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    ABSTRACT. There are several methods for solving fuzzy linear programming (FLP) 

problems. When the constraints and/or the objective function are fuzzy, the methods 
proposed by Zimmermann, Verdegay, Chanas and Werners are used more often than 
the others. In the Zimmerman method (ZM) the main objective function cx  is added 
to the constraints as a fuzzy goal and the corresponding linear programming (LP) 
problem with a new objective )(λ  is solved. When this new LP has alternative optimal 
solutions (AOS), ZM may not always present the "best" solution. Two cases may occur: 
cx  may have different bounded values for the AOS or be unbounded. Since all of the 
AOS have the same λ , they have the same values for the new LP. Therefore, unless 
we check the value of cx  for all AOS, it may be that we do not present the best 
solution to the decision maker (DM); it is possible that cx  is unbounded but ZM 
presents a bounded solution as the optimal solution. In this note, we propose an 
algorithm for eliminating these difficulties.  

 
   
 
 

1. Introduction 
 

     Following "Decision Making in Fuzzy Environment" proposed by Bellman and 
Zadeh [1] and "On Fuzzy Mathematical Programming" proposed by Tanaka, Okada 
and Asai [17], Zimmermann [22] first introduced fuzzy linear programming as 
conventional LP. He considered LP problems with a fuzzy goal and fuzzy 
constraints, used linear membership functions and the min operator as an aggregator 
for these functions, and assigned an equivalent LP problem to FLP. Zimmermann 
[23] and Werners [20] proposed an approach for determining suitable values for the 
aspiration level and admissible violation of the fuzzy goal, instead of leaving this 
decision to DM. 
     Since then FLP has developed in a number of directions with many successful 
applications. Among the others, the approach of Verdegay [19] and Chanas [5] 
which propose a parametric programming approach for solving FLP is the most 
often used. In their approach, one can obtain an optimal solution to the problem for 
every value of the parameter. Moreover, we obtain a complete fuzzy decision, thus 
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allowing us to consider other possibilities of choice besides the maximizing variant. 
For a brief study of FLP with fuzzy goal, fuzzy constraints and fuzzy parameters, we 
refer to [2,6,9,10]. FLP with fuzzy variables and the application of ranking functions 
in FLP are discussed in the literature [3,4,12,13,14,16].  
     In this note, we discuss the case when ZM solves a problem and there are 
alternative optimal solutions (AOS). Since all of the AOS have the same λ , they 
have the same values for the corresponding LP. Therefore, unless we check the 
value of cx for all AOS, it may be that we do not present the best solution to DM. It 
is possible that, among the AOS, we present the first solution obtained by the 
software, whereas the others may have better values for cx. It may also be that 
cycling occurs during the process of finding the AOS, and hence the software 
cannot obtain all of the AOS. In this case, we may lose the best value for cx. 
Moreover, in ZM, if there exists an optimal solution for the corresponding LP, then 
it is bounded, whereas it is possible that cx is unbounded. Hence, when we present 
one of the AOS of the corresponding LP to DM, it is clearly not optimal. In this 
note we present an algorithm that eliminates these difficulties. 
     There exists yet another difficulty in ZM, in that it does not guarantee the 
efficiency of the solutions yielded by max-min operator. This problem has been 
addressed by some authors and procedures for dealing with the problem have been 
sugessted [7,8,11]. The two-phase approach proposed in [8] is discussed in this note. 
     We note that the approach of Verdegay [19] and Chanas [5] does not have these 
problems. However, solving parametric LP problems is difficult in practice. 
     The organization of this note is as follows. Section 2 reviews ZM. The approach 
of Verdegay [19] and Chanas [5] is discussed in Section 3 and the two-phase 
approach proposed in [8] is discussed in Section 4. In Section 5, some examples are 
solved by ZM, and the difficulties of this method are discussed. Our suggestions to 
improve ZM are proposed in Section 6, and the performance of our algorithm is 
discussed in Section 7.  

 
2. The Zimmermann Method  

 
     Consider the following general form of the symmetric FLP problem: [9] 
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where, nnTmnm ℜ∈ℜ∈ℜ∈ℜ∈ × xcbA ,,, ; also xa~m  and 
~
≤  denote the relaxed or 

fuzzy version of the ordinary max and ≤ respectively. For representing the fuzzy 
goal, let us stipulate that the objective function cx  be essentially greater than or 
equal to an aspiration level 0b , chosen by the decision maker (DM). Then we 
consider the following problem: 
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     For treating fuzzy inequalities, Zimmermann proposed linear membership 
function as follows: 
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where for  i = 1,…m,  i)(Ax   is  the ith row of Ax ,  ib   is the ith element of  b  and 
for  i = 0,1,…m, pi is a subjectively chosen constant by the DM expressing the limit 
of  the admissible violation of the ith inequality. 
     Using the "min" operator of Bellman and Zadeh [1] together with the above 
linear membership functions, the problem of finding the maximum decision reduces 
to choosing *x  that maximizes the following objective function 

)}(~{min)(
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In other words, we have:  
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By introducing the auxiliary variable λ, this problem can be transformed as follows: 
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After some simplification, we have the equivalent LP problem: (in the sense that the 
optimal solution for 2.7 is also optimal for 2.6) 
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Remark 2.1. Zimmermann [23] and Werners [20] proposed solving the following 
two problems to determine suitable values for 0b  and 0p , instead of leaving the 
decision to  DM. 
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where ),...,( 1 mpp=p  is chosen by DM expressing the limit of  the admissible 
violation of the constraints. Let 1z  and 0z  be the optimal values for (2.8) and (2.9), 
respectively. Set 0

0 zb =  and 10
0 zzp −= . 

 
3. The Verdegay and Chanas Approach 

 

     Consider the problem (2.1) with the membership functions (2.3) and (2.4) for the 
fuzzy goal and fuzzy constraints, respectively. Verdegay [19] and Chanas [5] show 
that using the technique of parametric programming one can analytically describe 
the set of solutions incorporating the whole range of possible values of the function 

)}(~),(~min{)(
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0 xxx i
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where the notation "∧ " denotes the min operator. 
These identify the complete fuzzy decision space D. Verdegay and Chanas consider 
the following parametric programming problem: 
 

0x
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cx
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where the parameter θ ( 10 ≤≤θ ) can be interpreted as the degree of constraints 
violation.  
     It is clear that for every admissible solution xθ of problem (3.1) with fixed 
parameter θ , the condition ,,...,2,1,1)(~ miAi =−≥ θθx  is valid. On the other hand, 
for every non-zero solution (if mipi ,...,2,1,0 => ), there exist mk ≤≤1  such that 
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θθ −= 1)(~
x

kA  and therefore the common degree of satisfaction of the constraints is 
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     Solving the problem by parametric programming techniques, we obtain the set of 
solutions maximizing the objective function as analytically dependent on parameter 
θ , i.e. for every θ , we obtain a solution (if there exist one) which satisfies jointly the 
constraints with degree θ−1  and simultaneously attains the fuzzy goal with the 
highest degree possible. The maximum value of the objective function of problem 
(3.1) can now be represented as analytically dependent on parameterθ .  
Having functions 0~A  and Cµ  we easily obtain a membership function 

0~ACD ∧= µµ  of the fuzzy decision.  
     As stated in [5], the following are two specifications of this approach: 
 
     “1- One obtains a complete fuzzy decision allowing one to consider also other 
possibilities of choice besides the maximizing variant. 
       2- The aspiration degree 0b as well as the tolerance 0p  can be stated by DM only 
after the solving of the parametric problem which can be easier for the DM because of 
the additional information about existing realities.” 
 
     As mentioned above, we can obtain an optimal solution (if there exist one) for 
eachθ . Therefore, we can summarize the results in the Table 1 and then present 
them to DM.  
 

θ             *z              
mbbb .................

usedactuallyresources

21
 

   0.0 
   0.1 
   0.2 
    … 
   1.0 

 

TABLE 1. The solution  of  the  parametric  programming  problem 
      

     Also, we can use parametric programming techniques and obtain intervals for θ  
such that the dependent value of cx  is optimal in each interval. 

 
4. The Two-phase Approach 

 

     S. M. Guu and Y. K. Wu [8] proposed a two-phase approach for solving problem 
(2.1), which concentrates on the fuzzy efficiency of solutions. They used the 
suggestion of Zimmermann [23] and Werners [20] (Remark 2.1) for obtaining 

00 and pb . The two phases are as follows: 
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Phase I. Solve the problem:  
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and denote  is an optimal solution for the problem by  ),( ** λx . 
 

Phase II. Let **x  be the optimal solution for the following problem:  
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    This solution is fuzzy efficient for problem (4.2) [8, Theorem 2.1] i.e. there does 
not exist an optimal solution y  such that  
 

mkAAmiAA kkii ≤≤<=≤ 0somefor)(~)(~and,...,1,0)(~)(~ **** yxyx . 
 

Remark 4.1. Trivially, if  1* =λ  in Phase I, there is no need of phase II. 
  
     Guu and Wu [8] in the conclusion of their paper mentioned: 
From computational consideration, the second phase of the model can be simplified. In 
fact, because the coefficients in the objective are all positive, the second phase of the 
problem can be restated as 
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where X denotes the crisp constraints in the original model. 
 

5. Examples and Results 
 

    In this section, we illustrate the difficulties of ZM  by several examples. 
 

Example 5.1. In this example, which is taken from [21], the AOS have different 
values for the main objective cx , and it may be that ZM does not lead to the best 
value for cx . Consider the following FLP problem: 
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Let 3and3,2,,3 32100 1 ==== = ppppb . For obtaining a solution to (5.1) ZM 
solves the following equivalent problem: 
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One of the optimal solutions for (5.2) is )0,3(* =Ax  with 1* =λ . This problem has 
four alternative optimal basic feasible solutions, 
 

)3,0(* =Bx , )6.4,8(.* =Cx , )0,6(* =Dx and )6667.2,6667.4(* =Ex , 
 

and the corresponding values of the main objective function 21 xxz +=  for these 
points are, ,3* =Bz ,4.5* =Cz 6* =Dz  and 3333.7* =Ez . Since the purpose of  ZM is to 
obtain the best value for λ , it does not prefer one of the AOS to the others. 
Therefore, unless we check the value of z for all AOS, it is possible that we present 
(for example) *

Ax  to DM as the optimal solution for (5.1), whereas the best value for 
z occurs at *

Ex .  
     When solving this problem by WinQSB [15] there was a cycling between *

Ax  and 
*
Bx , and hence only these two solutions, as alternative basic optimal solutions, were 

obtained. Thus we lost the other three alternative basic optimal solutions that have 
better values for .z   

 

Remark 5.2. We can use the suggestion of Zimmermann and Werners (explained 
in Remark 2.1) for choosing 0b  and 0p . This suggestion eliminates the difficulties 
of Example 5.1 and we obtain the unique optimal solution )6667.2,6667.4(* =Ex  

with 1* =λ  and 3333.7* =Ez . However, besides eliminating the role of DM in 
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determining the value of 0b  and 0p , it entails solving two further LP problems 
before solving the main problem, and hence is time consuming. 
On the other hand, if we use the two-phase approach, the problem does not have 
any feasible solution in Phase I. Deleting )"(~1" xiA≥  from the constraints of (4.1) 
leads to ZM with the suggestion of Zimmermann and Werners and hence the same 
unique optimal solution )6667.2,6667.4(* =Ex  with 1* =λ  and 3333.7* =Ez . Since 

1* =λ , the second phase is redundant (Remark 4.1). 
     The next example shows that even if 1* <λ  we may have AOS leading to 
different values of z . 
 

Example 5.3. Consider the following problem:  
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Let .2and1,3 5432100 ======= ppppppb  Then the optimal solution is 

)4828.1,6276.5(* =Ax  with 2.0* =λ  and 1104.7* =Az . The problem has an 

alternative basic optimal solution )44.3,28.6(* =Bx  with 72.9* =Bz . For both these 

two solutions and all of their convex combinations we have .1)(~0 =xA  
 

Remark 5.4. Using the suggestion of Zimmermann and Werners yields 
9.91

0 == zb . Since the feasible space of (5.3) in the crisp case is empty, we cannot 
obtain 0p  using the suggestion of Zimmermann and Werners. Let DM choose 

10 =p . Again, we have AOS and the same problems as example 5.1. 
 

Remark 5.5. If we use the two-phase approach, the problem does not have a 
feasible solution in Phase I. Deleting )"(~1" xiA≥  from the constraints of (4.1) leads 
to the optimal solution )975.2,125.6(* =Cx  with 2.0* =λ  and 1.9* =z . In Phase II, 

the feasible space, is again empty, and deleting  )"(~1" xiA≥  from the constraints of 
(4.2) we once again have *

Cx  as the optimal solution. From the viewpoint of 
efficiency, we cannot prefer one of the points *

Bx  and *
Cx  to the other (Table 2), but 
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the two-phase approach prefers *
Cx  to *

Bx  because of its objective function in Phase 
II, which consider the summation row in Table 2. However, **

CB zz >  and the two-
phase approach does not lead to the best value for the main objective cx=z . 

  
The degree of satisfaction  

*
Bx  *

Cx  

The fuzzy goal  0.82 .2 
The first constraint 1 1 
The second 
constraint 

0.2 0.2 

The third constraint 1 1 
The fourth 
constraint 

0.2 0.975 

The fifth constraint 0.2 0.2 
The summation 3.42 3.575 

 

TABLE 2. Comparison of two optimal solutions from the efficiency viewpoint  
 

     In the next example, not only are there are different values for cx , but they also 
have different degrees of membership in the main objective function. 
 
Example 5.6. Consider the following problem: 
 

)4.5(

.0,

2

633

1010

2

3

82..
2.22xa~m

21

21

21

21

21

21

21

21

~
~
~
~
~
~

≥

≥−

≤+

≤+−

≤+−

≥+

≤+
+=

xx

xx

xx

xx

xx

xx

xxts
xxz

 

 
If 3and,2,10,7 63542100 ======== pppppppb , then the optimal 

solution is )0,25.2(* =Ax  with 6250.0* =λ  and 5.4* =Az . The problem has an 

alternative basic optimal solution )6875.0,5625.1(* =Bx  with 6375.4* =Bz .                   
These two solutions and all of their convex combinations have different values                
for z  and different degrees of membership. The degree of membership                    
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in the main objective function for *

Ax  is 75.0)(~ *0 =AA x  and for *
Bx   is 

.7638.0)(~ *0 =BA x  
 

     In the final example, ZM obtains an optimal solution with a finite value for  z , 
whereas z  is unbounded. 
 
Example 5.7. Consider the following problem: 
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Let .3and2,1,6 2100 ==== pppb Then the optimal solution obtained by ZM is 

)2857.0,7143.5(* =Ax  with 1* =λ  and 6* =Az . The alternative basic optimal 

solutions are )4762.0,1905.6(* =Bx  and )0.6,0(* =Cx  with 6667.6* =Bz  and 6* =Cz . 
Unfortunately, none of them is the best value for z . In fact, the coefficients of 2x  
in the objective function and the constraints show that we can increase 2x  without 
any restriction, and hence z  is unbounded. However, ZM does not distinguish this 
case. 
 

Remark 5.8. In this example, using the suggestion of Zimmermann and Werners to 
determine 0b and 0p  eliminates the difficulty.  
 

Remark 5.9. If we use the approach of Verdegay [19] and Chanas [5], we do not 
have the difficulties in the above examples, because in this approach, the objective 
in the corresponding LP is to maximize cx . However, there are the practical 
difficulties of solving parametric LP problems, which are mentioned in the 
conclusion. 
 

6. Improving the Zimmermann Method 
 

     Usually, DM wants to improve the value of cx . He or she usually proposes an 
aspiration level 0b  but, if possible, prefers that this value be better than 0b . In 
Section5, we showed that if there exists a set of AOS, then it is possible that the 
solution obtained by ZM does not give the best value for z . Therefore, if S                     
is the set of all AOS, we must optimize cx=z  over S . Now we propose the 
following algorithm for improving ZM and call it "Improved Zimmermann Method" 
(IZM): 
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The IZM Algorithm: 
 
Step 1. Consider the following form of the FLP problem: 
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Step 2.  Take mipb i ,...,1,0;0and0 =>ℜ∈ , from DM. 
 
Step 3.  Solve the following problem: 
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Step 4. If problem (6.2) does not have any feasible solution, then STOP. If it                 
has AOS, then go to step 5. Else, let ),( ** λx be the unique optimal solution                    

of (6.2). Then ** cx=z is the best value for z  with the degree of satisfaction 

0
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Step 5. Let ),( ** λx be an optimal solution for the problem (6.2), and then solve the 
following LP problem: 
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If the problem (6.3) is unbounded, then the problem (6.1) does not have any 
bounded optimal solution.  STOP. 
Else, let **x  be the optimal solution of (6.3), then **** cx=z  is the best value for z  

with the degree of satisfaction 
0

**
0**0 1)(~

p
bA cxx −

−=  for the main objective function 
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and the degree of satisfaction 
i

iii

p
bA −

−=
)(1)(~ **

** Axx  for the ith 

constraint mi ,...,2,1, = . SIOP ■ 
 

Remark 6.1. Let *S be the set of all AOS in Step 5 and suppose it is not singleton. 
If the DM is interested in a fuzzy efficient solution in *S , he or she can carry out 
the following step: 
 

Step 6. (Efficiency) Solve the following problem: 
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     The optimal solution of this problem has the best value for cx=z  and it is a 
fuzzy efficient solution in *S . In fact, this step is the second phase of two-phase 
approach [8] with a little difference. 
 

Remark 6.2. It should be mentioned that the sixth step of above algorithm is 
somewhat similar to a step in the algorithm of R. N. Tiwari et. al [18].  
 
     The following examples are solved by the IZM algorithm. 
 

Example 6.1. Consider Example 5.1. By Steps 1, 2 and 3 the optimal solution for 
(6.2) is )0,3(* =Ax  with 1* =λ  and 3* =z . In addition, WinQSB gives another 

optimal basic feasible solution )3,0(* =Bx  with the same value for the main objective. 

Solving the corresponding LP (6.3) in Step 5 leads to )6667.2,6667.4(** =x  as the 

unique optimal solution with 3333.7** =z  and 3,2,1,0,1)(~ ** == iAi x . This is the 
best solution for the main objective and the procedure ends. 
 
Example 6.2. Consider Example 5.6. By Steps 1, 2 and 3 the optimal solution for 
(6.2) is )0,25.2(* =Ax  with 6250.0* =λ  and 5.4* =Az , 75.0)(~ *0 =xA . The problem 

has AOS. Solving (6.3) in Step 5 leads to )6875.0,5625.1(** =x  as the unique 

optimal solution with 625.0)(~ **0 =xA  and 6375.4** =z . 
 

Example 6.3. Consider Example 5.8. By Steps 1, 2 and 3 the optimal solution for 
(6.2) is )2857.0,7143.5(* =x  with 1* =λ  and 6* =z .  The problem has AOS. 
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Solving (6.3) in Step 5 leads to an unbounded solution. Thus, the problem (6.1) does 
not have any bounded optimal solution and the procedure ends. 
 
Example 6.4. [8] Consider the following problem: 
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with .30and40,5,7143.30,130 32100 ===== ppppb The Steps 1 to 5 lead to 

)0,9286.8,0,5714.8(** =x  with 5.0* =λ  and .64286.114** =z  The problem has 

AOS in Step 5. By Step 6 in Remark 6.1 we obtain )0,798.7,655.5,048.4(*** =x  

with ***** zz = . 
 

Note that 5.0)(~)(~)(~)(~)(~)(~ ***3**3***1**1***0**0 ====== xxxxxx AAAAAA , whereas 
1)(~ and8303572.0)(~ ***2**2 == xx AA . It is easy to see that not only does ***x  

achieve the optimal objective value, but it also attains a higher degree in the second 
fuzzy constraint. More precisely, ***x utilizes 80 units of the second resource, while 

**x  requires 86.784 units. 
 

7. Conclusion 
 

     The above examples show that if DM proposes 0b , it is possible that ZM does 
not give the best value for the main objective cx . In addition, if the main objective 
has an unbounded solution, ZM does not discover it. However, IZM algorithm is 
efficient in both cases. In fact, as shown in Table 3, IZM works better even than the 
method suggested by Zimmermann and Werners.  

 
     If we use the Verdegay and Chanas approach, we have the other difficulties. 
Using the dual simplex method for obtaining intervals for θ  or obtaining the values 
for Table 3.2 is not easy,  as stated in [10]: 
 
     “In any real-world problems, the number of constraints is always rather large (say 
50), and so are the decision variables. Therefore, Chanas’s approach for formulating the 
membership function of the fuzzy objective is not practical”. 
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 Zimmermann and 

Werners suggestion 
IZM 

When the feasible space of 
(4.1) is empty 

Fails Efficient 

Role of DM in proposing 0b  
and 0p  

None Allowed 

Number of problems that must 
be solved, when the feasible 
space (4.1) is bounded and it is 
not empty  

Three At most two 

 

TABLE 3. Comparing ZM and IZM 
 

     On the other hand, the two-phase approach concentrates on fuzzy efficiency, 
and hence obtaining the best value for the main objective is not guaranteed (Remark 
5.5).  
 
Acknowledgments. The authors would like to thank Professor J.L. Verdegay for 
introducing some useful resources and his guidance and to thank Professor M. 
Mashinchi, Professor M. Tata and the anonymous referee for their helpful 
comments.  

 
REFERENCES 

 

 [1] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Management 
Science, 17 (1970), 141-164.  

 [2] J. M. Cadenas and J. L. Verdegay, A Primer on fuzzy optimization models and methods, 
Iranian Journal of Fuzzy Systems (to appear). 

 [3] J. M. Cadenas and J. L. Verdegay, Using ranking functions in multi-objective fuzzy linear 
programming, Fuzzy sets and systems, 111 (2000), 47-53.  

 [4] L. Campus and J. L. Verdegay, Linear programming problem and ranking of fuzzy numbers, 
Fuzzy Sets and Systems, 32 (1989), 1-11. 

 [5] S. Chanas, The use of parametric programming in fuzzy linear programming, Fuzzy Sets 
and Systems, 11 (1983), 243-251. 

   [6] M. Delgado, J. L Verdegay and M. A. Vila, A general model for fuzzy linear programming, 
Fuzzy Sets and Systems, 29 (1989), 21-29. 

 [7] D. Dubois, H. Fargier and H. Prade, Refinements of the maximum approach to decision 
making in a  fuzzy environment, Fuzzy Sets and Systems, 81 (1996), 103-122. 

 [8] S. M. Guu and Y. K. Wu, Two phase approach for solving the fuzzy linear programming 
problems, Fuzzy Sets and Systems, 107 (1999), 191-195. 

 [9] Y. J. Lai and C. L. Hwang, Fuzzy mathematical programming methods and applications, 
Springer-Verlag, Berlin, 1992.  

 [10] Y. J. Lai and C. L. Hwang, Interactive fuzzy linear programming, Fuzzy Sets and Systems, 
45 (1992), 169-183. 

 [11] X. Li, B. Zhang and H. Li, Computing efficient solution to fuzzy multiple objective linear 
programming problems, Fuzzy Sets and Systems, 157 (2006), 1328-1332. 

Archive of SID

www.SID.ir



                      A Note on the Zimmermann Method for Solving Fuzzy Linear Programming Problems                    45 

 [12] H. R. Maleki, Ranking functions and their applications to fuzzy linear programming, Far 
East Journal of Mathematical Sciences, 4(3) (2003), 283-301. 

 [13] H. R. Maleki, M. Tata and M. Mashinchi, Linear programming with fuzzy variables, Fuzzy 
Set and Systems, 109 (2000), 21-33. 

 [14] H. R. Maleki, M. Tata and M. Mashinchi, Fuzzy number linear programming, in: C. Lucas 
(Ed), Proc. Internat. Conf. on Intelligent and Cognitive System FSS ’96, sponsored by 
IEE ISRF, Tehran, Iran, 1996, 145-148. 

 [15]  WinQSB 1, Yih-Long Chang and Kiran Desai, John wiley & Sons, Inc.  
 [16] J. Ramik and J. Raminak, Inequality relation between fuzzy numbers and its use in fuzzy                          

optimization, Fuzzy Sets and Systems, 16 (1985), 123-138. 
 [17] H. Tanaka, T. Okuda and K. Asai, On fuzzy mathematical programming, Journal of 

Cybernetics, 3(4) (1974), 37-46.  
 [18] R. N. Tiwari, S. Deharmar and J. R. Rao, Fuzzy goal programming – an additive model, 

Fuzzy Sets and Systems, 24 (1987), 27-34.  
 [19] J. L. Verdegay, Fuzzy mathematical programming, in: M. M. Gupta and E. Sanchez, Eds., 

Fuzzy Information and Decision Processes, North-Holland, Amsterdam, 1982, 231-
236. 

 [20] B. Werners, An interactive fuzzy programming system, Fuzzy Sets and Systems, 23 (1987), 
131-147. 

 [21] E. Zaeimazad, Fuzzy linear programming: a geometric approach, Msc thesis, University of  
Shahid–Bahonar, Kerman, Iran, 2005.  

 [22] H. J. Zimmermann, Description and optimization of fuzzy systems, International Journal of 
General Systems, 2 (1976), 209- 215. 

 [23] H. J. Zimmermann, Fuzzy programming and linear programming with several objective 
functions, Fuzzy Sets and Systems, 1 (1978), 45-55.  

         
MOHAMMADREZA SAFI*,  DEPARTMENT OF MATHEMATICES, UNIVERSITY OF SHAHID-BAHONAR KERMAN,   

KERMAN, IRAN 
         E-mail address: safi_mohammadreza@yahoo.com 
 

  HAMIDREZA MALEKI, DEPARTMENT OF BASIC SCIENCES, SHIRAZ UNIVERSITY OF TECHNOLOGY, SHIRAZ, 
IRAN 
       E-mail address:  maleki@sutech.ac.ir  
 

EFFAT ZAEIMAZAD, DEPARTMENT OF MATHEMATICES, UNIVERSITY OF SHAHID-BAHONAR KERMAN, 
KERMAN, IRAN 
       E-mail address: effat_zaeimazad@yahoo.com 
 

 * CORRESPONDING AUTHOR 
 

 

Archive of SID

www.SID.ir


