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FUZZY RELATION INEQUALITIES CONSTRAINTS 

 WITH MAX-AVERAGE COMPOSITION 
 
 

E. SHIVANIAN, E. KHORRAM AND A. GHODOUSIAN 
 
 

ABSTRACT. In this paper, the finitely many constraints of a fuzzy relation 
inequalities problem are studied and the linear objective function on the region 
defined by a fuzzy max-average operator is optimized. A new simplification 
technique which accelerates the resolution of the problem by removing the 
components having no effect on the solution process is given together with an 
algorithm and a numerical example to illustrate the steps of the problem 
resolution process. 

 
 

 
1. Introduction 

 
     Fuzzy set theory was first introduced in 1965 by Zadeh [30]. The operations 
proposed by him are specified as the membership function of intersection and 
union of two fuzzy sets, and that of complement of the normalized fuzzy set. 
Since the resolution of fuzzy relation equations was proposed by Sanchez [25], 
fuzzy relation equations (FRE), fuzzy relation inequalities (FRI) and the problems 
related to them have been studied by many researchers (for instance, see Han et al 
[14], Hu [16], Loetamonphong and Fang [19, 20], Pedrycz [23], Wang [27, 28], 
Zhang et al [31] and Guo, Xia [11],and also[3, 6, 9, 10, 12, 15, 18, 22, 24, 29]). The 
max-min composition is commonly used when a system requires conservative 
solutions in the sense that the goodness of one value can not compensate for the 
badness of another [20]. Recent results in the literature, however, show that the 
min operator is not always the best choice for the intersection operation, but, in 
fact, the max-product composition provides results better or equivalent to the 
max-min composition in some applications [27]. 
 

     The fundamental result for fuzzy relation equations with max-product 
composition goes back to Pedrycz [23] and recent study in this regard can                    
be found in Bourk and Fisher [2], who extended the study of an inverse solution 
of a system of fuzzy relation equations with max-product composition                      
and provided theoretical results for determining the complete solution sets as               
well as the conditions for the existence of resolutions. Their results show that such 
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complete solution sets can be characterized by one maximum solution and                    
a number of minimal solutions. The monograph by Di Nola, Sessa, Pedrycz              
and Sanchez [7] contains a thorough discussion of this class of equations.                 
The optimization problem with max-product and max-min compositions was first 
considered by Loetamonphong and Fang [19] and Fang and Li [8]. 
 

     The optimization problem of max-min and max-product can be separated           
into two sub problems by separating the nonnegative and negative coefficients            
in the objective function. The sub- problem formed by the negative coefficients             
can be solved easily by obtaining the maximum solution of the feasible             
solutions set. On the other hand, the sub-problem formed by the nonnegative 
coefficients can be converted into a 0-1 integer programming problem.               
The associated 0-1 integer programming problem was solved by Fang and                
Li [8] using the branch and bound technique. Lu and Fang [21] proposed a  
genetic algorithm to solve nonlinear optimization problem with max-min 
composition and Guu and Wu [13] improved Fang and Li's method by                 
providing an upper bound for the branch–and-bound procedure. For                          
the optimization problem with max-product composition, Loetamonphong               
and Fang solved the corresponding 0-1 integer problem by reducing its size                         
and by employing the branch and bound method. On other hand, 
Loetamonphong, Fang, and Young [20] extended the study of the problem of 
max-min composition to the solution with multi-objective functions. The 
application of (FRE) and (FRI) can be seen in many areas, for instance, fuzzy 
control, fuzzy decision making, fuzzy symptom, diagnosis, and especially fuzzy 
medical diagnosis [1,4,26]. 
 

     In this paper, we generalize the linear optimization problem of the FRE with 
max-average operator [17] by considering the FRI constraints. This problem can 
be formulated as follows: 
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Where nmijaA ×= )( , ]1,0[∈ija , nlijbB ×= )( , ]1,0[∈ijb , are fuzzy matrices, 

m
midd ]1,0[)( 1

11 ∈= × , l
lidd ]1,0[)( 1

22 ∈= × , n
njxx ]1,0[)( 1 ∈= ×  are fuzzy vectors 

and, n
nj Rcc ∈= ×1)( ,  and “• ” denotes the fuzzy max-average operator. Problem 

(1) can be rewritten as follows: 
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Where ia  and ib  are i ’th row of the matrices A  and B , respectively and the 
constraints are expressed by the max-average operator definition as; 
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In section 2, the feasible solutions set of the problem (2) and its properties are 
studied. Moreover, necessary and sufficient conditions are given for the feasibility 
of the problem (2). In section 3, some simplification operations are presented to 
accelerate the resolution process. Finally, in section 4 an algorithm is introduced to 
solve the problem and a numerical example is given to illustrate the algorithm. 
Section 5 provides a conclusion. 
 

2. The Characteristics of the Feasible Solution Set 
 
Definition 2.1.  Let 
 

}:]1,0[{),( 11
ii

ni dxaxdAS ≥•∈=  for each 1Ii∈ , 
}:]1,0[{),( 22

ii
ni dxbxdBS ≤•∈= for each 2Ii∈ , 

}:]1,0[{),(),( 111
1

dxAxdASdAS ni

Ii
≥•∈==

∈
I  , 

}:]1,0[{),(),( 222
2

dxBxdBSdBS ni

Ii
≤•∈==

∈
I  and 

},:]1,0[{),(),(),,,( 212121 dxBdxAxdBSdASddBAS n ≤•≥•∈== I . 
 

Corollary 2.2.  According to (3), we have  ),( 1dASx i∈   for each 1Ii∈  iff  there 
exists Jj ∈  such that ijij adx −≥ 12 . Similarly, ),( 2dBSx i∈  for each 2Ii∈  

iff ijij bdx −≤ 22 , Jj∈∀ . 
 

Lemma 2.3.  
(a) ∅≠),( 1dAS  iff for each 1Ii∈  there exists Jj∈  such that 12 1 ≤− iji ad . 

(b) If ∅≠),( 1dAS  then t
n×= 1]1,...,1,1[1  is the single maximum solution of ),( 1dAS . 
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Proof.  
(a) Suppose ),( 1dASx∈ . Hence by Definition 2.1, 1Ii∈∀ , ),( 1dASx i∈  and thus, 
by Corollary 2.2, for each 1Ii∈ , and some Jji ∈ , we have 

ii ijij adx −≥ 12 . 
Moreover, since nx ]1,0[∈ , ),( 1dASx∈ , we have 12 1 ≤− iji ad 1Ii∈∀ . Conversely, 
suppose there exists Jji ∈  such that 12 1 ≤− iji ad , 1Ii∈∀ . 

 Set t
nx ×== 1]1,...,1,1[1 .  Since nx ]1,0[∈  and 

ii ijij adx −≥= 121 , 1Ii∈∀  , hence, by 
Corollary 2.2, ),( 1dASx i∈ , 1Ii∈∀ , and as a result, ),( 1dASx∈ . 
(b) Proof of this part follows easily from part (a) and Corollary 2.2. 
 

Lemma 2.4.  
(a) ∅≠),( 2dBS  iff 02 2 ≥− iji bd , 2Ii∈∀  and Jj∈∀ . 

(b) If ∅≠),( 2dBS  then t
n×= 1]0,...,0,0[0  is the single minimum solution of ),( 2dBS . 

  

Proof. It is similar to the proof of the Lemma 2.3 by using the Corollary 2.2. 
 

Theorem 2.5. (necessary condition) if ∅≠),,,( 21 ddBAS  then 
(a) 1Ii∈∀ Jj∈∃  Such that 12 1 ≤− iji ad . 

(b) 02 2 ≥− iji bd , 2Ii∈∀ and Jj∈∀ . 
 

Proof. This theorem follows from Lemmas 2.3, 2.4 and Definition 2.1. 
 

Definition 2.6. Set 1)( ×= njxx , where }0}},2{min,1max{min{ 2

1 ijili
j bdx −=

≤≤
. 

Lemma 2.7. If ∅≠),( 2dBS then x  is the single maximum solution of ),( 2dBS . 
 

Proof. See the proof of the Theorem 2 in [17]. 
 

Corollary 2.8. If ∅≠),( 2dBS  then ],0[),( 2 xdBS = . 
 

Proof. We recall that, by Lemmas 2.3 and 2.4, 0  and x  are, respectively, the single 
minimum and the maximum solutions. Now, let ],0[ xx∈ . Then nx ]1,0[∈  and 

xx ≤ . Thus, 2
iii dxbxb ≤•≤• , 2Ii ∈∀ that implies ),( 2dBSx ∈ . Conversely,      

let ),( 2dBSx∈ . By Lemma 2.4 and Definition 2.1,  x≤0  and ),( 2dBSx i∈ , 
2Ii∈∀ . Next, by Corollary 2.2 we have ijij bdx −≤ 22 , 2Ii∈∀  and Jj∈∀ . 

Hence, jj xx ≤ , Jj ∈∀  i.e. xx ≤ . It follows that ],0[ xx∈ . 
 
Definition 2.9. Let }12:{ 1 ≤−∈= ijii adJjJ , 1Ii∈∀ .  For each iJj∈ , we define 

1)()( )( ×= njxjx k
ii  such that 
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Lemma 2.10. Assume 1Ii∈  is a fixed number. 
 

(a) For each iJj∈ , the vectors )( jxi  are the minimal solutions of ),( 1dASi . 

(b) If there exists  iJj∈  such that  02 1 ≤− iji ad  then 0  is the single minimum 

solution of ),( 1dASi . 
 

Proof.  
(a) Suppose iJj∈  and  1Ii ∈ , since }0,2max{ 1

)( ijijx adi
j

−=  then, by Corollary 

2.2, ),( 1
)( dASi i

jx ∈ , 1Ii∈∀ .  
 

Now suppose that there exists ),( 1dASx i∈  such that )( jxix < . Then ijij adx −< 12  

and, for }{ jJk −∈ , 0=kx . Hence  ijij adx −< 12  , Jj∈∀  and so, by Corollary 2.2, 

),( 1dASx i∉ , which is a contradiction. 
(b) The proof of this part is similar to (a). 
 

Corollary 2.11.  If  ∅≠),( 1dASi  then  ]1,[),( )(
1

jx
Jj

i idAS
i∈

= U ,  where 1Ii ∈ . 

Proof. We recall that ∅≠),( 1dASi means that the vector 1 is the maximum 
solution and the vectors )( jxi , iJj∈∀  are the minimal solutions in ),( 1dASi  as a 
result of Lemmas 2.3, 2.4, 2.7 and 2.10, respectively. Now, let ]1,[ )( jx

Jj
ix

i∈
∈ U . 

Hence, for some iJj ∈ , ]1,[ )( jxix∈ . 
 

Also, nx ]1,0[∈  and, by Definition 2.9, ijijxj adix
j

−=≥ 1
)( 2 .  Hence, by Corollary 

2.2, ),( 1dASx i∈ .  
 

Conversely, let ),( 1dASx i∈ . Then, by Corollary 2.2, there exists Jj ∈′  such that 

jiij adx ′′ −≥ 12 . Since nx ]1,0[∈ , so 12 1 ≤− ′jii ad  and hence iJj ∈′ . Therefore 

1)( ≤≤′ xi jx , which implies that ]1,[ )( jx
Jj

ix
i∈

∈ U . 
 

Definition 2.12. Suppose that mJJJmeeee ×××∈= ...))(),...2(),1(( 21 such that iJjie ∈=)( . 

}0},2{maxmax{)( 1
iji

Ii
j adex

e
j

−=
∈

 if ∅≠e
jI  and 0)( =jex  if ∅=e

jI , where 

})(:{ 1 jieIiI e
j =∈= .  
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Corollary 2.13.  
 

(a) If 02 1 ≤− iji ad  for some iJj∈ , then we can remove the i th row of the matrix A .  

(b) If iJj∉ , 1Ii∈∀ then we can omit the j th column of the matrix A  for the purpose 
of finding )(ex . 
 
We recall that in part (a), by Definition 2.12 and part (b) of Lemma 2.10, the                     
i th row of the matrix A  has no effect in the calculation of the vectors                             

)(ex  for any mI JJJJe ×××=∈ ...21 . Also, in part (b), before calculating the  

vectors )(ex , JIe∈∀ ,  we can remove the j th column of the matrix A  using 
Definition 2.12. 
 
Lemma 2.14. Let ∅≠),( 1dAS , then ]1),([),(

)(

1 exdAS
eX

U= , where 

}:)({)( JIeexeX ∈= . 
 

Proof. If ∅≠),( 1dAS  then, ∅≠),( 1dASi , 1Ii ∈∀ . Hence, by Corollary 2.11 
and Definitions 2.1, 2.6, 2.9 and 2.12, we have  
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From Lemma 2.14 it is obvious that  
 

0

1

( )
( , ) [ ( ),1]

X e
S A d x e= U  and  ),()( 1

00 dASeX = , 

 
where )(0 eX and ),( 1

0 dAS  are the set of minimal solutions of )(eX  and ),( 1dAS , 
respectively. 
 
Theorem 2.15. If ∅≠),,,( 21 ddBAS  then  

0

1 2

( )
( , , , ) [ ( ), ]

X e
S A B d d x e x= U . 

Proof.  Similar to the proof of the Lemma 2.14. 
 
Corollary 2.16. (Necessary and Sufficient Conditions) Assume that ∅≠),( 2dBS . 
Then ∅≠),,,( 21 ddBAS  iff ),( 1dASx∈  or, equivalently, ∅≠),,,( 21 ddBAS  iff 
there exists IJe∈  such that xex ≤)( . 
 
Proof.  the proof follows easily from Definition 2.1, Theorem 2.15 and Lemma 
2.7. 
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3. Simplification Operations and the Resolution Algorithm 
 

     In order to solve the problem (2), it is initially converted into the two following      
sub-problems 

  
 
 
 
 
 

 
Where,  ),0max( jj cc =+   and  ),0min( jj cc =− . 

It is clear that x  is an optimal solution of (4b) and (4a) achieves its optimal points 
at some )()( 0 eXex ∈ . Once )( 0ex  optimizes (4a), we set 1)( ×

∗∗ = njxx  such that 
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Now the following lemma gives us an optimal point of the problem (2). 
 

Lemma 3.1. ∗x  is an optimal solution of the problem (2). 
 

Proof.  See Theorem 2.1 in [11]. 
 

In order to calculate ∗x , it is enough to find x   and )( 0ex .  Although x  is easily 
obtained by Definition 2.6, )( 0ex  is not so, because, )(0 eX is obtained by the 
pairwise comparison of )(eX  members. Hence, having a complete set of )(0 eX  is 
time-consuming, especially when )(eX  has several members. Simplification 
operations can hasten the resolution of the problem (4a). With the intention of 
simplification the vectors IJe∈  are removed when )(ex is not optimal for (4a). 
One such operation is given in Corollary 2.13. Other operations are obtained by 
the following theorems. 
 

Definition 3.2. Let }2:{ 1
jijiii xadJjJ ≤−∈= , 1Ii ∈∀  where x  is as in 

Definition 2.6.  
 

Theorem 3.3. Let ∅≠),( 2dBS . Then ∅≠),,,( 21 ddBAS  iff  ∅≠iJ , 1Ii∈∀ . 
 

Proof. Suppose ∅≠),,,( 21 ddBAS . Therefore, by Theorem 2.15, ),,,( 21 ddBASx∈  
and so we have ),( 1dASx i∈ , 1Ii ∈∀ . Thus, by Corollary 2.2, for each 1Ii ∈ , 
there exists Jj∈  such that ijij adx −≥ 12 . Consequently, ∅≠iJ , 1Ii ∈∀ . 
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Conversely, suppose that 1Ii∈∀ , ∅≠iJ . Then 1Ii∈∀  there exists Jj∈  such 
that ijij adx −≥ 12  and, by Corollary 2.2, it follows that ),( 1dASx i∈ , 1Ii∈∀ . As a 

result, ),( 1dASx∈ . This fact, together with Lemma 2.7, implies ),,,( 21 ddBASx∈  
and therefore, ∅≠),,,( 21 ddBAS . 
 

Theorem 3.4. Let ∅≠),,,( 21 ddBAS , then ]),([),,,(
)(

21 xexddBAS
eX
U= , where 

}...:)({)( 21 mI JJJJeexeX ×××=∈= . 
 

Proof. By Theorem 2.15, it is sufficient to show that ),,,()( 21 ddBASex ∉                     
when IJe∉ . Suppose IJe∉ . Then there exist 1Ii ∈′  and iJj ′∈′  such                   
that jie ′=′)(  and jjii xad ′′′′ >−12 . Hence e

jIi ′∈′  and, by Definition 2.12, 

jjiijii
Ii

j xadadex
e
j

>−≥−= ′′′′
∈

′
′

11 2}0},2{maxmax{)( . Therefore the inequality xex ≤)(  

does not hold and, as a consequence of Theorem 2.15, we obtain 
),,,()( 21 ddBASex ∉ . 

 

We remark that as a result of Definition 3.2, ii JJ ⊆  , 1Ii∈∀ . In other words, 

)()( eXeX ⊆ . Also, by Theorem 3.4, )(),,,( 21
0 eXddBAS ⊆ . Thus, the region of 

search can be reduced to the smaller set ),,,( 21
0 ddBAS . 

 

Definition 3.5. Let }0:{ ≠∈= −∗
jii cJjJ , 1Ii∈∀ .  

 

Theorem 3.6. Suppose )( 0ex is an optimal solution of (4a) and ∅≠∗
′iJ  for some 

1Ii ∈′ , then there exists )(ex ′  such that ∗
′∈′′ iJie )(   and )(ex ′  is the optimal solution 

of (4a).  
 

Proof.  Suppose ∅≠∗
′iJ  for some 1Ii ∈′  and jie ′=′)(0 . Define IJe ∈′   such that 

∗
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Hence )(ex ′  is an optimal solution of (4a) and the proof is complete.  
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Corollary 3.7.  If  ∅≠∗
iJ   for some 1Ii∈  then by omitting the i th row we reach a 

reduced problem for which each optimal solution is an optimal solution for the 
previous (main) problem. 
 

Proof.  Results from Theorem 3.6 and   the fact that 0=+
jc  for each ∗∈ iJj . 

 

Definition 3.8.  Let  Jjj ∈21 ,  , 0
1
>jc  and 0

2
>jc . We say that 2j  dominates 

1j  iff 
 

(a) iJj ∈1  implies iJj ∈2 , 1Ii∈∀ . 
(b) For each 1Ii∈ such that  iJj ∈1  , )2()2(

2211

11
ijijijij adcadc −≥− .  

 
Theorem 3.9. Suppose )( 0ex  is optimal in (4a) and, for Jjj ∈21, , 2j  dominates 1j . 
Then there exists )(ex ′  such that ∅=′ejI

1
 and )(ex ′  is an optimal solution of (4a). 
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and the result follows. 
Now suppose  0

10
e
jIi ∈ . We show that  )()( 0 excexc tt ′≥ ++ . 

Let 
22

1
0 2)( ijij adex −= . Then, by part (a) of the Corollary 2.13 and Definition 3.8, 
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it is sufficient to show that 
2211

)()( 0 jjjj excexc ′≥ ++ . By Definition 2.12, set 

11

1
0 2)( jiij adex ′′ −= . 

Since 2j  dominates 1j ,  we have )2()2(
200211

11
jiijjiij adcadc −≥− +

′′
+ . i.e. 

2211
)()( 0 jjjj excexc ′≥ ++ once ii ′=0 . Otherwise, suppose ii ′≠0 . Since 0

10
e
jIi ∈  and 2j  

dominates 1j , hence 
)2()2(

20021001

11
jiijjiij adcadc −≥− ++  

 
Also, by Definition 2.12 we have

110
1

1

11
0 2}0},2{maxmax{)( jiiiji

Ii
j adadex

e
j

′′
∈

−=−= which 

implies that 

11

11 22 ijijii adad −≥− ′′  , 0

1

e
jIi∈∀  

Therefore  
 

)2()2()2(
2002100111

111
jiijjiijjiij adcadcadc −≥−≥− ++

′′
+  

 
 

It follows that 
2211

)()( 0 jjjj excexc ′≥ ++ .  Hence )()( 0 excexc tt ′≥ ++  and the proof is 
complete. 
 

Corollary 3.10. If 2j  dominates 1j  for each Jjj ∈21, , then, by omitting the 1j th 
column we reach a reduced problem for which each optimal solution is an optimal 
solution for the previous (main) problem. 
 

 

4. An Algorithm for Finding an Optimal Solution and Example 
 

Definition 4.1. Consider problem (1). We call nmijaA ×= )(  the characteristic 

matrix of the matrix A , where ijiij ada −= 12  for each 1Ii∈  and Jj∈ .  The 

characteristic matrix nlijbB ×= )(  is similarly defined. 
 
Algorithm: Given problem (2), 
 

1- Find the matrices A and B  by Definition 4.1. 
2- Calculate x  from B  by Definition 2.6. 
3- If there exists 1Ii∈  such that jij xa >  , Jj∈∀  then stop. Problem 2 is 

infeasible (see Theorem 2.5). 
4- If there exists 2Ii∈ and Jj∈ such that 0<ijb then stop. Problem 2 is 

infeasible (see Theorem 2.5). 
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5- If there exists 1Ii∈ and Jj∈ such that 0≤ija  then remove the ith row of 

the matrix A  (see the part (a) of the Corollary 2.13). 
6- If there exists Jj ∈′  such that jji xa ′′ > , 1Ii∈∀ then remove the j′ th 

column of the matrix A (see Theorem 3.4) and set 0)( 0 =′jex  if 0>′jc . 

7- For each 1Ii∈ , if ∅≠∗
iJ  then remove the ith row of the matrix A  (see 

Corollary 3.7). 
8- If  0<jc , remove column Jj∈  from A . 

9- If 2j  dominates 1j  then remove the column 1j  from A , Jjj ∈∀ 21,  (see 
Corollary 3.10) and set 0)(

10 =jex . 

10- Let }:{ jiji
new
i xaJjJ ≤∈=  and new

m
newnewnew

I JJJJ ×××= ...21 . First 

obtain the vectors )(ex , new
IJe∈∀  of A  using Definition 2.12, and then 

)( 0ex by pairwise comparison between the vectors )(ex . 

11- Find ∗x by Lemma 3.1. 
 
 

Numerical Example: 
 
Consider the problem below: 
 

87654321 2365.232min xxxxxxxx ++−−++−  
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≥•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

6.0
72.0
6.0

57.0
5.0
4.0

24.073.02.02.04.055.07.037.0
44.099.084.054.044.094.084.073.0
2.02.05.02.035.025.075.083.0
21.019.074.034.034.028.059.099.0
35.03.04.03.01.026.051.008.0
14.077.007.017.095.037.016.00

x  

nx

x

]1,0[

5.0
6.0
76.0
7.0

01.058.049.025.02.03.01.01.0
2.069.07.045.037.04.073.01.0
52.074.076.089.059.082.0102.0
43.087.051.05.049.069.094.00

∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≤•

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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Step 1. The matrices, A , B  are as follows: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=

96.047.0118.065.05.083.0
145.06.09.015.06.071.0
117.0185.095.045.037.0
93.095.04.08.08.086.055.015.0
65.07.06.07.09.074.049.092.0
66.003.073.063.015.043.064.08.0

A  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

99.042.051.075.08.07.09.09.0
151.05.075.083.08.047.01.1
178.076.063.093.07.052.05.1
97.053.089.09.091.071.046.04.1

B  

Step 2. [ ]97.042.05.063.08.07.046.09.0=x  
 
Step 3. There is no 1Ii∈  such that jij xa >  , Jj∈∀  therefore we can go to step4. 
 
Step 4. There is no 2Ii∈ and Jj∈ such that 0<ijb  hence we can perform step5. 
 

Step 5. Since 014 <a  , hence the first row of the matrix A  is removed and 
A becomes 

 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

96.047.0118.065.05.083.0
145.06.09.015.06.071.0
117.0185.095.045.037.0
93.095.04.08.08.086.055.015.0
65.07.06.07.09.074.049.092.0

A  

 

 

Step 6. The fifth and seventh columns are removed and we have 0)( 70 =ex . Also, 

matrix A  becomes 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

96.018.065.05.083.0
16.015.06.071.0
17.085.095.045.037.0
93.04.08.086.055.015.0
65.06.09.074.049.092.0

A  

 
Step 7. Since ∅≠∅≠ ∗∗

43 , JJ , we can delete the second and third row. We get 
  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

96.018.065.05.083.0
16.015.06.071.0
65.06.09.074.049.092.0

A  

 

Step 8. Since 0, 62 <cc  then, we can remove the second and fifth columns and 
we get  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

96.08.05.083.0
115.071.0
65.09.074.092.0

A  

 

Step 9. In the above matrix, the first and fourth columns dominate the second 
and third respectively. After removing the second and third columns, matrix A  
becomes 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

96.083.0
171.0
65.092.0

A  

 

And we have 0)()( 4030 == exex . 
 
Step 10. In the new matrix, we have }8{2 =newJ , }1{5 =newJ and }8,1{6 =newJ . For 

)1,1,8(1 =e , 83.0)( 11 =ex  and 65.0)( 81 =ex .  Also, )8,1,8(2 =e  results in 71.0)( 12 =ex  
and 96.0)( 82 =ex . Hence the minimal solutions are )65.0,0,0,0,0,0,0,83.0()( 1 =ex and 

)96.0,0,0,0,0,0,0,71.0()( 2 =ex . 
 

Step 11. Since )( 1ex  optimizes the problem with objective function  xc t+  then 
)()( 01 exex =  and also )65.0,0,5.0,63.0,0,0,46.0,83.0(=∗x . 
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5. Conclusion 
 

     In this paper we studied the linear optimization problem with fuzzy relational 
inequalities constraints defined by max-average operator. First, we discuss the 
feasibility region characterization and then, introduce a new simplification 
technique to solve the usual difficulty of finding the minimal solutions that 
optimize the problem with objective function xc t+ . An algorithm together with 
simplification operations to accelerate the problem resolution is also presented 
together with an illustrative numerical example. 
 
Acknowledgments. The authors are grateful to referees for their valuable 
comments and constructive suggestions. 
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