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RESIDUAL OF IDEALS OF AN L-RING

A. S. PRAJAPATI

ABSTRACT. The concept of right (left) quotient (or residual) of an ideal 7 by an
ideal v of an L-subring u of a ring R is introduced. The right (left) quotients are
shown to be ideals of . It is proved that the right quotient [#:. v] of an ideal
n by an ideal v of an L-subring u is the largest ideal of u such that
[7: vlvcn. Most of the results pertaining to the notion of quotients

(or residual) of an ideal of ordinary rings are extended to I-ideal theory of
I-subrings.

1. Introduction

Various operations on fuzzy ideals of a ring have been introduced and discussed
in the literature, which are carried over easily to L-ideal theory. However, a detailed
investigation of the concept of quotient (or residual) of L-ideals is still awaited. An
attempt in this direction has been made in [12], wherein the notion of quotient
(residual) of I-ideals of a ring R is introduced and some basic results are obtained.
However, some important results pertaining to the notion of quotients, which are
useful for the development of the theory of Noetherian rings in the classical setting,
are not extended to the theory of I -ideals.

In order to overcome this shortcoming, we study the L-ideal theory of an
I-subring u of a given ring R. Such type of studies have been initiated in our
papers [13,14,15]. In papers [13,14], we have defined and discussed the maximal
ideals of an L-subring. On the other hand, in paper [15], we have introduced the
notion of prime ideals, semiprime ideals and primary ideals of an L-subring. In what
follows, we shall consider an I-subring x4 of a given ring R and call the system

L(u,R) an L-ring.

2. Preliminaries

In this section we recall some of the basic definitions and concepts used in the
sequel. For details we refer to [10,11,12].
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Let X be a non-empty set and L be a lattice. By an L-subset of X, we mean a
function from X to L. The set of all L-subsets of X is called the L-power set of X

and is denoted by LY. For uvel™ if v(x)<u(x),V xeX, we say that v is

contained in x and write v < u. Throughout the paper, unless otherwise specified,

R will denote an ordinary ring and L will denote a lattice. Also, Z*will denote the
set of positive integers.

Definition 2.1. [12] Let L. be a complete lattice and let {z; }ie , be a family of

I -subsets of X. Define U,ui and ﬂ,ui e L* as follows:

ield ied
[Uu,-](x)ﬁeviu,-(xx VxeR
ied
(ﬂui}(x)=igui<x), VxeR.
ied

U H; and ﬂ,ul- are respectively called the union and intersection of the family
ield ied

{lui }ie/l :

Definition 2.2. (Definition 3.1.6 [12]) Let L be a lattice and KR be a ring. Let
e L® Then u is called an I-subring of R if

0 wux=-y)zux)Apu(y), Vx,yeR,and
2 pl)zplx)Ap(y), VxyeR.
The set of all L-subrings of R is denoted by I(R). It is obvious that if x4 is an

L-subting of R, then u(x) < u(0), V xeR. For convenience, we use the
notation L(x, R) for the L-subring # of K and call it the L-ring L(z, R) .

Definition 2.3. (Definition 3.1.7[12]) Let L be a lattice and € L*. Then u is
called an [ -ideal of R if

(1) wx—) 2 u()Ap(y), VxyeR, and

@) u(xy)zu(x)v uly), VxyeR.

We denote the set of all L-ideals of R by LI(R). It is obvious that if K has identity 1
and u € LI (R) ,then u(x)> u(l).

Definition 2.4. (Definition 3.2.11[12]) Let v € L® and u e L(R) with v < u. Then
v is called an [-ideal of x4 (orinu) if
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D vix=y)zv(x)av(y), vV x,y € R ,and

@ v)z (ux)AavDvvx)auly), Vx,yeR

For convenience, v is called an ideal of 4 (or the L-ring L(x,R)). If v is an ideal
of the L-ring L(x, R) , then we write v < u .

Definition 2.5. Let L be a lattice and L(x,R) be an L-ring. If v is an L-subring of
Rwith v ¢ u, then v is called a subring of u (or L-ting L(u,R)).

Cleatly if v is a subring of g, then v(x")2v(x), Vhe Z".

Definition 2.6. [12] Let L be a complete lattice and 77,V € L. Then we define
n+v,nv and nov by

(7 +v)(x) =v {n()Av(z) |y, zeRx = y+z}
(77‘/)()5):\/{i/i\l(n(yi)/\v(zi)) | viiz; €R, i=1,2y---,n,;y,~zf = X}

(mov)(x)=vin(y)av(z)ly,ze R, yz = x}.

Clearly if n and v are subrings of an L-ring L(x,R) with7n(0)=v(0), then
ncn+v and ven+v.

Lemma 2.7. [12] Let L be a complete lattice and n,v,& € L® . Then the following
assertions hold:

(1) movecnv,

(2) So(n+v)c don+dov,

3) (E+novcbov+nov,

) (ENmov < (Sov)N(nov),

(5) ncv=nécvé and noécwg,

© (7v)s=n0:),

(7) (v)(x+y)z@v)(x)A@v)(y), Vx,yeR.

We recall the following elementary results from [15]. For the sake of completeness, we
offer their proofs.

Lemma 2.8. [15] Let L be a complete lattice and L(u,R) be an L-ring. Let 1 be a
subring of u then

(1) moncnncn

() n+n=n
In particular, popcupucu and pu+u=u.
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Proof. The proof is obvious.

Lemma 2.9. (Theorem 3.2.15 [12]) Let L(u, R) be an L-ring. Then the intersection of
two ideals of u is an ideal of 1 .

Theorem 2.10. [15] Let L be a complete lattice and L(u,R) be an L-ring. Let n e L*
withn < . Then 1 is an ideal of u if and only if

(D) nlx=y) 2n(x)An(y), Vx,yeR
(2) nop = n and pon <1 .
Proof. Suppose 7 is an ideal of u . Let ze R. Since 7 is an ideal of u, we have
n(xy) 2 n(x) A u(y), Vx,yeR.
Thus

n(z) 2 vin(x) Au(y) | x,y € R, z=xp}
= (nou)(z)
Hence oy < 7. Similatly poncn .
Conversely, suppose (1) and (2) hold. Let x, y € R. Then
n(xy) = (nou) (xy) = v {H(xi)A#(y,-) | X,y €R, x;p; = XJ’}
2 7(x) A p(y) -

Similarly, 7(xy) =2 u(x) An(y) . Thus 7 is an ideal of u .
Theorem 2.11. [15] Let L be a complete lattice and L(u,R) be an L-ring. Let n € L*
with n < p. Then 1 is an ideal of u if and only if

(1) n(x=y) zn(x)An(y), vV x,yeR,

(2) nucn and un 1.
Proof. Let i be an ideal of £ . For x € R we may write

X = Z v:z;, where Y1,V2,e0 ¥y 21,2202, €ER.
i=1

Since 77 is an ideal of u, we have
n(x)=77{z yizi]
i=1

>

> 3

177()’[25)

i

> A () A u(z)
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Thus

7NMZV{£JﬂyJAﬂ&J)wwAG112:%%=x}

i=1

= (nu)(x) .
Hence nucn . Similatly, uncn.
The converse follows from LLemma 2.7 and Theorem 2.10.
Theorem 2.12. [15] Let L be a complete lattice and L(u,R) be an L-ring. If n and v
are ideals of u withn(0)=v(0), then n+v isanideal of  and ncn+v, ven+v.
Proof. Let x,y € R. Itis easy to show that

(m+v)x—y) = (+v)(x) A (7+v)().

Since 7 is an ideal of u, we have, by Theorem 2.10, pwon c 7. Similatly, tovCv.

Now, by Lemma 2.7, we have

Ho(n+v) c puon+puoven+v.
Similatly, (7+v)ou < n+v . Thus, by Theorem 2.10, n7+v is an ideal of u.

Theorem 2.13. [15] Let L be a complete lattice and L(u,R) be an L-ring. If n and v

are ideals of yt , then nv is an ideal of 1 .

Proof. Obviously, (7v)(—x) =(7v)(x), Vx € R. By Lemma 2.7, we have
(mv)(x+y)=(@v)(x)A(@v)(y), vx,y €R.

Since v is an ideal of # , by Theorem 2.11, we have v c v. Thus, by Lemma 2.7, we

have (nv)u =n(vi) c nv. Similatly, u(nv) < nv. Thus, by Theorem 2.11, v is an
ideal of u .

Lemma 2.14. Let L be a complete lattice and L(u,R) be an L-ring. Let n be a subring
of u.Let v,0eL® . Then voO 1 if and only if vOcn.

n
Proof. Suppose w8 cn. LetxeR. Let xzz)/izi SV Yoy, 2112952y €R.
i=1

Then
1) = 10121+ Y222 oot VaZa)
= :77 (J’i Zi) (Since 7 is a subring of i)
2 Z\l("oa)()’izi) (Since o0 cn)
2 A () A 0(z)}

1

i
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Thus

i=1

7(x) = V{éV(yi)Ab’(zi) | x =D vz vz € R}
=(vo)),

Hence v@ c 7. The converse follows from Lemma 2.7 (i).

Definition 2.15. [12] A Complete Heyting algebra L. is a complete lattice such that
forall Ac Land forallb € L,

v{a/\b|aeA}: (v{a|aeA})/\b and /\{avb|aeA}:(v{a|aeA})vb.

Most of the proofs of our results are based on the completeness of the given
lattice and the definition of Heyting algebra. This fact is specifically mentioned
whenever it is used.

3. Quotient of Ideals

Definition 3.1. Let L be a complete lattice and L(x, R) be an L-ting. Let 77 and v
be ideals of u. The right quotient (residual) of 7 by v, denoted by [r:,v], is
defined by

[7: vI=UE| &< uand Gov <y

The left quotient of by v, denoted by [7:; v], is define by

[ v1=U{EI€ < u and voé <}

If R is commutative, then [77:, v]=[r: v]. In this case it is called the quotient of 7
by v and denoted by [r:v].

Theorem 3.2. Let L be a complete Heyting algebra and L(u,R) be an L-ring. Let
n,v be ideals of p. Then [n:,. v] and [n: v] are ideals of w. Also nc[n:. vlc u
and ncnyvlcu.

Proof. Let x,y € R. Cleatly, [77 y v](—x) = [77 :r v](x) .

Now write A:{§|§<1,uand fovgn}. Suppose &,&'e 4. Then & and &' are
ideals of g such that ov cn and ov cn. By Theorem 2.12, £+¢&' is an ideal of
4 . Hence, by Lemma 2.7 and Lemma 2.8, it follows that

(E+&ov c bov+loventn=n.
Thus £+&'e 4.
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Now,
e V) Al V0 = | v ]| v e

which, since L is complete Heyting algebra,

VIEAE ()] £,E e 4}
ViE+ENx+y) [ E,8" e 4}
[7: vIx+y) (Since £+ &€ 4)

IANIA

Now, [ vi(xy) = (U 5J(xy)

Sed

= v, s()

>

= v @A um)]

= Since L i lete Heyting algeb

(g\e/A(’E(x)j/\ﬂ(y) (Since L is complete Heyting algebra)

=[n: vIG) A p(y)
Similatly, [7:, vI(xy)2[n:, vI(¥)Au(x). Thus [7:. v] is an ideal of . Cleatly,
[7:. vlc u. Since 7 is an ideal of p , we have, by Theorem 2.10, oy < 77 . Thus,

by Lemma 2.7, we have nov C nou 7. Hence 1€ 4 and therefore nc[n:, v].
Similatly, [r7: v] isanideal of g and ncnyvlcu.

Theorem 3.3. Let L be a complete Heyting algebra. Let L(u,R) be an L-ring and 1,
v beideals of p. Then

(1) [n:, v] is the largest ideal of u with the property that [, vlve .
(2) [ v] is the largest ideal of u with the property that v[n: vlcn.

Proof. Write A:{flfdyand §0vg77} . Then [7:, v]:Ué. Tet xeR and
ted

m
X = E u,w; . Now
i=1

n(uw;)z(Gov)(uw;)z2&,)Av(w;), Véed
Thus

n(u;w;) = §ZA [SK(”,‘)/\V(W,‘)]

= |:§VA E(u; )} Av(w;) (Since L is a complete Heyting algebra)

=[n: vIu;)Av(w;)
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n(x)—n[ ]
7

>

Hence

(u,w,)

m
/\
m
/\

A vl avow))

Consequently

ngV{Zh;vkm)Aww»|x=§uw}

: i=1
= ([ﬂ :r V]L’)(X)
Hence [n7:, vlve .

Suppose A is anideal of u such that Av c . By Lemma 2.7, lov c Av 5. Thus
Ae A and hence A c[n:, v].

Theorem 3.4. Let L be a complete lattice and L(u, R) be an L-ring. Let n,v and 0 be
ideals of u . Then the following assertions hold.

() If ncv, then [n:, 0lclv:, 0] and [0, v]1<[0:, 7],

(2)If ncv then [v:, nl=u,

) [ nl=u,
(4 If n(0)=v(0), then [n:, vl=[n:. n+v].
Proof.

1 Letngv.WriteA:{§|§<l,u and §09gf7} and B={§|§<1,uand foﬁgv}.
Tet £€A.Then &< pu and &6 cncv. Thus £ e Band hence 4 < B. Therefore
[7:, 01=JecJe=1Iv:, o1
ted £eB
Similarly we can show that [0:, v] < [6:, 7].
(2) Let ncv. Write A={§|§<1,uand g‘ongv}.Now u<pu and since 17 < u , we
have pwon cncv.Thus e A and hence
welJé=vinlcu.
Eed
Therefore [v:, n]l=u.
(3) Obvious.
(4) Since 7(0)=v(0), by Theotem 2.12, n+v is an ideal of g and vcn+v.
By (1), [n:, n+vicln:, v].
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Write A:{§|§<1,uand§0vgn} and B={§<1,uand§0(77+v)g77}. Let £ed.
Then < u and ovcn. Since n<au, bonc pwoncn. Therefore, by Lemma 2.7
and Lemma 2.8 , we have
bo(n+v)cbon+doven+n=n.
Hence £ € B. It follows that
:vi={JéecJe=Mn: n+vl.
fed  EeB
Consequently
[7: n+vl=I[n: v].
Similar results hold for left quotients.

Corollary 3.5. Let L be a complete Heyting algebra and L(u,R) be an L-ring. Let 1
and v be ideals of 1 Then

@) [ vl nl=u,

) [n: nvl=u,

3) n:, nl, v]=u,

@ [n: W)=,

) [nv):, nv]=pu.
Proof.
(1) Since 1 <[5, v], by Theorem 3.4 (2), we have [[:, v]:, n]=u.
(2) By Theorem 2.13 , nv is an ideal of u . Since 7 is an ideal of x, by Lemma 2.7
and Lemma 2.11, we have

nvenusn.

Therefore, by Theorem 3.4 (2), we have [57:, nv]=p.

(3) By Theotem 3.4 (3), [n:, n]=u. Since v < u=[n:, 7], by Theorem 3.4 (2), we
have [[77 L1, :,u]=,u .

(4) Since 7(\v is an ideal of g and nMNvcn, by Theorem 3.4(2), we have
[:, W)= .

(5) nNv and nv are ideals of u. Since nvcny and npvcv, we have
nv < nNv Therefore, by Theorem 3.4 (2), we have [(7 Nv):, nv]=u.

Corollary 3.6. Let L be a complete Heyting algebra and L(u,R) be L-ring. Let 1 and
v be ideals of u, with 11(0) =v(0) . Then

(D) [m+v):, nl=u.
@2 [m+v):, @Nv)l=u,
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@) lo+v):, nvl=
Proof.
(1) By Theorem 2.12, n+v is an ideal of g and nc<n+v. Thus by Theorem
3.4 (2), we have [(77+v)' nl=u.
() Since (7Nv)< (7+v), by Theorem 3.4 (2), we have [(7+v):, (1Nv)]= u
(3) Since nv < n < n+v, by Theorem 3.4 (2), we have [(n+ v):, nv]=pu.

Theorem 3.7. Let L be a complete Heyting algebra. Let 1n,,15,...1,,, v and 6 be
ideals of 1, Then

(1) {ﬁ nir Vlzﬁ ;5 v
i=1 i=1

2) {v Y m] =\ [v:, 7,1 (provided n,(0)=n,(0) Vi, j).
i=1

Proof.

(1) Since () 7, < n; Vi, by Theorem 3.4(1), we have

j=1
|:ﬁ77i o V}Q[ﬂi wvl Vil
i=1
Hence {ﬁ ;. v}g ﬁ [7;,: v]
i=1 i=1

Write A={&| &< and v} ,B={¢|a < pand fov Cn,| and
={§|§<1,uand (fovgnlﬂnz}.Let x e R . Now

(2, vINDn2 3, vIN) = HU&] [Uf’]](x)

Eed £eB

=( v 5(x>]A( v, £0)

{ v & (x) N3 (x):| (Since L is a complete Heyting algebra)

{ § (X)AE’ (x))} (Since L is a complete Heyting algebra)
E@rsWIsed &<l
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Let £€4 and &'e€B. Then & and &' are ideals of p. Also fovcn and
Eov cn,. Now, by Lemma 2.9, £ &’ is an ideal of x and by Lemma 2.7, we have
(EN&Nov = (bov)N(Sov)cm Ny, .
Thus £N &' e C. Hence
[nnp s vl= U £ 2UENE e 4, £ e B

Therefore
[ N7z 2, VIG) 2 VA(ENE) ()| § € 4, € B
=v{E()Ag' ()] ée ¢ eB)
= ([ 1, V1N, 3, vIN)
Hence
[ VIND, 2 viehn Nz 2, v].
Consequently

[UlHUZ o V] = [771 i V]ﬂ[ﬂz B V] .

(2) By Theorem 2.12, n,+n, is an ideal of u such that n,cn+7n, and
1, < ny+1n,. Thus, by Theorem 3.4 (1), we have

vy m+nlclv:, m]l and [v:, n+m1cv:, 0l
Hence [v:, i +mplclv:, mlNv:, n,].
Write A:{§|§<1,u and &on, gv}, B = {ff |& < pand Son, v} and
C={|&<uand Eofn+n,) v},
Let xeR.Then ([V L +772])(x) = gvcé(x) . Now,

v mIND s 1)) =1, mdO) AL, 7))
Which, since L is a complete Heyting algebra,

=(§\€/A§(x))A(§\E/B§'(X))=V{§(X)A§'(x)|§€ A& eB)

Let £€4, &'eB. Then & and &' are ideals of . Also &omy cv. o cv. Now.
by Lemma 2.9, £ &' is an ideal of 1 . Also,

(ENENo(m +m) = (ENEYom +(ENENom, (by Lemma 2.7)
cbom+Eon,cv+v=v
cviv=v.

Thus &N &' e Cand hence
e n+n))=JralJleng 1 4, £ < B},

AeC
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Therefore
Ve m+m )2 v EG)AE()|E € 4,& € B

:([V o Ul]n[V v 12 ])(x)
Thus
v m+nl=lv:, mINlv:, n,].

Theorem 3.8. Let L be a complete Heyting algebra and L(u, R) be an L-ring. Let 1,v
and 0 be ideals of u . Then

@) [n:, v0l=1n:, 61, v]
@) [n:3v0]=n: v]:0).

Proof. By Theorem 2.13, v is an ideal of 1 .
Write 4= {rj | £ < u and fovg[n 0 6’]}andB = {§ | & < u and éo(v@)gn}. Then

[7:, 01:, v]=U{E|E € 4} and [:, vO]1=U[¢ | & € B].

To show that [7:, v0] = [[77 L 0], V], it is sufficient to show .4 = B.
Let £€4. Then &< p and dov c[n:, 6]. By Lemma 2.14, we have {vc[r:, 6].
By Theorem 3.3, [7:, 8]0 <n . Thus by Theorem 2.7, we have

&v0)=(ev)o cln:, 010cn .

Hence, by Lemma 2.14, we have &o(v@)cn. Therefore £eB. Thus Ac B.
Conversely, suppose that £ € B. Then &< u and §o(v0)g n. By Lemma 2.14, we
have f(v&)g n. Hence, by Lemma 2.7, it follows that ({v)0=¢&(v8)cn. Since &
and v are ideals of g, by Lemma 2.13, {vis an ideal of x4 . Thatis, v is an ideal
of u and (§V)9 c 7. By Theorem 3.3, [1:, 6] is the largest ideal of x such that
[7:. 010 cn. Therefore ¢&vcin:, 6]. Hence, by Lemma 2.14, we have
Sov c[n:, fland thus & € 4. Therefore, B < 4 and consequently 4=B .

Theotrem 3.9. Let L be a complete Heyting algebra and L(u, R) be an L-ring. Let n,v
and 6 be ideals of u. Then

(D) [n:vlcng:, vo]

2) [mavlclon: ov].

Proof. By Theorem 2.13, 76 and v are ideals of u.

Write 4= {§ | & < pand bov < 77} and B = {§|§ < ,uandg‘o(v&)g 7749}. Then

[7: v]=U{¢1& € 4} and [70:, vO1=U¢ | £ € B}
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Suppose &€ 4. Then &< u and ov =i . Therefore, by Lemma 2.14, v C 77and

hence, by Lemma 2.7, we have
5(1/9) = (51/)9 cnb.
Finally, by Lemma 2.14, fo(vﬁ)g 1n0 .So & € Band hence 4 < B. Therefore

[7:, v]=U{E|E € A}cU{E| & € Bi=[n0:, ve].
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