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OPTIMIZATION OF LINEAR OBJECTIVE FUNCTION SUBJECT TO
FUZZY RELATION INEQUALITIES CONSTRAINTS
WITH MAX-AVERAGE COMPOSITION

E. SHIVANIAN, E. KHORRAM AND A. GHODOUSIAN

ABSTRACT. In this paper, the finitely many constraints of a fuzzy relation
inequalities problem are studied and the linear objective function on the region
defined by a fuzzy max-average operator is optimized. A new simplification
technique which accelerates the resolution of the problem by removing the
components having no effect on the solution process is given together with an
algorithm and a numerical example to illustrate the steps of the problem
resolution process.

1. Introduction

Fuzzy set theory was first introduced in 1965 by Zadeh [30]. The operations
proposed by him are specified as the membership function of intersection and
union of two fuzzy sets, and that of complement of the normalized fuzzy set.
Since the resolution of fuzzy relation equations was proposed by Sanchez [25],
fuzzy relation equations (FRE), fuzzy relation inequalities (FRI) and the problems
related to them have been studied by many researchers (for instance, see Han et al
[14], Hu [16], Loetamonphong and Fang [19, 20], Pedrycz [23], Wang [27, 28],
Zhang et al [31] and Guo, Xia [11],and also|3, 6, 9, 10, 12, 15, 18, 22, 24, 29]). The
max-min composition is commonly used when a system requires conservative
solutions in the sense that the goodness of one value can not compensate for the
badness of another [20]. Recent results in the literature, however, show that the
min operator is not always the best choice for the intersection operation, but, in
fact, the max-product composition provides results better or equivalent to the
max-min composition in some applications [27].

The fundamental result for fuzzy relation equations with max-product
composition goes back to Pedrycz [23] and recent study in this regard can
be found in Bourk and Fisher [2], who extended the study of an inverse solution
of a system of fuzzy relation equations with max-product composition
and provided theoretical results for determining the complete solution sets as
well as the conditions for the existence of resolutions. Their results show that such
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complete solution sets can be characterized by one maximum solution and
a number of minimal solutions. The monograph by Di Nola, Sessa, Pedrycz
and Sanchez [7] contains a thorough discussion of this class of equations.
The optimization problem with max-product and max-min compositions was first
considered by Loetamonphong and Fang [19] and Fang and Li [8].

The optimization problem of max-min and max-product can be separated
into two sub problems by separating the nonnegative and negative coefficients
in the objective function. The sub- problem formed by the negative coefficients
can be solved easily by obtaining the maximum solution of the feasible
solutions set. On the other hand, the sub-problem formed by the nonnegative
coefficients can be converted into a 0-1 integer programming problem.
The associated 0-1 integer programming problem was solved by Fang and
Li [8] using the branch and bound technique. Lu and Fang [21] proposed a
genetic algorithm to solve nonlinear optimization problem with max-min
composition and Guu and Wu [13] improved Fang and Li's method by
providing an upper bound for the branch—and-bound procedure. For
the optimization problem with max-product composition, Loetamonphong
and Fang solved the corresponding 0-1 integer problem by reducing its size
and by employing the branch and bound method. On other hand,
Loetamonphong, Fang, and Young [20] extended the study of the problem of
max-min composition to the solution with multi-objective functions. The
application of (FRE) and (FRI) can be seen in many areas, for instance, fuzzy
control, fuzzy decision making, fuzzy symptom, diagnosis, and especially fuzzy
medical diagnosis [1,4,20].

In this paper, we generalize the linear optimization problem of the FRE with
max-average operator [17] by considering the FRI constraints. This problem can
be formulated as follows:

minc'x
st. Aex>d* D
Bex<d?
xe[01]"

Where A= (@) ma> @; €[01], B= (bij)lxn’ b, €[01], are fuzzy matrices,
di= (dil)mxl [0, d ? = (diz)lxl € [Ox]-]I » X= (Xj)nxl €[01]" are fuzzy vectors
and, c=(c J.)nxl eR", and “e” denotes the fuzzy max-average operator. Problem

(1) can be rewritten as follows:
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minc'x
st.  a ex>d/, iel'=1{2,.,m
b, ex<d? icl?=m+Lm+2,..,m+1}

0<x; <1, jed={2,..,n}

]

Where @; and b, are 1’th row of the matrices A and B, respectively and the
constraints are expressed by the max-average operator definition as;

a; + X; 1 C
aex=max{———}>d; Viel

2 3)

_ by +X; 2 L2
b, e x = max{: 7 1<d”  Viel

jed

In section 2, the feasible solutions set of the problem (2) and its properties are
studied. Moreover, necessary and sufficient conditions are given for the feasibility
of the problem (2). In section 3, some simplification operations are presented to
accelerate the resolution process. Finally, in section 4 an algorithm is introduced to
solve the problem and a numerical example is given to illustrate the algorithm.
Section 5 provides a conclusion.

2. The Characteristics of the Feasible Solution Set

Definition 2.1. Let

'S(A,d") ={xe[0]1]":a, ex>d'} foreachiel’,
'S(B,d?) ={x €[0,1]" : b, e x < d’}for eachie I?,
S(A,dY)=N'S(Ad)={xe[01]": Aex>d"},

iel!
S(B,d?)=N"'S(B,d*)={xe[01]":Bex<d’} and

iel?
S(A,B,d*,d?*)=S(A,d")NS(B,d*)={xe[0,1]": Aex>d"*,Bex<d’}.
Corollary 2.2. According to (3), we have xe'S(A,d') for each ie I iff there
exists jeJ such that x; >2d' —a;. Similarly, xe'S(B,d?) for each iel?
iffx; <2d? —b;, Vield.
Lemma 2.3.
(@) S(A,d*) = o iff foreach i e 1* there exists jeJ such that2d —a; <1.
(b) If S(A,d*) = @ then1=[11,...1]. , is the single maximum solution of S(A,d*).
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Proof.

(2) Suppose x € S(A,d"). Hence by Definition 2.1, Vie I*, xe'S(A,d*?) and thus,
by Corollary 2.2, for each iel', and some j eJ, we have X, > 2d" - a; -
Moreover, sincex € [0,1]",x € S(A,d"), we have 2d' - a; <1 Vie l'. Conversely,
suppose there exists j;, € J such that 2d! — a; <1,Viel.

Set x=1= [11,...,1]; . Since x e[0]]" and X; =1> Zdi1 -8 Viel' , hence, by
Corollary 2.2, xe'S(A,d*), Vie I', and as a result, xe S(A,d?).

(b) Proof of this part follows easily from part (a) and Corollary 2.2.

Lemma 2.4.

(@) S(B,d*) =@ iff2d’ —b; >0, Viel” and VjeJ.

(b) If S(B,d?) = @ then 0=[0,0,...,0].,, is the single minimum solution of S(B,d?).
Proof. It is similar to the proof of the Lemma 2.3 by using the Corollary 2.2.
Theorem 2.5. (necessary condition) if S(A,B,d*,d?) = @ then

(@Viel'3jeJ Suchthat 2d! —a, <1.

(b)2d? —b; >0, Viel’and vjeJ.

Proof. This theorem follows from Lemmas 2.3, 2.4 and Definition 2.1.
Definition 2.6. Setx = (x;),,,, where x; = max{min{1, rlg-iﬂ {2d? - b,}},0}-
Lemma 2.7. If $(B,d?) = @then X is the single maximum solution of S(B,d?).

Proof. See the proof of the Theorem 2 in [17].
Corollary 2.8. If S(B,d?) =@ thenS(B,d?) =[0,x].

Proof. We recall that, by Lemmas 2.3 and 2.4, 6 and ; are, respectively, the single
minimum and the maximum solutions. Now, letx €[0,x]. Then xe[0]1]" and
x<x.Thus, b, ex <b, ex<d?, Vie |?thatimplies x e S(B,d ?) . Conversely,
letx e S(B,d?). By Lemma 2.4 and Definition 2.1, 0<x and xe'S(B,d?),
Viel?. Next, by Corollary 2.2 we have x; <2d? by, Vie 1? and Vjel.

Hence, x; < Xi, Vjed ie x<x. It follows that x [0, X].

Definition 2.9. Let J, ={jed ;2dil -q <L}, Vie I'. For each j e J,, we define

ix(j) = (ix(j)k ) such that
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) _{max{Zdil—aij,O} k=j
o K# |
Lemma 2.10. Assume i e |* is a fixed number.
(a) For each j € J,, the vectors i) are the minimal solutions of 'S(A,d*).
(b) If there exists | € J; such that 2d! -a; <0 then 0 is the single minimum
solution of 'S(A,d*).

Proof.
(a) Suppose jeJ, and ie I, since j

2.2, 10 )eiS(A,dl), Viell.

, =max{2d} —a; 0} then, by Corollary

x(j ]’
(]
Now suppose that there exists xe'S(A,d") such thatx <ij
and, fork e J -{j}, x, =0. Hence x; <2d!-a
xg'S(A,d*), which is a contradiction.

(b) The proof of this part is similar to (a).

«py+ Then x; <2d -a,
Vj € J and so, by Corollary 2.2,

ij

_ - l
, where .
| iel

Corollary 2.11. If 'S(A,d*) @ then iS(A d*) = U[i
jed;

Proof. We recall that'S(A,d') = @means that the vector 1 is the maximum

solution and the vectors | Vj e J; are the minimal solutions in 'S(A,d') as a

x(j)°
result of Lemmas 2.3, 2.4, 2.7 and 2.10, respectively. Now, let x e | [i
jedi

X(j)’l]'

Hence, for some je J,, xe iy 1

Also, x €[0]]" and, by Definition 2.9, X >i
2.2, xe'S(A,dY).

), = 2di1 -a;- Hence, by Corollary

x(j

Conversely, letxe'S(A,d*). Then, by Corollary 2.2, there exists j'eJ such that
Xj > 2di1 -a - Sincex €[01]", so 2dil -a; <1 and hence j'eJ,. Therefore
iy SX <1, which implies thatx ¢ |J i) 1]
jed;
Definition 2.12. Suppose that e=(g(1),e(2),..e(m)) € J, xJ, x...xJ such that e(i)=jeJ.
x(e)j — max{max{Zdil _ aij}'O} if |Je <@ and X(e)j =0 lfIT =0, where
iel?

15 ={iel":e(i) = j}-
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Corollary 2.13.

(a) If 2d* -a;<0 for some j € J,, then we can remove the i th row of the matrix A.

) If jgJ,, Vie I *then we can omit the j th column of the matrix A for the purpose
of finding x(e) .

We recall that in part (a), by Definition 2.12 and part (b) of Lemma 2.10, the
ith row of the matrix A has no effect in the calculation of the vectors
x(e) for any eeJ, =J,xJ,x..xJ,,. Also, in part (b), before calculating the

vectors x(e), Veel,, we can remove the jth column of the matrix A using
Definition 2.12.

Lemma 2.14. Let S(A,d')=@, then s (A, dY) = U [x(e), 1'] , Where
X (e
XE©)={x@E):ee<l,}. "
Proof. If S(A,d') = @ then,'S(A,d*) =@, Vi e |I'. Hence, by Corollary 2.11
and Definitions 2.1, 2.6, 2.9 and 2.12, we have
S(AAY) =N 'S(Ad") = NLU By dll = NEY G =
U NG M= U @A = U xe.d]

el ie

From Lemma 2.14 it is obvious that

S<A,dl>=xg)[x<e),i] and X, (e) =S,(A,dY),

where X, (e)and S,(A,d") are the set of minimal solutions of X (e) and S(A,d"),

respectively.

Theorem 2.15. If S(A,B,d*,d*) =@ then s(A B,d%,d?) = U [x () x]-
Xo(e)

Proof. Similar to the proof of the Lemma 2.14.

Corollary 2.16. (Necessary and Sufficient Conditions) Assume that S(B,d?) = J.
Then S(A B,d',d?)=@ iff xeS(Ad') or, equivalently, S(A B,d* d?) =& iff
there exists e e J, such thatx(e) < x.

Proof. the proof follows easily from Definition 2.1, Theorem 2.15 and Lemma
2.7.
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3. Simplification Operations and the Resolution Algorithm

In order to solve the problem (2), it is initially converted into the two following
sub-problems

minc* x minc '
st.  Aex>d' (4a) st.  Aexx>d' (4b)
Bex<d? Bex<d?
xe[01]" xe[01]"

Where, cj*zmax(o,c.) and c}:min(o,cj).

It is clear that X is an optimal solution of (4b) and (4a) achieves its optimal points
at some X(e) € X, () - Once x(g,) optimizes (4a), we set x* =(X;),,, such that

. ;j , €< 0
X; =
X(&);, ¢; >0
Now the following lemma gives us an optimal point of the problem (2).

Lemma 3.1. X" is an optimal solution of the problem (2).
Proof. See Theorem 2.1 in [11].

In order to calculate X", it is enough to find ; and x(g,). Although ; is easily
obtained by Definition 2.6, x(e,) is not so, because, X,(e)is obtained by the
pairwise comparison of X (e) members. Hence, having a complete set of X (e) is
time-consuming, especially when X(e) has several members. Simplification

operations can hasten the resolution of the problem (4a). With the intention of
simplification the vectors e e J, are removed when x(e)is not optimal for (4a).

One such operation is given in Corollary 2.13. Other operations are obtained by
the following theorems.

Definition 3.2. Let]; ={jeJ, :2dil_aij g}j}, Vie I' where X is as in
Definition 2.6.
Theorem 3.3. Let S(B,d?) = @ . Then S(A, B,d*,d?) =@ iff J; =@,Viel'.

Proof. Suppose S(A,B,d*, d?) = & . Therefore, by Theorem 2.15, x e S(A B,d*,d?)
and so we have xe'S(A,d?), Vie I*. Thus, by Corollary 2.2, for each i e I,
there exists jeJ such that i,» >2d;! - ay - Consequently, Ji 2@ Viell.
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Conversely, suppose that Vie ', J; #@. Then Viel' there exists jeJ such
that x; >2d! - a; and, by Corollary 2.2, it follows that xe'S(AdY), Viel'. Asa
result, x e S(A,d"). This fact, together with Lemma 2.7, implies x € S(A, B,d*,d?)
and therefore, S(A,B,d*,d?) = Q.

Theorem 3.4. Let S(AB,d*,d?)= @, then s(A B,d*,d?)= U[x(e),x], Where
X (e)

X(e)={x(@e):eed =JixJ2x..xJIn}

Proof. By Theorem 2.15, it is sufficient to show that x(e) ¢ S(A,B,d*',d?)

when eglJ. Suppose eg Ji. Then there exist i'el! and j'ed, such

that e(i")=j' and 2d; -ay >Xj. Hence i'e | ;. and, by Definition 2.12,

x(€), = max{max{2d} —a,},0}> 2d —a,, > x;- Therefore the inequality x(e) < X
iel?,

does not hold and, as a consequence of Theorem 2.15, we obtain

x(e) ¢ S(A,B,d*,d?).

We remark that as a result of Definition 3.2, J; J, , Vie I'. In other words,

X(e) < X(e). Also, by Theorem 3.4, S (A B,d*,d?) < X(e). Thus, the region of

search can be reduced to the smaller set S (A, B,d*,d?).

Definition 3.5. Let J; ={j cJi o =0}, Vie It

Theorem 3.6. Suppose x(e,)is an optimal solution of (4a) and J; =& for some
i"e I*, then there exists x(e") such that e'(i") e J; and x(e’) is the optimal solution
of (4a).

Proof. Suppose J; # @ for some i’ e 1' and ¢, (i") = j'. Define '€ J; such that
e'(i)=keJ; and e'(i) =e,(i) for ecach iel' and i=i'.By means of Definition
2.12, we have

x(e,); = max{ rln?ig {2d} - a;},0} > max{ rlnzl:\?g {2d} - a;3},0} = x(e"); and

X(€,); = x(e); foreach jeJ and j=# j',k. Therefore, since ¢, =0,

c'x(e,) = Cix(ee) + D cix(ey); = cix(e); + D ¢cix(Ee); = ¢ x(e")
ied, jed,
1#] 171

Hence x(e’) is an optimal solution of (4a) and the proof is complete.



Optimization of Linear Objective Function Subject to Fuzzy Relation Inequalities Constraints 23
with Max-average Composition
Corollary 3.7. If )" =@ forsome ie I* then by omitting the ith row we reach a

reduced problem for which each optimal solution is an optimal solution for the
previous (main) problem.

Proof. Results from Theorem 3.6 and  the fact that ¢} =0 for each je J;.

Definition 3.8. Let j,j,eJ , Ci, >0 and c,, > 0. We say that j, dominates
j, iff

(@) j, e Ji implies j, e Ji,Viel'.

(b) For each i e |'such that j, e Ji, c, (2d! -a,)>c; (2di1—aijz).

Theorem 3.9. Suppose x(g,) is optimal in (4a) and, for j,, j, €J, j, dominates j,.
Then there exists x(e") such that |Je1 = and x(e) is an optimal solution of (4a).

Proof. Define e’ = (e'(i)),,, such that

mx1

iy - {eo(i) gl

. e
IR Pel

It is obvious that |Je1 = and sox(e") L= 0. Also, x(eo)j = x(e’)j for each jeJ

and j# |, J,, X(e')le :2dit —a,, -
If i) ¢ IiO then:
x(ey);, = X(¢');, =2d; —a, ;

So we have:

t t
cUx(ey) =i x(8y) ), + D Cix(e); = D cix(e); =c* x(e)
jed jed
L‘h }“h

and the result follows.
Now suppose i, e 1. We show that c*tx(eo) >c*'x(e).
Let x(eo)j2 = 2dil -a - Then, by part (a) of the Corollary 2.13 and Definition 3.8,

c; x(g,);, >0 and since

t
Chx(e) =C;x(e); +C; (&), + _Z_cj*x(eo)j
1#h )2
and
+t + +
chx(e) =c; x(e), + D.cix(E);

i#hd2
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it is sufficient to show that c¢'x(g,). >c’ x(e"). . By Definition 2.12, set
I 0/, iz iz
1
(&), =2d; —ay; -

; i ; I + 1 + 1 ;
Since ], dominates J;, we have c;(2di -a,)>c; (2d; —a,; ). ie
+ + ’ 1T —1! H H U ] H € H
c; x(&);, > ¢ x(¢);, once iy =i'. Otherwise, suppose i, #i’. Since i, e I and j,

dominates j, , hence
+ 1 + 1
c; (2d; —ay ;) = c; (2d; —ay;,)

Also, by Definition 2.12 we have X(ey); = max{max{2d; — a; }.0}= 2d; - ay which
1 |E|Tf 1 1

implies that
2d; —a, >2d/-a

=

Viel®
h

i

Therefore

+ 1 + 1 + 1
¢, (2d; —a;;,)>cj (2d; —a, ;) >¢; (2d; —a ;)

It follows that ¢; x(e,); >c; x(€')}, - Hencec*tx(eo) >c*'x(e") and the proof is
complete.

Corollary 3.10. If j, dominates j, for each j,j, €J, then, by omitting the j, th

column we reach a reduced problem for which each optimal solution is an optimal
solution for the previous (main) problem.

4. An Algorithm for Finding an Optimal Solution and Example

Definition 4.1. Consider problem (1). We call A=(a, the characteristic

ij / mxn

matrix of the matrix A, where a; =2d} —a; for cach ie I" andjeJ. The

characteristic matrix B = (by),,, is similarly defined.

Algorithm: Given problem (2),

1- Find the matrices Aand B by Definition 4.1.
2- Calculate X from B by Definition 2.6.
3- If there exists ie |’ such that a,>X, , VjeJ then stop. Problem 2 is

infeasible (see Theorem 2.5).
4- If there exists iel?and jeJsuch that by <0then stop. Problem 2 is
infeasible (see Theorem 2.5).



Optimization of Linear Objective Function Subject to Fuzzy Relation Inequalities Constraints 25
with Max-average Composition
5- If there exists i e Itand j e J such that a; <0 then remove the ith row of

the matrix A (see the part (a) of the Corollary 2.13).
6- If there exists j'eJ such that a > X, Vie l'then remove the j'th

column of the matrix A (see Theorem 3.4) and set x(e,), =0 if ¢, >0.

7- For each iel*,if J" # @ then remove the ith row of the matrix A (see
Corollary 3.7).

8- If ¢, < 0, remove column jeJ from K

9- If j, dominates j, then remove the column j, fromx, Vi, j, €Jd (see
Corollary 3.10) and setx(e,); =0.

I
10- Let 3™ ={jedi:a <X} and JM™ =3/ xJ/™ .. xJ™. First

obtain the vectors x(e), Vee J™ of Z\ using Definition 2.12, and then
X(e,) by pairwise comparison between the vectors x(e) .

11- Find X" by Lemma 3.1.

Numerical Example:
Consider the problem below:

min = 2x, — X, + 3%, + 2.5%, — X; —6X, +3X, +2X,

0 016 037 095 017 007 0.77 014] [04]
008 051 026 01 03 04 03 035 0.5
099 059 028 034 034 074 019 021| |07
083 075 025 035 02 05 02 02 0.6
0.73 084 094 044 054 084 099 044 0.72
037 07 055 04 02 02 073 024 |06 |
0 094 069 049 05 051 0.87 043 07

002 1 082 059 089 076 0.74 0.52 ‘< 0.76
[ ]

01 073 04 037 045 07 069 02 | 06

01 01 03 02 025 049 058 0.01 0.5

xe[0]]"
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Step 1. The matrices, A,B are as follows:

0.8 064 043 -0.15 0.63 0.73 0.03 0.66]
092 049 074 09 07 06 0.7 065
0.15 055 08 08 08 04 095 0093
037 045 095 08 1 07 1 1
071 06 05 1 09 06 045 1

1083 05 065 08 1 1 047 0.96]

> |
I

14 046 0.71 091 09 089 053 0.97
15 052 07 093 063 076 078 1
11 047 08 083 075 05 051 1
09 09 07 08 075 051 042 0.99

B=

Step 2. x=[09 046 0.7 08 063 05 042 097

Step 3. There is no i e I such that a,;>X; , VjeJ therefore we can go to step4.
Step 4. There is no i e 12and j e J such that bj <0 hence we can perform step5.

Step 5. Since aw <0 , hence the first row of the matrix A is removed and

Abecomes

(092 049 074 09 07 06 07 0.65]
015 055 086 08 08 04 095 093
037 045 095 08 1 07 1 1
071 06 05 1 09 06 045 1
1083 05 065 08 1 1 047 096]

>
I

Step 6. The fifth and seventh columns are removed and we have x(g,), =0. Also,

matrix A becomes
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(092 049 074 09 06 065
015 055 086 08 04 0.93
037 045 095 085 07 1
071 06 05 1 06 1
1083 05 065 08 1 096

>
I

Step 7. Since J; # @, J; # &, we can delete the second and third row. We get

092 049 074 09 06 0.65
A=|071 06 05 1 06 1
083 05 065 08 1 096

Step 8. Since C,,Cq <0 then, we can remove the second and fifth columns and
we get
092 0.74 09 065
A=[071 05 1 1
083 05 08 096

Step 9. In the above matrix, the first and fourth columns dominate the second

and third respectively. After removing the second and third columns, matrix A
becomes

0.92 0.65
A=071 1
0.83 0.96

And we have x(e,); = x(g,), =0.

Step 10. In the new matrix, we have J/* ={8}, J™ = {1} and J ™" = {1,8}. For
e, =(B811), x(g), =0.83 and x(g), =0.65. Also, e, =(8,1,8) results in x(g,), =0.71
and x(e,), =0.96. Hence the minimal solutions are x(e,) = (0.83,0,0,0,0,0,0,0.65) and
x(e,) =(0.71,0,0,0,0,0,0,0.96) .

Step 11. Since x(e,) optimizes the problem with objective function c*'x then
x(e,) = x(e,) and also x" = (0.83,0.46,0,0,0.63,0.5,0,0.65) -
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5. Conclusion

In this paper we studied the linear optimization problem with fuzzy relational
inequalities constraints defined by max-average operator. First, we discuss the
feasibility region characterization and then, introduce a new simplification
technique to solve the usual difficulty of finding the minimal solutions that

optimize the problem with objective function ¢* X. An algorithm together with
simplification operations to accelerate the problem resolution is also presented
together with an illustrative numerical example.
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