioni:V, < V,.
e For any A € V,, the hom—functor [A, —] preserves all D—colimits.
Under these conditions i is full, faithful and dense (in the ordinary sense), and for
any D—cocomplete ordinary category C, the left Kan extension

Lan, : [V,,C] — D—Cocts[V,,(]
is an equivalence. Also, for each V' € obj(V,), the identity map
1:[i-,V] — [i—,V]

as unit, exhibits V' as the canonical colimit [i—, V] =i and this colimit is preserved
by any [A, —] with A € V,. Throughout the paper we assume that D contains all
diagram-schemes of the canonical cones over V,, since, by changing D to the class of
all diagram—schemes of the canonical cones, one obtains the same free cocompletion.
Moreover, we consider a (small) commutative group (G, +, —), with identity 0 and
we focus on the product space & = VOG equipped with the pointwise categorical
structure of V,. It is easy to see that if we consider ® as a category of functors
between the discrete category G' and V,, ® inherits the completeness properties of
V, and has a dense D-presentable full subcategory ®,. In this regard, we use the
following definitions and lemmas.

Definition 2.1. Let A, € ® be the constant functor with value W. A point
Pg,
as

" € ® with value V € ob j(V,) at coordinate g € G is defined (up to isomorphism)
9.V, | def V. z=g
P(e) = { —00 T #g.
Also, we define the map M* P — P forf:V — W (up to isomorphism)
as
of def | f r=g
= 1., z#g.
Lemma 2.2. For any A € obj(®) and f € map(®) we have,
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949
a) A=[[P 7.

geEG

(4.8,
b) 1A, ~I[ W',
geG w

Q) F=(f,),.o = [IM"".

geG

Proof. (a) and (c) are clear. For (b) assume that (Q,(m,)) is a representation of
def (4.4 1

the coproduct @ def [TA, andlet P = [[W

geG w
Therefore, m = (m_) € [A,A,], and by definition of P, we haveamap p: P — Q.
On the other hand, by the definition of P, for each W in the base of the product,
we have a morphism from A, to W, and consequently, by the universal properties

of P and Q we have a map q: Q — P. This shows that p=q~' and Q ~ P. O
Lemma 2.3. The mapping [ : ® — V, that maps A € obj(®) to [[ A, and

geG
f=0(,),ec : V—W to the unique map [[f : [[V, , — [IW,, is a functor.

geG geG geG

Proof. Clear by definitions. O

2.1. The Pointwise Constructions. As was mentioned earlier, here we consider
the following maps for a fixed D € & which, in their most general form, can be
described as,

(A(p)®; Ay D 1 Dy

i : def ;
Ty 0bi(#) — 0bj(2), Tp(4), = T (§W)) ,
|Tl<oo JEJ
; : def [e)f(AVJ- D=1y By le
o i) o), 1,51, e
|J]<oo j€E

where z € (G is a fixed coordinate and @ is a suitable associative bifunctor. To be
more precise, note that T, (A4) _, is the product of all finite sums @;W, such that
W, € obj(V,) for all j and there exists morphisms f, : A4 ,, — @, (ij +D
for all x € G.

The map H, can be interpreted similarly and we use this notation throughout the
paper. The following theorem answers the most basic question.

) (rlz))

Theorem 2.4. For any D € ®, both T, and H, can be naturally extended to
define functors on .

Proof. To begin, we define T, on Hom—sets. Hence, let A,B € ® andf: A — B
be a morphism. Then define,

(A(p)®; Ay =D 1 Dlg [Bay @ (Ayy

o I (W) ’ — I (W) ’

[J1<oo JEJ |Jl<oo JEJ

D1

T,(f)

But, since for each z € G we have amap f, : A, — B, the diagram of T, (B)

is a subdiagram of T, (A). Therefore, we have a unique map
TD (f) : TD (A) — TD (B)
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Now, it is easy to check that T, is a functor on ®. For H, one may follow the
same procedure. O

Proposition 2.5. If @& is preserved by (=) (resp. (.)) then

def =
TD(A)(Z) = H A(z)'D(mflz) = TD(A)(Z)
z€EG
def
(resp. HD(A)(Z) = 1] B, +D(f1m) = HD(A)(Z)).
z€EG

Proof. By considering the adjunction V.— 4 —+V in V and Lemma 2.2(b) we have,

[
T, (A)(z) =[Iw
w

Ay Bw TP, @) Pa=12twls

~ [ 4.,,-D

z€G

] [A
o w
w

(@=1z)"

The same result can be proved for H p dually. a

The following two theorems show the importance of the case emphasized in the
last proposition when the bifunctor @ is omitted.

Theorem 2.6. For any D € ® we have T, 4 H,,.

Proof. We should show that for any A, B € obj(®) there is a natural isomorphism
d:[T,(A),B] ~[AH,(B]

which may be reformulated as

d: H [TD (A)(z)7B(z)] = H [A(z)7 HD(B)(Z)]‘

z€G z€G

But, considering the definitions of T, and H,, this leads us to show the following
isomorphism,
d : H H [A(z)'D(m—lz)7B(z)] = H H [A(z)7B(z) - D(Z—lm)]'
zEGzEG z€EGzeG
To show the isomorphism, let z,z be two arbitrary elements of G. Then, by ad-
junction we have

oy [Aw Day Bl =14, B, =D 1

f(z,2)

A=) [A(2)D(p-1.)B(z)]  — [A@)B)+D0(,-1,)]

fu [fo - 1,B(2)] Ve Bz)+D(,—1,]
!
(=,2)

Cla) €) Pa=12)F(2)] [C) B(2)FP(a=12)]

FIGURE 1. See the proof of Theorem 2.6.



Fuzzy Sets from a Meta-system-theoretic Point of View 9

a Tp(AVBl _____ , [AHpL(B)
f [Tp (£),B] [f.Hp (B)]
dl
c [T, (C),B] [C.Hp (B)]

FIGURE 2. See the proof of Theorem 2.6.

However, this shows that there exists a unique map from the left product to the
right one. Now, the isomorphism is established if we consider the same map from
the right hand side to the left hand one and the universal property of the product.
For the naturality of d, consider A,C € obj(®) and map(®) > f: A — C, as
well as z,2 € G. By the fact that e, is a natural isomorphism, we have the
commutative diagram of Figure 1. Then, it is easy to see that the diagram of
Figure 2 is also commutative by the universal property of product. Therefore, d is
natural with respect to A, and it is easy to check that it is also natural with respect
to B in the same way. a

Theorem 2.7. There exist natural isomorphisms a,l, 7 and ¢ such that for any
D € obj(®), ® = (@,TD,HD,PO’I,d,l,f, ¢é) is a symmetric closed monoidal cate-
gory.

Proof. In Theorem 2.6 we proved that TD 4H - Therefore, in what follows, we
prove that ® is a symmetric monoidal category and we adopt the notation

Ao BY T, (B).
First, we address ourselves to the definition of the natural isomorphisms. In this
regard, for @ and any A, B,C € obj(®), we may define

Gype: TA(TR(0) — T, (O),

ABC TA(B)

which implies that for any z € G one should have,
(&ABC)Z : H H A(m) '(B(y)'C(y—lm—lz)) — H H (A(y)'B(y—lz))'C(m—lz)'

2€G yeEG r€EG y€EG
However, for each element in the base of the left diagram, there exists a map to
an element in the base of the right diagram, which is the component of the natural
isomorphism a corresponding to the objects 4 ,,, B, and C(y . Therefore,
by the universal property of coproduct, one obtains a unique map which is what
we consider as (a Also, a is a natural isomorphism, since for any z € G,

—lp—1y)

ABC’)z :
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AR(BR(C®D)) —%  » (A®B)®(C®D) —— %+ ((A®B)®C)®D
1®a a®l
AB((B®C)®D) > (A®(B®C))®D

FIGURE 3. Associativity of @ where A ® B def T,(B) (See Theorem 2.7).

(@,5c). 1 a natural isomorphism for any A, B,C' € obj(®). Now, we note that
the associativity of @ is expressed as the commutativity of the diagram of Figure 3.
The commutativity of this diagram has been already checked in [28] where the
relationships between the monoidal structures of ® and cohomology groups of G
are studied. In order to define [, for each A € obj(®) as,

LT on(A) — 4,
we have to define for each z € G a map,

~ 0,I

,).: ZIE_IG P(m) .A(rlz) — AL
Again, as in the case of a, for each element of the left diagram, it is enough to
find a map to an element of the right diagram. Note that, if z = 0, then (,)_ is
exactly what we are looking for. On the other hand, if z # 0, then by the following
adjunction

we obtain the map
(—00).A

Thus, from the universal property of coproduct, we have a unique map which can

be defined as (I,).. It is again clear that [ is a natural isomorphism, since (). is
a natural isomorphism for each z € G.

To define 7 (which is similar to [) we should define

— (—00) — A .

(2=12)

" 0,1
7). 11 A(m).P(flz) — A,
z€G

properly, for each z € G. Again, in order to obtain the necessary maps between the
diagrams, we note that in the case of # = 0, (r, ). itself is the desired map, and if
x # 0 then, since V is symmetric and monoidal, we have the following map,

A, (-00) — (=00).A, — (—00) — A .

)
Thus, from the universal property of coproduct, we obtain a unique natural map
which can be considered as (7,).. This defines 7 as a natural isomorphism.

To show that ® is a monoidal category, we should verify the commutativity of the
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A®(P>'®B) (AoP°T)

A

FIGURE 4. See the proof of Theorem 2.7.

diagram depicted in Figure 4. To do this, we define

déf { —00 Yy = 0
oy A(m) 'B(m—lz) y # 07
which shows that (A® B)_, = [[ [[P,,.. This reduces the commutativity of

yEG z€G
the diagram in Figure 4 to the commutativity of the diagram in Figure 5, which is
clear since V is a monoidal category.
Now, we prove that ® is symmetric with respect to a properly defined natural
isomorphism
EA,B : TA (B) — TB (A)

that, as before, is naturally defined by considering the following maps,
¢ :B A — A .B

B(m),A(m_lz) (=) (2—1z) (e=1z)""(2)"

Next, we must verify the commutativity of diagrams in Figure 6 which is reduced,
by definition, to the commutativity of the same diagrams for each z,y,z € G in V.
However, this is clear since V is symmetric as in the case of [ and 7. O

Ay (I.B(,—1,) (A@) ). B, 1,

A(w) 'B(m_lz)

FIGURE 5. See the proof of Theorem 2.7.
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A®(BoC) —2 + (A@B)®C) —2=C  +  C®(A®B)

AB(CEB)  ———>  (ABC)BB — (C®A)@B
A®B _c 5 B®A  I®A —c 4 ART
1 / \ /
ARQB A

FIGURE 6. See the proof of Theorem 2.7.

Definition 2.8. For any ®—functor F : ® — &, we define the kernel of F, Ker(F),
to be the category of elements of the Set—functor [P”", F—], .

Theorem 2.9. Let F : d — & be a d—functor such that for any D € &, F
preserves H,, the internal Hom of ®, and Ker(F) is a D—type diagram—scheme.
Then F has a representation as a D—colimit of representables as

F(A) ~ Colim H, (A).

(D,d)eKer(F)

Proof. First, note that by the Yoneda lemma, the category of representable
d—functors over F is the dual of Ker(F). Hence,

[P"", F-], ~ Colim

0,I

[‘D7 _]q> = COlim(D,d)eKer(F) [P ‘ 7HD(_)]<I>'

(D,d)EK er(F)

If we assume that G is a colimit of the representable ®functors over F (i.e. the right
hand side), then by density of ®, it is sufficient to show that [V, G(A)], ~ [V,F(4)],
for any A € ® and V € ®,. This can be verified as follows:

[V,G(A)], ~[V,Colim, , r.r Hp(A)], =~ Colim

= COlim(D,d)EKer(F) [P0:I7 HV(HD(A))]1> o1 .
waexerey [ Hp(Hy ()] = [P, F(H, (A)],
Hy (F(A)]s ~ [V, F(A)],-

[V H, (4],

(D,d)EKer(F)

~ Colim
~ |:‘F)O,I

In the following examples we consider some important special cases.

Example 2.10. Consider G = (R,+) and V = (R,+,<) with two universal
bounds +o0o and —oco (see Section 1). Then T is the Minkowski addition and
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H is the morphological erosion operator.
Also, in this case, it is clear that being a ®—functor is equivalent to the concept of
being an isotone translation invariant operator, where we have

Ker(F)={A € ® |F(4), >0}

Moreover, note that, in this case Theorem 2.9 yields the Strong Reconstruction
Theorem for isotone TI operators (Equation 2).

It is also interesting to consider V = (R, ., <), where (.) is the ordinary multipli-
cation, with 0 as the universal lower bound and an auxiliary universal upper bound
+00. Then we have

TD (A)(z) = sup (A(z)'D(—z+z))7 HD(B)(Z) = inf (B(m) - D(—z+m))'

Ed

These relations, along with the corresponding reconstruction theorem, can be con-
sidered as a multiplicative version of the theory of TI systems.

Moreover, it should be noted that the same setup can be used for discrete spaces
where G = (Z,+) or G = (Z,,+).

2.2. The Uniform Constructions. In this section we consider the following maps
for a fixed D € @,

4 (2)®; (AW]- +D(m_1z]. ) s

T,:2—V, T,(4H)= 1] (&W,) :

[J1<oo JEJ
R y ®; (AV], 'D(Zl—lm))‘B(z)]Q
HD:¢—>V7 HD(B): H ’ (69‘/])’
[T|<oo JjEJ

where @ is a suitable associative bifunctor. Again, at first, we consider the most
simple case for which we have,

A, .D

By
v; (zj—lm) (z)l®

and H,(B)=]] V.

J

. [A(m),AWj +D(m_1zj)]q>
T,(A)=11W,
In this regard we prove the following theorem.

Theorem 2.11. If the tensor of V is preserved by coproducts, then there exist a

natural composition law and an identity map such that [D, B) def I:ID(B), as the

internal Hom, turns ® into a V—-category.

Proof. We first introduce the composition map
M :[D,B].[A,D] — [A,B]

as follows:
By, - Pl P le (Bw, 'A(z;%))'D(m)]‘f o, - Aepten P@le
M:]] V.. 11 W, — 11
i J k
Therefore, M may be rewritten as
BV Pty P@leX (8w, - A -1 Pyl o, Aepten Pl

M] WV, W) —1]
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a

(fig (D) . A (C)) - Fi (B) > fig(D) . (g(o) . fi, (B))

Ag(D) . H,(B) Ag (D) . Ay (@)

fi, (D)

F1GURE 7. See the proof of Theorem 2.11.

To introduce M, it is enough to show that the left diagram is a subdiagram of the
right one. A typical element of the left diagram is V,.W, which is indexed by the
maps,

fm : (Vz : D(;1 ) — B(m)

—1la)

g, (W, . A(zj—lm)) — D,

Hence, we have the following composition of maps,

fIO(IV_.gfl):Vi.W]..A(f1 — B

; e ()

By the universal property of coproduct, we get a unique map (up to isomorphism)
which is defined to be M. Now, we introduce the map .J,, for each A € obj(®), as,
J, : T — [A, A]. By definition,

[(AVi . A(zflm))‘A(m)]é [(Avi . A(2712)),A(2)]¢
[D,B] =11 v.=101 V.=11 Er(4,4).,.
i 2€G i seG
On the other hand we have
I = H T(z)7



Fuzzy Sets from a Meta-system-theoretic Point of View 15

where T} is as follows:

T

def I =0
(= —

—o0 x #0.
Note that to introduce J, it is enough to introduce a map such as
6:1— Er(A,A),,
which is easily defined by the universal property of the coproduct and the map I,
of the monoidal category V. Therefore J is almost unique.

Next, we check commutativity of diagrams. At first, we consider the diagram of
Figure 7. Since the tensor of V is preserved by coproducts, it is clear that

(H.(D) . H,(C)) . H,(B)
can be expressed as a coproduct of ((V, . W,) . U,)’s over a diagram which is the

product of the corresponding three diagrams in Set, in which V,, W, and U, are
the typical elements of these diagrams. Now, we may note that each (V, . W)

c

can be considered as a node of the base diagram of I:IB (D) as was discussed in the
definition of the composition map M. Hence, ((V, . W,) . U,) may be considered
as a node of the base diagram of H,_ (D) . H, (B), which (again as it was discussed
in the definition of the composition map M) shows that it is also a node of the
base diagram of H, (D). Therefore, by the universal property of coproduct, the
diagram depicted in Figure 7 is commutative.

M
[B,B] . [A,B] > [A,B]

I.[A,B]

F1GURE 8. See the proof of Theorem 2.11.

M
[A,B] . [A,A] > [A,B]

[A,B] . I

FI1GURE 9. See the proof of Theorem 2.11.
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Next, we consider the diagram of Figure 8, for commutativity. We shall prove that
there is only one map from I . [4, B] to [A, B]. To see this, we first note that

(A, 'B(zfl ))’B(w)]‘1> Ay -4 1 Bayle

i z f (=7 ta))
[B,B] . [4,B] =11 J w1 v,
J [(ij . B(zj_lm)),B(m)]Qx [(AVi 1_ A(zi_lﬂ))‘B(m)]Q
=1 w; . Vo),
ji
[(A"i ' A(z;lz))’B(m)]<I>
I. [AaB] = H (T(m)"/;)a

, — B, which

shows that for 2z, = 0 this map is the index of the node I in the base diagram of
[B, B]. Consequently, from each node of the diagram of I . [A, B], such as T, . V;,
there is a map to one of the nodes of the diagram of [B, B] . [A, B], namely I . V,.
But, using the same reasoning as the definition of the composition map, the base
diagram of [B, B] . [4, B] is a subdiagram of [A4, B]. Therefore, by the universal
property of the coproduct, there is only one map from I . [4, B] to [A, B], which
shows that the diagram is commutative.

The commutativity of the right inverse diagram (Figure 9) can be checked in the
same way. O

and that in the monoidal category V there is the map lB( . I.B,

As a special important example we have,

Example 2.12. It is possible to consider the setup of Example 2.10 when the
bifunctor @ is omitted and compute the corresponding functors. However, if we
reverse the order we come across another important concept.

Let G = (R,+) and V = (R™,.,>). Then

H,(B) =inf (sup (B, + D

z

)

in the usual order of real numbers. In what follows we show that this can be
considered as a simplified version of the Haar fraction!
To see this, let & = + be the ordinary addition of real numbers. Then we obtain
the Haar fraction as follows:

H,(B) = inf {,¢,| Yz B, <%, ¢,D

c.,z.
3’7

(—z].+m)} = (B : D)a

where everything is expressed in terms of the usual order of real numbers.

3. Concluding Remarks

As it has been shown in this paper, the fuzzy extension of positive Boolean func-
tions can give rise to a very general meta-system-theory based on the theory of
enriched categories. The generalization not only covers the classical case of TI sys-
tems but also seems to be rich enough to prepare the basic steps toward a general
meta-theory for harmonic analysis on locally compact groups (or something very
similar). This, in a way, suggests that, above all, everything is expressed in terms
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of objects and maps, and what we are concerned with, or what fixes our intuition
about the whole theory, is how one is treating the maps as basic objects. In the
more algebraic context, maps are usually treated as functions, mainly because of
their operational properties, while in the set theoretic approach one prefers to treat
maps as generalized sets where this in a way justifies the prefix fuzzy in the litera-
ture. From this point of view one may find some connections to the logical aspects
of the subject that will not be discussed here [1, 2, 4, 5, 6, 7, 30, 38].

On the other hand, there seems to be so many nice problems from the other way
round. Among these, a reference to the results of [14] related to opening, closing
and granulometries and their generalizations to the categorical setup seems to be
among the most interesting problems, which are definitely related to the theory of
enriched monads [3, 4, 19, 21] (see [31] for some connections to computer science).
Also, it is instructive to mention that, considering some recent results supporting
the existence of some connections between mathematical morphology and evidence
theory ([18] and references therein), the idea of formalizing these connections also
seems to be an interesting project.

From a purely categorical point of view, we believe that one of the most interesting
problems is to construct more general limits for which the whole setup is valid.
This, on the one hand, is important since the second half of the construction for
a generalized Haar measure needs a general categorical limit that also satisfies ba-
sic properties of a topological limit in some sense. Also, on the other hand, it is
quite fortunate that some basic steps towards generalizing limit constructions in
the enriched framework has already been taken [5, 6, 7, 20]. Above all, another
interesting aspect is to study the consequences of results of this paper when the
enriched category is chosen to be something other than a totally ordered subgroup
of the real numbers.

One may also introduce some basic and interesting problems from a system-theoretic
point of view. As a fundamental problem, we would like to mention the design prob-
lem for TI systems that may also include a study of such systems with feedback.
As another important problem, one may ask about a generalization of some opera-
tional results in Boolean algebras and their consequences in the categorical setup.
Among these, it is interesting to single out the Hadamard-Walsh transform as one
of the most basic ones that ought to be studied.

Strictly speaking, it seems that based on some recent developments throughout
different branches of mathematics, the structure of a complete closed monoidal cat-
egory is a good candidate to be thought of as a generalization of the concept of
a Banach space (in the sense discussed in this article). Therefore, it is natural to
ask about the limits of the generalized theories, to gain something new that is still
effective in a sense. This, a hard work to be done, may definitely influence many
different branches of mathematics if it turns out to be fruitful enough, and presents
a vast arena for continuing research that may unify and prove the effectiveness of
well-developed aspects of fuzzy set theory.
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