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ABSTRACT. A fuzzy observer based scheme for synchronizing two hyperchaotic 
oscillators via a scalar transmitted signal for cryptographic application is 
proposed. The Takagi-Sugeno fuzzy model exactly represents chaotic systems. 
Based on the general fuzzy model, the fuzzy observer of a chaotic system is 
designed on the basis of the n-shift multiple state based key encryption algorithm.  
The scalar transmitted signal is designed in such a way that the hyperchaotic 
carrier masks the encrypted signal, which in turn hides the message signal. 
Simulation results show that the proposed scheme gives a better performance 
even when a small additive stochastic noise is present in the channel.  

 
 

1. Introduction 

The use of  synchronization of chaotic systems for the purpose of secure comm-     
unication in cryptography applications was reported by A.Tamasevicius et al [12].   
A chaotic signal has a spread-spectrum and can hide a small message signal in the 
spectral domain.  However, a chaotic system can be easily identified in the time 
domain using one of its state variables.  The idea of chaotic masking is to directly 
add the message in a noise-like chaotic signal at the transmitter, while chaotic 
modulation is done by injecting the message into a chaotic system as in spread-
spectrum transmission [6]. 

Grassi and Mascolo[5] have proposed a transmitter and receiver, which are based 
on 3D hyperchaotic oscillator [13], and which are synchronized via a scalar signal by 
exploiting the concept of the observer from modern control theory. In reference [7]  
the secure communication of chaotic systems with robust performance via a fuzzy 
observer based design has been proposed, but these methods do not provide robust 
performance in the presence of  channel noise or parameter changes. 

On the other hand, controller and observer design for non-linear systems using   
T-S Fuzzy models have been reported by several authors[4,8].  The use of a fuzzy 
observer design helps to achieve the desired objective in a straight forward manner 
employing the parallel distributed compensation concept. 
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 In this paper, a secure communication scheme, which combines cryptography 
and the synchronization of hyperchaotic systems based on a fuzzy observer with    
n-shift multiple state based key algorithms, is proposed. Based on the general         
T-S fuzzy model, the fuzzy observer of a chaotic system is designed in the receiver. 
An n-shift cipher with a multiple state based key to encrypt/decrypt the message 
signal is also proposed. The use of multiple state based keys can increase the 
complexity of the transmitted signal and is likely to improve the security of 
communication. 

The rest of the paper is organised as follows. Section 2 deals with a secure 
communication scheme for cryptography. In Section 3, the proposed n-shift 
multiple key algorithm for cryptography is explained.  In Section 4, we establish a  
T-S fuzzy model that can represent a chaotic system. In Section 5, we construct the 
fuzzy observer of chaotic systems and derive the conditions via Linear Matrix 
Inequality (LMI). In Section 6, simulation results for two cases are presented. 
Section 7 concludes the paper.      

 
2. The Proposed Communication Scheme 

The proposed communication scheme with possible impovement in the security 
properties is shown as a block diagram in Figure 1. The  transmitter consists of a 3D 
hyperchaotic oscillator and an encryption function, which is used to encrypt the 
message signal p(t) by means of the hyperchaotic key k(t).  The system states are 
represented by x(t). The encrypted signal een(t) is added to the output y(t) of the 
oscillator circuit and then transmitted on the channel z(t). An n-shift cipher [14] 
with multiple state based key algorithm which is proposed to encrypt the message 
signal p(t) is explained in Section 3. 
 

 

 

 

 

 

 

 

 

 
FIGURE 1. The proposed communication scheme 

It may be noted that the receiver is a mirror of the transmitter. The difference 
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the fuzzy obsever is sent for decryption. As the transmitter and the receiver                  
are synchronised, the predictedvalue of (t)x̂ approaches x(t), (t)k̂ approaches     
k(t), and (t)êen  approaches (t)een  and decryption can be performed, where                           

k(t)=x1(t)+x2(t)+x3(t) and 1 2 3k (t)= x (t)+ x (t)+ x (t)
∧ ∧ ∧ ∧

.Consequently (t)p̂ approaches 
p(t). 

 
3. n-Shift Multiple Key Cipher Algorithm 

 

The n-shift cipher with multiple state based key algorithm is proposed to encrypt 
the message signal given in equation (1).  In this technique, the message signal is 
shifted n-times with the key k, which is the combination of states (x1, x2, x3) of the 
chaotic system considered. The use of the multiple state based key algorithm tends 
to increase the complexity of the transmitted signal. 

 

                            ( )( )( )en 1 1 1e (t)=f ....f f p(t),k(t) , k(t) ,....,k(t)                             (1) 
 

The non-linear function f1(x,k) is defined as follows: 

                              

( ) ( )
( ) ( )
( ) ( )

1

x+k +2h, -2h x+k -h

f (x,k)= x+k , -h x+k h

x+k -2h, h x+k 2h

≤ ≤

< <

≤ ≤

⎧
⎪
⎨
⎪⎩

                       (2) 

where h is chosen such that p(t) and k(t) lie between –h and h. It may be noted that 
the decryption technique is similar to the encryption technique (1). The decryption 
function is defined as 

                           en1 1 1p (t)  = f ....f f ( t) ,-k (t) , -k (t) ,.... ,-k (t)
∧ ∧⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
e             (3) 

 

where  f1(x, k) is given in equation (2). 

 
4. Design of Fuzzy Model 

 

In a fuzzy observer design, a chaotic system should be exactly represented by a    
T–S fuzzy model.  Consider a general chaotic system as given below: 

 

                                                    
s x ( t )  =  f ( x ( t ) )

y ( t )  =  h ( x ( t ) )                                           (4) 

where x nR∈ is the state vector and s x ( t )  respectively denotes x ( t )
•

and 

x ( t + 1 ) in continuous-time and discrete-time systems; my R∈  is the system 

Archive of SID

www.SID.ir



24                                        V. Natarajan, P. Kanagasabapathy, N. Selvaganesan and R. Natarajan 

 

output; f(.) and h(.) are the nonlinear functions with  appropriate dimensions. The 
fuzzy representation of equation (4) is given by of the following rules: 
Plant Rule i: 
If ( )1z t  is 1iF  and … and  ( )gz t  is 

giF ,  then 

( ) ( )sx t  = A x t +bi i  
                                      ( ) ( )iy t  = C x t       for  i=1, 2 ,…, r                            (5) 
 

where, ( )1z t , ( )2z t , … , ( )gz t  are the premise variables which represent the 
states of the system;  Fji (j =1, 2,…., g) are the fuzzy sets; r is the number of fuzzy 
rules; Ai and Ci are the system and output matrices with appropriate dimensions; and 

n
ib R∈ denotes the constant bias term, which is generated by the exact fuzzy 

modeling procedure. 
Using the singleton fuzzifier, product fuzzy inference and the weighted average 

defuzzifier, the final output of the fuzzy system is inferred as follows: 
r

i i i
i= 1

r

i i
i= 1

s x ( t)  = µ (z (t))(A x (t)+ b )

y(t)  = µ (z ( t))(C x (t))

∑

∑
 

where, z(t)=[z1(t) z2(t) … zg(t)]T and ( )( ) ( )i

r

i i
i=1

µ z t = w (z(t)) w (z(t))∑ with 

( )( ) ( )
g

i j i j
j = 1

w z t = F z ( t )∏ .  It may be noted that ( )
r

i
i = 1

µ z ( t ) = 1∑  for all 

t, where iµ (z(t)) 0≥  for i=1, 2, …, r. 
 
From the equations (4) and  (5), it is clear that if we appropriately specify the fuzzy 
membership functions in the premise parts and associated entries of matrices Ai, Ci 
and bi in the consequence parts, the chaotic system can be represented by a fuzzy 
model.  In this paper Lorenz’s oscillator system in T–S fuzzy model is considered.  
Lorenz’s equation: 

                                     
8

3

1 1 2

2 1 2 1 3

3 1 2 3

1

x ( t )  =  -1 0 x ( t)  +  1 0 x (t)

x ( t )  =  2 8 x ( t)  -  x ( t)  -  x ( t )x ( t )

x ( t )  =  x ( t )x ( t )  - x ( t )

y ( t )  =  x ( t)

•

•

•
                                (6) 

 

The premise variable of the fuzzy rules is 1x (t) , which satisfies [ ]1x (t) -d d∈  with 
d=30. The fuzzy dynamic model that exactly represents the Lorenz’s equation in (6) 
is derived using this range as follows: 
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Rule i: 
If ( )1x t  is iF  then                

                                              
( ) ( )
( ) ( )

i i

i

sx t  = A x t +b

y t  = C x t    for i=1, 2
                                        (7) 

 
where x(t) = [x1(t), x2(t), x3(t)]T , the fuzzy sets are chosen as 
 

( )( )( )1 1 1F (x (t)) = 1 2 1+ x t d , and ( )( )( )2 1 1F (x (t)) = 1 2 1- x t d  
 and the system matrices are given by 
 

1

-10 10 0

28 -1 -d

-80 d 3

A =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   
2

-10 10 0

A = 28 -1 d

-80 -d 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
C1 = C2 = [ 1  0  0], and b1 = b2 = 0. 
   

5. Fuzzy Observer of Chaotic Systems 
 

Consider a chaotic system described by the T–S fuzzy model as given in 
equation (7) and assume that (Ai, Ci) is a detectable pair for each local linear model.  
A fuzzy observer can then be derived to estimate the state x(t) from the system 
output.  For simplicity, the premise variable of observer rules and that of fuzzy rules 
are assumed to be same.  Accordingly, a fuzzy observer is given with the following 
rules: 
Observer rule i: 
If ( )y t  is iF  then 

                                       ( ) ( )

( ) ( )
i i i

i

s x t  = A x t +b +L (y(t) - y (t))

y t  = C x t for  i =1, 2 , ... , r

∧ ∧ ∧

∧ ∧
                               (8)       

 

where, Li ( i=1,2.....r ) is the observer gain, determined using LMI approach [9] to 
ensure the quadratic stability of fuzzy observer dynamics (8). The overall fuzzy 
observer is inferred in the following equations. 
 

                           
( ) ( ){ }
( ) ( )

r

i i i i
i=1

i

s x t µ (y(t)) A x t +b +L (y(t) - y (t))

y t = C x t

∧ ∧ ∧

∧ ∧

= ∑
                     (9)            
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where, ( )( ) ( )( ) ( )( )( )r
i i ii 1µ y t w y t / w y t

=
= ∑  with ( )( ) ( )i iw y t = F y(t) 0≥ ,     

r=2  and 
  

1 2

0.8054 0.9665
L 0.8947 L 1.0736

0.8945 1.0734

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
The gains L1, L2 of the fuzzy observer are determined using the LMI approach [9]. 
These values are incorporated in the  design of fuzzy observer.     

 

6. Simulation Results 

Simulation results for two different cases are presented to illustrate the 
performance of the fuzzy observer for a 3D chaotic system in cryptographic 
application.  
Case 1: Channel is assumed to be noise free. 
Case 2: Small additive stochastic noise is present in the channel. 
The message signal p(t)=0.5 sin(t) and ‘h’ is chosen as 0.7 for this simulation. 
 
6.1. Noise Free Channel.  Figures 2 to 7 show the simulation results for the noise 
free channel. The hyperchaotic transmitted signal (channel output) is shown in 
Figure 2, whereas the recovered message signal (using equation 3) is shown in Figure 

3.  It can be seen from this figure that p(t)
∧

approaches p(t).  Figures 5 and  6 show 
the variation of state variables and their corresponding errors for a given chaotic 
system and fuzzy observer.  

The step change in the message signal from p(t)=0.5 sin(t) to p(t)= sin(0.5*t) is 
given at the 50th sample instant and  the response is shown in Figure 7.  It may be 
observed that the fuzzy observer yields a good tracking performance even for a  
change in input  signal (message signal). 

The multiple state based key encryption/decryption technique is used in this 
work and the corresponding response is shown in Figure 4. This makes the 
transmitted signal somewhat complex and is likely to improve the effectiveness of 
the secure communication. In the case of a hyperchaotic system, it seems that it is 
difficult for any intruder to predict the dynamics of the hyperchaotic carrier y(t) by 
means of reconstruction of the geometric structure in the phase space [10,11]. Let us 
assume that the encrypted signal een(t) is reconstructed by the intruder. If the key 
k(t) is not transmitted through the channel, it appears to be difficult to recover the 
original message signal p(t) from een(t). Therefore, assuming that the key is not 
transmitted or reconstructed, it may not possible for an intruder to obtain the 
message, even if the intruder is able to reconstruct the encrypted signal. 
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Recently, the authors [1-3] have proposed a technique to break the cryptosystem 
without knowing its parameter values and its transmitter structure using a simple 
high pass filter. The algorithm proposed is demonstrated when the frequency of the 
message signal is from 5 Hz to infinity.  However for lower freqencies, the noise 
created by the Lorenz system masks the message signal thus making it difficult to 
retrieve by nonauthorized means. 

 

 
FIGURE 2.Channel output 

(noise free) 

 
FIGURE 3. Message Vs Recovered signal 

and the corresponding error 

 
FIGURE 4. Encrypted Vs Decrypted 
signal and the corresponding error 

 

FIGURE 5. System states Vs Observer    
states 
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FIGURE 6. Errors in states 
 
 

 

 

FIGURE 7. Message Vs Recovered signal 
and the corresponding error with step 
change at 50th sample time (noise free) 

 

6.2. Channel with Noise. Figures 8 to 14 show the simulation results for the 
channel with small additive stochastic noise. The hyperchaotic transmitted signal 
(channel output) and the noise signal are shown in Figures 8 and 9, whereas            
the recovered message signal  is shown in Figure 10.  It can be seen from this figure 

that p(t)
∧

approaches p(t). In particular, the error signal keeps varying between            
-0.02 and -0.11. Figures 12 and 13 show the variation of the state variables and their 
corresponding errors for a given chaotic system and fuzzy observer.  

The same  step change in the message signal is given at the 50th sample instant 
and  the corresponding response is shown in Figure 14.  From the responses,  it is 
seen that fuzzy observer yields a good tracking performance even for a  change in 
input  signal (message signal). The encrypted /decrypted responses are shown in 
Figure 11.  

The authors [1-3] have presented techniques to break the secure communication 
only if the system is noise free. In many practical cases, the transmitted signals are 
disturbed by the noisy signal. These breaking algorithms may not be useful for 
retrieving the message signal for communication system when noise is present in the 
channel.  

It may be noted that the proposed fuzzy observer yields a good tracking 
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0 5 10 15 20 25 30 35 40 45 50
8 
9 

10 
11 

x 10 -5 

0 5 10 15 20 25 30 35 40 45 50
0 

 0.5 

1 
 1.5 x 10 -4 

0 5 10 15 20 25 30 35 40 45 50
 2.4 
 2.6 
 2.8 

3 x 10 -4 

Samples 

0 10 20 30 40 50 60 70 80 90 100 -1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100 -0.018

-0.017

-0.016

-0.015

-0.014

-0.013

-0.012

Samples

p, p
∧

 

 

 
 e1 

 
 
e2 

 
 

e3 
Error 

Archive of SID

www.SID.ir



       Fuzzy Observer Design with n-Shift Multiple key for Cryptography based on 3D Hyperchaotic Oscillator       29       

 

is able to track the change in input with different magnitude and frequency. But 
conventional observers like reduced order and full order observers are applicable 
only for noise / disturbance-free-system.  As conventional methods are not suitable 
for noisy systems, a comparative study has not been attempted. 

 
 

 
 

FIGURE 8. Channel output (with noise) 
 

 
 

 

FIGURE 9. Stochastic noise signal 
 

 
FIGURE 10. Message Vs Recovered 
signal and the corresponding error 

 
 

FIGURE 11. Encrypted Vs decrypted 
signal and the corresponding error 
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FIGURE 12. System states Vs Observer 

states 

   
FIGURE 13. Errors in states 

 

 
 

FIGURE 14. Message Vs Recovered signal and the corresponding error with 
step change at 50th sample time (channel with noise) 
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signals of adequate complexity, which are used to transmit the message without 
forging the original message. Simulation results show that the proposed scheme 
yields a good tracking and robust performance even in the presence of noise in 
channel and it can track the change in message signal. 
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