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SOME PROPERTIES OF NEAR SR-COMPACTNESS

S. Z. BAI

ABSTRACT. In this paper, we study some properties of the near SR-compactness
in L-topological spaces, where L is a fuzzy lattice. The near SR-compactness is
a kind of compactness between Lowen’s fuzzy compactness and SR-compactness,
and it preserves desirable properties of compactness in general topological
spaces.

1. Introduction

Compactness is one of the most important notions in topology. Various kinds of
fuzzy compactness have been proposed [3,6,7,9], which are all generalizations of the
classical compactness. There may well be another compactness to be discovered.
In this regard we have introduced two new kinds of fuzzy compactness called SR-
compactness[2] and near SR-compactness[4] in L-topological spaces, respectively.
The present paper studies some properties of near SR-compactness. Near SR-
compactness is hereditary for strongly semiclosed subsets, finitely additive, and is
preserved under S-irresolute mapping. Every set with finite support is near SR-
compact. Also the near SR-compact space is described with cover form and family
of strongly semiclosed sets having a finite intersection property.

2. Preliminaries

In this paper, L = L(<,V, A, ) always denotes a fuzzy lattice, i.e., a completely
distributive lattice with an order-reversing involution ” 7. 0 and 1 denote the
smallest and the largest element in L, respectively. Let X be a nonempty crisp set,
L the set of all L-subsets on X, and Ox and 1x respectively denote the smallest
and the largest element in LX. M (L) will denote the set of all nonzero irreducible
elements of L. Put M*(LX) = {z, : 2 € X and o« € M(L)}. For each ¢ C L, we
define ' = {4’ : A € ¢}.

An L-topological space(L-ts) is a pair (L%, §) where § is a subfamily of LX which
contains Ox and 1y, and is closed for any suprema and finite infima. ¢ is called an
L-topology on X. Members of § are called open L-sets and their complements are
called closed L-sets.
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Definition 2.1. [8] Let L be a lattice and o € L. A set B of L is called a minimal
set of «, if the following two conditions hold; (1) \/ B = «; (2) for each z € B and
every subset C' of L with \/C > «, there is z € C such that z > z. In a fuzzy
lattice, each element « has a greatest minimal set which we will denote by 3(«).

Definition 2.2. [1] Let (LX,§) be an L-ts, A € LX. Then A is called a strongly
semiopen set iff there is a B € § such that B < A < B~°, and A is called a strongly
semiclosed set iff there is a B € ¢’ such that B°~ < A < B, where B° and B~ are
the interior and closure of B, respectively. In what follows SSO(LX) and SSC(LX)
will denote the family of strongly semiopen sets and family of strongly semiclosed
sets of an L-ts (LX), respectively.

Definition 2.3. [8] Let (L¥,d),(LY,7) be two L-ts’s and f : LX — LY be a
mapping induced by a crisp mapping f : X — Y. We define f : LX — LY and its
inverse mapping f~!: LY — LX as follows:

VA€ LX,y e, f(A)y) = V{A(@) : 7 € X, f(x) = g},

VB e LY,z € X, f~Y(B)(z) = B(f(x)).
Then f: LX — LY is called a function of Zadeh’s type.

3. Some Properties of Near SR-Compactness

Definition 3.1. [2] Let (L%,8) be an L-ts and ) € M*(LX). A € SSC(L¥)
is called a strongly semiclosed R-neighborhood, or briefly, SSC-R-neighborhood
of xy, if zy € A. B € L¥ is called a strongly semi-R-neighborhood, or briefly,
SS-R-neighborhood of xy, if ) has an SSC-R-neighborhood A satisfying B < A.
The set of all SS-R-neighborhoods (SSC-R-neighborhoods) of z, is denoted by

E(xa) (€ (z2))-

Definition 3.2. [2] Let (LX) be an L-ts, A € LX and o € M(L). ¢ C SSC(L¥)
is called an «a-SS-remote neighborhood family of A (briefly, a-SS-RF of A) if for
each x, in A, there is P € ¢ such that P € &(z,).

Definition 3.3. Let (LX,6) be an L-ts and A € LX. A is called near SR-compact
if every a-SS-RF ¢ of A has a finite subfamily ¢ of ¢ such that v is an a-SS-RF
of A(a € M(L)). Specifically, when A = 1y is near SR-compact, we call (LX,6) a
near SR-compact space.

Obviously, the following statements are valid:
SR-compactness [2] = near SR-compactness = fuzzy compactness [§]
The converse of these statements need not be true [4].

Theorem 3.4. Let A be a near SR-compact set in L-ts (L*,5). Then for each
B € SSC(LX), AN B is near SR-compact.

Proof. Let S be a constant a-net in A A B. Then S is also a constant a-net in
A. Since A is near SR-compact, by Theorem 2.2 of [4], S has an SS-cluster point
T, in A with height a. Clearly S is also a net in B € SSC(LX). Since z, is an
SS-cluster point of S we have xz, < B. Hence z, < AA B, i.e., x, is an SS-cluster
point of S in A A B. Thus A A B is near SR-compact. O
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Corollary 3.5. Let (LX,8) be a near SR-compact space and B a strongly semi-
closed set in (LX,8). Then B is near SR-compact.

Theorem 3.6. Let A and B be two near SR-compact sets in an L-ts (LX,5). Then
AV B is also near SR-compact.

Proof. Let ¢ C SSC(L¥) be an a-SS-RF of AV B (o« € M(L)). Then ¢ is an
a-SS-RF of both A and B. Since A and B are both near SR-compact sets, there
exist finite subfamilies ¢y and 15 of ¢ such that ¢; and s are a-SS-RF of A and
B, respectively. Put ¢ = 11 Uy, Clearly, ¢ is a finite subfamily of ¢, and also an
a-SS-RF of AV B. Thus, AV B is near SR-compact. O

Theorem 3.7. Let (LX,6) be an L-ts and A € L*. If A has finite support, then
A is near SR-compact.

Proof. Let the support of o,(A) be {z1,...,x,}, andsuppose¢ is an a-SS-RF of
A(aw € M(L)). For each i < n, choose P; € ¢ so that o € P;(x;). Then the finite
subfamily ¢ = {Py, ..., P,,} of ¢ is an a-SS-RF of A. Thus A is near SR-compact. O

Definition 3.8. [2] Let (LX,8) and (LY,7) be two L-ts’s and f : (LX,8) —
(LY, 7) a function of Zadeh’s type. f is called an S-irresolute mapping if f~!(B) €
SSO(LX) for each B € SSO(LY).

Theorem 3.9. Let (L*,5) and (LY, 7) be L-ts’s, A a near SR-compact set in
(LX,6), and f : (LX,8) — (LY,7) an S-irresolute mapping. Then f(A) is near
SR-compact in (LY, 7).

Proof. Let ¢ € SSC(LY) be an a-SS-RF of f(A)(a € M(L)). To begin with, let us
show that f~1(¢) = {f1(P) : P € ¢} is an a-SS-RF of A. Since f is an S-irresolute
mapping, then f~1(¢) C SSC(L¥). Let z, € A; then f(z,) = (f(2))a € f(A)
and since ¢ is an a-SS-RF of f(A), there is a P € ¢ with P € £((f())a), i-e.,
(f(x))a & P, or, equivalently, P(f(z)) 2 «. By the definition of inverse mapping,
f~YP)(z) = P(f(x)) # a, hence z, & f~1(P). It follows that f~1(P) € &£(xy).
Therefore f~1(¢) is an a-SS-RF of A. Since A is near SR-compact, there exists a
finite subfamily ¢ of ¢ such that f~!(¢) is an a-SS-RF of A. It is easily to show
that ¢ is an a-SS-RF of f(A). Thus f(A) is near SR-compact. O

Corollary 3.10. Let (LX) be a near SR-compact space and f : (LX,8) — (LY, )
an onto S-irresolute mapping. Then (LY ,T) is a near SR-compact space.

Definition 3.11. [2] Let (L%, ) be an L-ts,  be a prime element of L and r < 1.
pu C SSO(LX) is called an r-S-cover of (LX,§) if for each x € X, there is U € p
such that U(x) £ r.

Theorem 3.12. An L-ts (LX) is a near SR-compact space iff for every r-S-cover
u there is a finite subfamily v of p such that v is an r-S-cover, where v is a prime
element of L and r < 1.

Proof. Let (LX,8) be a near SR-compact space, x be an r-S-cover and r a prime
element and 7 < 1. Put ¢ = g/, then ¢ C SSC(L¥X) and for each z € X there is
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Q = U’ € ¢ such that U(x) £ r, i.e.,, ' £ Q(x). Since r is a prime element and
r<1, r € M(L). By z,v £ Q we have Q € £(z,), hence ¢ is an ’-SS-RF. Since
(LX,6) is near SR-compact, there is a finite subfamily v of y such that ¢ = v/ is
an r’-SS-RF, i.e., for each z € X, there is a V' € 1) = v/ such that V' € {(z,), i.e.,
xe €V, or ' £ V'(z), equivalently, for each x € X, there is a V' € v such that
V(x) £ r. Thus p has a finite subfamily v which is an r-S-cover.

Conversely, suppose every r-S-cover has a finite subfamily and it is an r-S-cover.
Let ¢ be an a-SS-RF of (LX,§), u= ¢’ and r = o'. Since a € M (L), r is a prime
element and r < 1. With the method of dual above, it is easily to prove that u is
an r-S-cover. Suppose v is a finite subfamily of u such that v is an r-S-cover. Put
1 =1/, then 1) is a finite subfamily of ¢. We can easily prove that v is an a-SS-RF
of (LX,6). Thus (LX,6) is near SR-compact. O

Definition 3.13. Let (LX,d) be an L-ts, r be a prime element of L, r < 1
and p C LX. If for every finite subfamily v of u, there is an 2 € X such that
(Av)(x) > 1/, then we say that p has an r-finite intersection property.

Theorem 3.14. An L-ts (LX,0) is a near SR-compact space iff for every u C
SSC (LX) having an r-finite intersection property, there is an x € X such that
(Ap)(x) > 7', where r is a prime element of L and r < 1.

Proof. Let (L*,d) be a near SR-compact space. Suppose there is a prime element
rof L, r < 1 and some p C SSC(LX) has an r-finite intersection property, for
each z € X such that (A p)(z) 2 r'. Then there exists A € p such that A(z) 2/,
i.e.,, A'(z) £ r. This shows p' is an r-S-cover. By Theorem 3.12, there is a finite
subfamily v = {4, ..., A, } of p such that v’ is an r-S-cover. Hence for each x € X,

there is A; € v such that A(z) £ r. And so (\/ A})(z) £ r, ie.
i=1

n
(Av)(z) = (_/\1 Ai)(z) 27,
i=
which contradicts the assumption that p has an r-finite intersection property.
Conversely, let p be an r-S-cover, r a prime element and r < 1. If none of the
finite subfamily v of p is an r-S-cover, then there is an z € X such that B(z) <r
for each B € v. Hence (\/v)(z) < r, or equivalently, (A v')(xz) > . This shows
that ' C SSC(LX) has an r-finite intersection property. Hence there is an x € X
such that (A u')(z) >/, i.e., (\/ u)(x) < r. This implies that p is not an r-S-cover,
a contradiction. By Theorem 3.12, (L, §) is near SR-compact. O

Theorem 3.15. A near SR-compact L-topological space (where L = [0,1]) is SR-
compact iff each strongly semiclosed set, viewed as a function, has a mazximum.

Proof. Necessity: Let (X, d) be an SR-compact space and A a strongly semiclosed
set in (X,0). Then A is a SR-compact set by Theorem 4.10 of [2]. Hence, by
Theorem 4.9 of [2], the set A, viewed as a function, has a maximum.

Sufficiency: Suppose (X, J) is near SR-compact but not SR-compact. Then, by
Theorem 4.8 of [2], there exists an a-net S = {S(n),n € D} without any SS-cluster
point with height o . Therefore, for each crisp point x € X corresponding to the
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fuzzy point x,, there exists P, € £(z,) and n(x) € D such that S(n) € P, holds
whenever n > n(z). Let ¢ = {P, : € X}. Then ¢ is an a-SS-RF. Since (X,0d) is
a near SR-compact space, ¢ has a finite subfamily ¢ = {P,,, ..., Py, } so that ¢ is
an a-3S-RF. Let A = P, A ... A P;,. Then A is strongly semiclosed by Theorem
2.5 of [1], and A, as a function, has no maximum. In fact, take ng € D so that
ng > n(z;)(i = 1,2,...,k). Then S(n) < A for each n > ng, i.e., S is eventually
in A. Since 9 is an a-SS-RF, A(z) < « for each x € X. On the other hand, by
definition of a-net we know that for any real number € > 0, there is an z € X such
that A(z) > a—e. Hence it is impossible that A, as a function, has a maximum. O
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