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L-FUZZY BILINEAR OPERATOR AND ITS CONTINUITY

C. -H. YAN AND J. -X. FANG

Abstract. The purpose of this paper is to introduce the concept of L-fuzzy
bilinear operators. We obtain a decomposition theorem for L-fuzzy bilinear

operators and then prove that a L-fuzzy bilinear operator is the same as a

powerset operator for the variable-basis introduced by S.E.Rodabaugh (1991).
Finally we discuss the continuity of L-fuzzy bilinear operators.

1. Introduction

The concept of L-topological vector spaces was introduced by Fang and Yan [3].
Since then many properties of this kind of spaces have been discussed. In particular,
Fang Jin-xuan first introduced the concept of fuzzy linear operators in [1]. For
detailed discussions of the theory of fuzzy linear operator and its applications in L-
topological vector spaces, we refer to [2, 11, 12, 13, 15, 16]. As we know, the theory
of duality of classical topological vector spaces is a significant part of topological
vector spaces and bilinear operators play an important role in the theory of duality.
Hence it is natural to consider introducing the concept of L-fuzzy bilinear operator
in the theory of L-topological vector spaces.

How do we introduce the concept of L-fuzzy bilinear operators? In other words,
how do we define a powerset operator from LX×Y

1 to LZ
2 ? In his pioneering pa-

per [17], Zadeh introduced the Extension Principle for fixed-basis fuzzy sets with
L = [0, 1]. S. E. Rodabaugh first introduced the concept of powerset operators for
variable-basis fuzzy sets in [5, 7, 8]. He also discussed for generalized operators
(numbered 4.5) in [8]. In [1], Fang gave the notion of pointwise L-fuzzy linear oper-
ators. In fact, we may prove that the definition of Fang is a special case of that of
Rodabaugh. To sum up, we easily find there are two ways of introducing powerset
operators for variable-basis fuzzy sets. The pointwise method is a very powerful
tool in studying the theory of L-topological vector spaces. In this paper we intend
to introduce the concept of pointwise L-fuzzy bilinear operators and study some
of their properties. A decomposition theorem for L-fuzzy bilinear operators is also
obtained: An L-fuzzy bilinear operator can be determined uniquely by the cor-
responding bilinear operator and a finitely meet-preserving order-homomorphism.
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Then we prove that our L-fuzzy bilinear operator is a special case of powerset oper-
ators in the sense of S.E. Rodabaugh. Finally we discuss the continuity of L-fuzzy
bilinear operators.

2. Preliminaries

Throughout this paper L, L1, L2 denote the regular Hutton algebras [7], i.e.
the Hutton algebras with 1 ∈ M(L), where M(L) is the set of all non-zero union-
irreducible elements in L (L1 or L2), and 0 and 1 are respectively their smallest
and greatest elements. LX denotes the collection of all L-fuzzy sets on X and α
denotes an L-fuzzy set which takes the constant value α ∈ L on X. An L-fuzzy
subset of X is called an L-fuzzy point [1, 3] iff it takes the value 0 for all y ∈ X
except one, say, x ∈ X. If the value at x is α ∈ L \ {0}, we call alpha the height of
the L-fuzzy point, and denote it by xα. A crisp point x in X can be regarded as a
fuzzy point x1 with height 1. Henceforth Pt(LX) will denote the set of all L-fuzzy
points in LX . Also, for A ∈ LX , the set {x ∈ X | A(x) 6= 0} , called the support of
A will be denoted by suppA, and the value

∨
{A(x) | x ∈ X}, called the height of

A , will be denoted by hgt A.
Let X, Y and Z be the vector spaces over K (real or complex number field). For

convenience, the zero element in X, Y and Z will be denoted by the same letter θ.
For A, B ∈ LX and k ∈ K, A+B and kA are defined by the ZEP [1]. The product
A×B of L-fuzzy sets A and B is defined by

(A×B)(x, y) = A(x) ∧B(y) for all (x, y) ∈ X ×X.

In particular, xα × yβ = (x, y)α∧β for all (xα, yβ) ∈ Pt(LX)× Pt(LX).

Definition 2.1. (Wang Guo-jun [9]). A mapping φ : L1 → L2 is called an order-
homomorphism, if the following conditions hold:

(OH-1) φ preserves arbitrary ∨;
(OH-2) φ∗ preserves all involutions, i.e., for each b ∈ L2, φ∗(b

′
) = [φ∗(b)]

′
,

where the mapping φ∗ : L2 → L1 is given by

φ∗(b) =
∨
{a ∈ L1 : φ(a) ≤ b},

Definition 2.2. (Ming He [4]). Let f : X → Y and φ : L→ L1 be two mappings.
From f and φ we can induce a mapping F : LX → LY

1 as follows:

F (A)(y) =
∨
{ φ(A(x)) | f(x) = y}, for all A ∈ LX and y ∈ Y.

The mapping F is called a bi-induced mapping of f and φ.

Definition 2.3. (Fang Jin-xuan [1]). A mapping f̃ : Pt(LX
1 ) → Pt(LY

2 ) is called
an L-fuzzy linear operator if the following conditions are satisfied:

(1) f̃(sxλ + tyµ) = sf̃(xλ) + tf̃(yµ), for all xλ, yµ ∈ Pt(LX
1 ) and s, t ∈ K;

(2) f̃(θ∨λd
) =

∨
f̃(θλd

);

(3) hgt f̃∗(θλ′ ) = [hgt f̃∗(θλ)]′, for all λ ∈ L2 \ {0, 1}, where
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f̃∗(θλ′) =
∨
{xα | f̃(xα) ≤ θλ′}.

Lemma 2.4. (Fang Jin-xuan [1]). Suppose that f̃ : Pt(LX
1 ) → Pt(LY

2 ) is a fuzzy
linear operator. Then

(1) supp f̃(xλ) = supp f̃(xµ), for all λ, µ ∈ L1 \ {0};
(2) supp f̃(θλ) = θ and hgt f̃(θλ) = hgt f̃(xλ), for all x ∈ X.

Lemma 2.5. (Fang Jin-xuan [1]). The mapping f̃ : Pt(LX
1 ) → Pt(LY

2 ) is an L-
fuzzy linear operator iff there exist an ordinary linear mapping f : X → Y and an
order-homomorphism preserving finite meets φ : L1 → L2 such that

f̃(xλ) = [f(x)]φ(λ), for all xλ ∈ Pt(LX
1 ).

3. L-fuzzy Bilinear Operator and Its Decomposition Theorem

Definition 3.1. Suppose that X, Y and Z are vector spaces over K. A mapping
f̃ : Pt(LX×Y ) to Pt(LZ

1 ) is called an L-fuzzy bilinear order-homomorphism, if it
satisfies the following conditions:

(1) For each x ∈ X, the mapping f̃x1 : yα → f̃(x1, yα) is a fuzzy linear
operator;

(2) For each y ∈ Y, the mapping f̃y1 : xα → f̃(xα, y1) is a fuzzy linear
operator.
Theorem 3.2. Let f̃ be an L-fuzzy bilinear operator, then the following relations
hold:

(1) supp f̃(θα, θ1
α) = θ2, and hgt f̃(θα, θ1

α) = hgt f̃(xα, yα); here θ, θ1, θ2 are
separately zero elements in X, Y, Z.

(2) supp f̃(xα, yα) = suppf̃(xλ, yλ).

Proof. (1) Suppose that f̃(xα, yα) = zµ. Then
f̃(θα, θ1

α) = f̃(θα, θ1
1) = f̃θ1

1
(θα) = f̃θ1

1
(xα − xα) = f̃θ1

1
(xα)− f̃θ1

1
(xα)

= f̃(xα, θ1
1)− f̃(xα, θ1

1) = f̃x1(θ
1
α)− f̃x1(θ

1
α) = f̃x1(yα−yα)− f̃x1(yα−yα)

= f̃x1(yα)− f̃x1(yα)− f̃x1(yα) + f̃x1(yα) = f̃(xα, yα)− f̃(xα, yα)
−f̃(xα, yα) + f̃(xα, yα) = zµ − zµ − zµ + zµ = θ2

µ.
Hence supp f̃(θα, θ1

α) = θ2 and hgt f̃(θα, θ1
α) = hgt f̃(xα, yα), here θ, θ1, θ2 are

separately zero elements in X, Y, Z.

(2). Suppose f̃(xα, yα) = zµ, f̃(xλ, yλ) = z1
ν . By the proof of (1) we may assume

that f̃(θα∧λ, θ1
α∧λ) = θ2

ε . Then (z − z1)µ∧ν = zµ − z1
ν = f̃(xα, yα) − f̃(xλ, yλ) =

f̃x1(yα) − f̃x1(yλ) = f̃x1(yα − yλ) = f̃x1(θα∧λ) = θ2
ε . Hence z = z1, i.e. supp

f̃(xα, yα) = suppf̃(xλ, yλ). �

Theorem 3.3. A mapping f̃ : Pt(LX×Y ) → Pt(LZ
1 ) is an L-fuzzy bilinear oper-

ator iff there exist an ordinary bilinear operator f : X → Y and a finitely meet-
preserving order-homomorphism φ : L→ L1 such that

f̃(xα, yα) = [f(x, y)]φ(α), ∀(xα, yα) ∈ Pt(LX×Y )
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Proof. Necessity. Define a mapping f : X → Y and a mapping φ : L → L1 as
follows:

f(x, y) = suppf̃(x1, y1), and φ(α) = hgtf̃(θα, θ1
α).

From Theorem 3.2, it follows that supp f̃(xα, yα) = supp f̃(x1, y1) = f(x, y), and
hgt f̃(xα, yα) = hgt f̃(θα, θ1

α) = φ(α). Hence f̃(xα, yα) = [f(x, y)]φ(α).

Since f̃ is an L-fuzzy bilinear operator for each s, t ∈ K and x, x1 ∈ X, we have
for each y ∈ Y ,

f(sx + tx1, y) = suppf̃(sx1 + tx1
1, y1) = supp[sf̃(x1, y1) + tf̃(X1

1 , y1)]
= supp[sf(x, y) + tf(x1, y)]φ(1) = sf(x, y) + tf(x1, y).

So f is linear operator on the second variable. By the same method we may obtain
that f is linear operator on the first variable. Hence the mapping f : X × Y → Z
is a bilinear operator. Moreover,

φ(∨λd) = hgtf̃(θ∨λd
, θ1
∨λd

) = hgtf̃θ1
1
(θ∨λd

) = hgt
(
∨f̃θ1

1
(θλd

)
)

= hgt
(
∨f̃(θλd

, θ1
λd

)
)

= hgt(∨θ2
φ(λd)) = hgt(θ2

∨φ(λd)) = ∨φ(λd).

φ(α ∧ λ) = hgtf̃(θα∧λ, θ1
α∧λ) = hgtf̃θ1

1
(θα∧λ) = hgtf̃θ1

1
(θα + θλ)

= hgt[f̃(θα, θ1
α) + f̃(θλ, θ1

λ) = hgt[θ2
φ(α) + θ2

φ(λ)] = φ(α) ∧ φ(λ).
Now, since
f̃−1

θ1
(θ2

µ)(y) = ∨{ α | f̃θ1(yα) ≤ θ2
µ} = ∨{ α | f̃(θα, yα) ≤ θ2

µ}
= ∨{ α | [f(θ, y)]φ(α) ≤ θ2

µ} = φ∗(µ).(
φ∗(α)

)′

=
(
hgtf̃−1

θ1
(θ2

α)
)′

= hgtf̃−1
θ1

(θ2
α′ ) = φ∗(α

′
).

Therefore φ is a finitely meet-preserving order-homomorphism.
Sufficiency. Because of symmetry, we only need to verify that f̃ satisfies condi-

tion (1) of Definition 3.1, i.e. For each x ∈ X, we verify that f̃ satisfies (1)-(3) of
Definition 2.3. By the assumption of the theorem and Lemma 2.5, we have:

(1) For each yα, y1
λ ∈ Ŷ (L), and s, t ∈ K,

f̃x1(syα + ty1
λ) = f̃(x1, syα + ty1

λ) = f̃
(
(xα∧λ, (sy + ty1)α∧λ

)
= [f(x, sy +

ty1)]φ(α∧λ)

= [sf(x, y) + tf(x, y1)]φ(α)∧φ(λ) = sf̃x1(yα) + tf̃(y1
λ).

(2) f̃x1(θ
1
∨λd

) = [f(x, θ1)]φ(∨λd) = θ2
∨φ(λd) = ∨f̃x1(θ

1
λd

).

(3) hgtf̃−1
x1

(θ1
λ′ ) = φ∗(λ

′
) = (φ∗(λ))

′
= [hgtf−1

x1
(θ1

λ)]
′
.

This completes the proof. �

Theorem 3.4. Let f̃ be an L-fuzzy bilinear operator from Pt(LX×Y ) to Pt(LZ
1 ),

i.e. there exist a bilinear operator f : X × Y → Z and a finitely meet-preserving
order-homomorphism φ : L→ L1 such that

f̃(x, y)α = [f(x, y)]φ(α), ∀(x, y)α ∈ Pt(LX×Y).
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Then the bi-induced mapping of f and φ, F : LX×Y → LZ
1 , is an order-homomorphism.

Proof. Since F is a bi-induced mapping of f and φ, then
F (∨At)(z) = ∨{ φ((∨At)(x, y)) | f(x, y) = z } = ∨{ φ(∨At(x)) | f(x, y) = z}

=
∨

f(x,y)=z

∨φ(At(x)) = ∨
∨

f(x,y)=z

φ(At(x))

= ∨F (At)(z) = [∨F (At)](z).
This means F preserves arbitrary ∨.

On the other hand, by [Theorem 2.3A, 8], there exists an unique right adjoint
functor F ∗ from LZ

1 to LX×Y given by

F ∗(B) = ∨{ A ∈ LX×Y | F (A) ≤ B) }.
Thus F ∗(B) = ∨{ (x, y)λ | F ((x, y)λ) ≤ B}. So

F ∗(B)(x, y) = ∨{ λ | φ(λ) ≤ B(f(x, y))} = φ∗(B(f(x, y))). Hence
F ∗(B

′
)(x, y) = φ∗

(
(B(f(x, y)))

′
)

= (φ∗(B(f(x, y))))
′
= (F ∗(B))

′
(x, y).

Therefore F is an order-homomorphism. �

By Theorem 3.3 and 3.4, we may obtain enough nontrivial examples of L-fuzzy
bilinear operators. The following is an example.

Example 3.5. Let L1 = L2 = {0, c, a, b, d, 1}, here a
∧

b = c, a
∨

b = d and 0
′
=

1, 1
′
= 0, c

′
= d, d

′
= c, a

′
= b, b

′
= a. Then L1, L2 are regular Hutton Algebras. A

mapping φ : L1 → L2 is defined as follows: φ(0) = 0, φ(c) = c, φ(d) = d, φ(1) =
1, φ(a) = b, φ(b) = a. It is easy to verify that the mapping φ is a finitely meet-
preserving order-homomorphism. Suppose that vector spaces X = Y = Z = R and
classical bilinear operator f from X ×Y to Z is defined by f(x, y) = 2x+3y + c, (c
is constant). Then the mapping f̃ : Pt(LX×Y

1 )→ Pt(LZ
2 ), f̃

(
(x, y)α

)
= (2x+3y +

c)φ(α) is an L-fuzzy bilinear operator.

Theorem 3.6. Let f̃ be an L-fuzzy bilinear operator from Pt(LX×Y ) to Pt(LZ
1 ),

i.e. there exist a bilinear operator f : X × Y → Z and a finitely meet-preserving
order-homomorphism φ : L→ L1 such that

f̃(x, y)α = [f(x, y)]φ(α), ∀(x, y)α ∈ Pt(LX×Y).

The mappings (f, φ)→ : LX×Y → LZ
1 and (f, φ)← : LZ

1 → LX×Y are defined as in
[7], i.e.

(f, φ)→ ≡< [φ] > ◦f→L : LX×Y → LZ → LZ
1

and
(f, φ)← ≡< φop > ◦f←L1

: LX×Y ← LX×Y
1 ← LZ

1 .

Then (f, φ)→ is equal to the bi-induced mapping F of f and φ, or, equivalently,
(f, φ)→ is exactly the mapping F of Theorem 3.4. In addition, (f, φ)← = F ∗.

Proof. For fixed order-homomorphism φ : L → L1, from the properties of order-
homomorphisms [9, 10], the right adjoint φ∗ : L1 → L preserves arbitrary ∧ and
arbitrary ∨. Let φop = φ∗, by the Fundamental Theorem [Theorem 7.10, 8], both
definitions of (f, φ)→ coincide universally.
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Thus
[φ](a) = ∧{b : a ≤ φop(b)} = ∧{b : a ≤ φ∗(b)} = ∧{b : φ(a) ≤ b} = φ(a).

So for each A ∈ LX×Y and every z ∈ Z, we have
(f, φ)→(A)(z) =< [φ] >

(
f→L (A)(z)

)
= [φ](∨{A(x, y) : f(x, y) = z})

=
∨
{φ(A(x, y)) : f(x, y) = z} = F (A)(z).

Moreover, for each B ∈ LZ
1 and for all (x, y) ∈ X × Y, (f, φ)←(B)(x, y) =< φop >

◦f←L1
(B)(x, y) = φop

(
B(f(x, y))

)
= φ∗

(
B(f(x, y))

)
= F ∗(B)(x). This completes

the proof. �

Remark 3.7. By Theorem 3.4 and Theorem 3.6, we may see that L-fuzzy bilinear
operators are a very special case of powerset operators [7] in L-topological vector
space and because if the vector structure of X × Y , it is natural to require that f
be a crisp bilinear operator. Based on this, we will henceforth use (f, φ)→ instead
of f̃ , F and (f, φ)← instead of (f̃)−1, F ∗. Moreover, if φ is the identity mapping,
(f, id)→ is called the Zadeh

′
s type function and denoted f→L for short.

4. The Continuity of L-fuzzy Bilinear Operators

Definition 4.1. Let (LX , δX), (LY , δY ) and (LZ
1 , δZ) be L-topological vector

spaces, (f, φ)→ : Pt(LX×Y )→ Pt(LZ
1 ) be an L-fuzzy bilinear operator and (x, y)λ ∈

M∗(LX×Y ). If for each R-neighborhood W of (f(x, y))φ(λ), (f, φ)←(W ) is an R-
neighborhood of (x, y)λ, then we sat that (f, φ)→ is L-continuous at (x, y)λ.

Definition 4.2. Let (LX , δX), (LY , δY ) and (LZ
1 , δZ) be L-topological vector

spaces, (f, φ)→ : Pt(LX×Y ) → Pt(LZ
1 ) be an L-fuzzy bilinear operator. Then

(f, φ)→ is called L-continuous, if for each U ∈ δZ , (f, φ)←(U) ∈ δX × δY .

The following proposition easily follows from [Theorem 2.4.5, 6] and [Theorem
5.1.7, 6].

Proposition 4.3. Let (LX , δX), (LY , δY ) and (LZ
1 , δZ) be L-topological vector

Spaces and (f, φ)→ : Pt(LX×Y ) → Pt(LZ
1 ) be an L-fuzzy bilinear operator. Then

the following are equivalent:
(1) (f, φ)→ is L-continuous;
(2) (f, φ)→ is L-continuous at (x, y)λ for each (x, y)λ ∈M∗(LX×Y );
(3) For each molecule net S = {(xn, yn)λ(n)}n∈D in M∗(LX×Y ), if S converges

to (x, y)λ then (f, φ)→(S) converges to (f(x, y))φ(λ).

Lemma 4.4. Let (LX , δ) be a locally convex L-convex topological vector space
[14] and < = {pd | d ∈ Γ} be a family of L-probabilistic seminorms on X that
generates δ. Then a molecule net {xn

λ(n) | n ∈ D} in LX is convergent to xλ with

respect to δ iff for each t > 0, pd ∈ < and µ 6≥ λ, there exists n1 ∈ D such that

λ(n) 6≤
(
pd(xn − x)(t)

)
and λ(n) 6≤ µ with n ≥ n1, n ∈ D.

Proof. Necessity. For each t > 0, pd ∈ < and µ 6≥ λ, put Upd,t(x) = pd(x)(t). Then
[Theorem 3.1, 13], (Upd,t)

′ ∨ µ∗ is an R-neighborhood of θλ. From {xn
λ(n)} → xλ,

it follows that there exists n1 ∈ D such that ∀n ≥ n1, x
n
λ(n) 6≤ x + (Upd,t)

′ ∨ µ∗,
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i.e. xn
λ(n) − x 6≤ (Upd,t)

′ ∨ µ∗. Hence λ(n) 6≤
(
pd(xn − x)(t)

)′

and λ(n) 6≤ µ with
n ≥ n1, n ∈ D.

Sufficiency. By assumption, for each R-neighborhood W =
m∨

i=1

(Updi
,t)

′∨µ∗ of θλ,

there exist ni ∈ D such that ∀n ≥ ni, λ(n) 6≤
(
pdi

(xn − x)(t)
)′

and λ(n) 6≤ µ, i =

1, 2, · · · , n. Let n0 ≥ n1, · · · , nm, n0 ∈ D, then xn
λ(n) 6≤ x + (Updi

,t)
′
and λ(n) 6≤ µ.

From λ(n) ∈M(L), we have xn
λ(n) 6≤ x + W . Therefore {xn

λ(n)} → xλ. �

Theorem 4.5. Let (LX , δX), (LY , δY ) and (LZ
1 , δZ) be locally convex L-topological

vector spaces and (f, φ)→ : Pt(LX×Y ) → Pt(LZ
1 ) be an L-continuous fuzzy bi-

linear operator. Then for each x ∈ X, y ∈ Y , (f, φ)→|x1 : LY → LZ
1 and

(f, φ)→|y1 : LX → LZ
1 are L-continuous fuzzy linear operators.

Proof. It suffices to prove that (f, φ)→|y1 is an L-continuous linear operator for

each y ∈ Y . For each molecule net {xn
λ(n)}n∈D in LX , suppose that xn

λ(n)

δX−→

xλ. By Lemma 4.4, yλ(n)
δY−→ yλ. So (xn, y)λ(n)

δX×δY−→ (x, y)λ. Since (f, φ)→

is an L-continuous fuzzy bilinear operator, from Proposition 4.3, (f, φ)→(S) =
(f(xn, y))φ(λ(n)) = (f, φ)→|y1(x

n
λ(n))

δZ−→ (f(x, y))φ(λ) = (f, φ)→|y1(xλ). This
shows that (f, φ)→|y1 : LX → LZ

1 is an L-continuous fuzzy linear operator. �

Theorem 4.6. Suppose that (LX , δX), (LY , δY ) and (LZ
1 , δZ) are locally convex

L-topological vector spaces, (f, φ)→ : Pt(LX×Y ) → Pt(LZ
1 ) is an L-fuzzy bilinear

operator. Then (f, φ)→ is L-continuous iff (f, φ)→ is L-continuous at (θ, θ1)λ for
all λ ∈M(L).

Proof. By Proposition 4.3, the necessity is obvious.
Sufficiency. Let S = (xn, yn)λ(n) be a molecule net in LX×Y and S converges

to (x, y)λ with respect to δX × δY . Then xn
λ(n)

δX−→ xλ and yn
λ(n)

δY−→ yλ. By
Theorem 4.5, (f, φ)→|y1(x

n
λ(n)) converges to (f, φ)→|y1(xλ) = (f(x, y))φ(λ) and

(f, φ)→|x1(y
n
λ(n))

δZ−→ (f, φ)→|x1(yλ) = (f(x, y))φ(λ) for each R-neighborhood W of
θ2

φ(λ) in (LZ
1 , δZ). By Theorem 3.2, 3, there is an R-neighborhood P of θ2

φ(λ) such

that P
′
+P

′
+P

′ ≤W
′
. For P , there exist n1, n2 ∈ D such that (f, φ)→|y1(x

n
λ(n)) 6≤

f(x, y)+P, ∀n ≥ n1, n ∈ D, and (f, φ)→|x1(y
n
λ(n)) 6≤ f(x, y)+P, ∀n ≥ n2, n ∈ D.

Since D is a directed set, for n1, n2 ∈ D, there is a n3 ∈ D with n3 ≥ n1, n3 ≥ n2.
Thus

(f(xn − x, y))φ(λ(n)) 6≤ P and (f(x, yn − y))φ(λ(n)) 6≤ P, ∀n ≥ n3, n ∈ D (4.1)

Moreover, from S = (xn, yn)λ(n)
δX×δY−→ (x, y)λ, we may deduce that (xn − x, yn −

y)λ(n)
δX−→ (θ, θ1)λ. Because of the continuity of (f, φ)→ at (θ, θ1)λ, on P , there

exists n4 ∈ D such that (f, φ)→((xn − x, yn − y)λ(n) 6≤ P for all n ≥ n4, i.e.

(f(xn − x, yn − y))φ(λ(n)) 6≤ P, (4.2)
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Let n0 ∈ D and n0 ≥ n3, n0 ≥ n4. The formulas (4.1) and (4.2) hold for all n ≥ n0.
On the other hand, since (f(xn, yn)− f(x, y))φ(λ(n)) = (f(xn − x, yn − y))φ(λ(n)) +
(f(x, yn − y))φ(λ(n)) + (f(xn − x, y))φ(λ(n)) we have

(f(xn, yn)− f(x, y))φ(λ(n)) 6≤ (P
′
+ P

′
+ P

′
)
′
, ∀n ≥ n0.

So (f(xn, yn)−f(x, y))φ(λ(n)) 6≤W, ∀n ≥ n0, i.e. (f, φ)→((xn, yn)λ(n)) 6≤ f(x, y)+
W, ∀n ≥ n0. This means (f, φ)→ is L-continuous at (x, y)λ. From the arbitrariness
of (x, y)λ and Proposition 1, sufficiency is proved. �

5. Conclusion

After presenting the definition of L-fuzzy bilinear operators, we discuss some of
their properties. Then we obtain the following decomposition theorem of L-fuzzy
bilinear operator : An L-fuzzy bilinear operator can be determined uniquely by the
corresponding bilinear operator and a finitely meet-preserving order-homomorphism.
We also prove that our definition of L-fuzzy bilinear operator is a special case of
powerset operators in the sense of Rodabaugh. Finally we prove that an L-fuzzy
bilinear operator is L-continuous iff it is L-continuous at (θ, θ1)λ for all λ ∈M(L).
Other properties of L-fuzzy continuous bilinear operators were also discussed.

6. Future Research

We claim that the theory of duality of classical topological vector spaces is a
significant part of topological vector spaces and bilinear operators play an important
role in discussion of the theory of duality. The motivation of this paper is to
introduce the concept of L-fuzzy bilinear operators, and discuss their structure. In
fact, a direction worth pursuing is to study the theory of duality in L-topological
vector spaces after introducing the definition of L-fuzzy bilinear operators. The
condition which makes L-fuzzy separately continuous bilinear operator be L-fuzzy
continuous is also worthy of discussion. These will be discussed in the subsequently
paper.
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