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COUNTABLY NEAR PS-COMPACTNESS IN L-TOPOLOGICAL
SPACES

S. Z. BAI

ABSTRACT. In this paper, the concept of countably near PS-compactness in
L-topological spaces is introduced, where L is a completely distributive lattice
with an order-reversing involution. Countably near PS-compactness is defined
for arbitrary L-subsets and some of its fundamental properties are studied.

1. Introduction

We know that since fuzzy topological spaces were introduced by Chang [5], many
authors have established various kinds of fuzzy compactness [1-3,5,6,8-10,12-14].
Originally fuzzy compactness [5,6,9] was defined only for the whole fuzzy topological
space rather than for arbitrary fuzzy subsets. Then Wang [12] introduced a new
concept based on the fuzzy nets of Pu and Liu [11] and called it nice compactness
(N-compactness), which is defined for any fuzzy subset and has more advantages.
Zhao [14] generalized N-compactness theory to L-topological spaces(where L is a
completely distributive lattice with an order-reversing involution). This has all the
advantages of Wang’s theory, and has been extensively used (e.g. [7]) to further the
study of fuzzy compactness. In [1-3], we studied SR-compactness, PS-compactness
and near PS-compactness in L-topological spaces, respectively. Every PS-compact
set is not only SR-compact but also near PS-compact [2,3]; every SR-compact set
is N-compact [1], and every near PS-compact set is Lowen’s fuzzy compact [9,3].
That the converse of the above statements need not be true, is shown by Examples
5.6 and 5.7 in [3].

In this paper we use near PS-compactness as a background for the introduc-
tion of the concept of countably near PS-compactness of arbitrary L-subsets in
L-topological spaces. It is an “L-good extension [8,13]” of general countably PS-
compactness and hereditary for pre-semiclosed subsets. Moreover, it is finitely
additive and can be preserved under PS-irresolute mapping and described with the
cover forms and finite intersection properties.
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2. Preliminaries

In this paper, L always denotes a completely distributive lattice with an order-
reversing involution “’ 7, 0 and 1 denote the least and the greatest elements in
L respectively, X denotes a nonempty crisp set and L¥ denotes the set of all L-
subsets on X. r € L is called a prime element of L, if a A b < r implies a < r or
b < r, where a,b € L [8,13]. The set of all prime elements of L which are not 1 is
denoted by pr(L). « € L is called a union-irreducible element of L, if for arbitrary
a,b € L with a < a Vb, either o < a or o < b [8,13]. M(L) and M*(L*) denote
the set of all nonzero union-irreducible elements of L and LX respectively. Clearly,
r € pr(L) iff ' € M(L). For each ¢ C L, we define ¢/ = {4’ : A € ¢}. We will
denote L-topological space by L-ts, and €,(A) = {x € X : A(x) > r}.

Let (LX,0) be an L-ts. A € L¥ is called a pre-semiopen set iff A < (A7),,
and A is called a pre-semiclosed set iff A > (A°)_, where A°, A=, A, and A_ are
the interior, closure, semi-interior and semiclosure of A, respectively. PSO(LX)
and PSC(L¥) will always denote the family of pre-semiopen sets and family of
pre-semiclosed sets of an L-ts (L%, §), respectively. It is clear that every semiopen
set is pre-semiopen and every preopen set is pre-semiopen in L-ts. That none of
the converses need be true is shown by Example 3.3 in [4].

Definition 2.1. [2] Let (L¥,d) be an L-ts and z € M*(LX).A € PSC(LX) is
called a pre-semiclosed remote-neighborhood, or briefly, PSC-RN of z) , if z) & A.
The set of all PSC-RNs of z is denoted by ((x)).

Definition 2.2. [2] Let (L%,§) be an L-ts, A € L* and o € M (L), ¢ C PSC(L”)
is called an a-PSC-remote neighborhood family of A (briefly a-PSC-RF of A) if,
for each z, in A, there is P € ¢ such that P € ((z4).

Definition 2.3. [3] Let (LX,8) be an L-ts and A € L*. A is called near PS-
compact if every a-PSC-RF ¢ of A has a finite subfamily ¢ of ¢ such that 1 is an
a-PSC-RF of A(a € M(L)). Specifically, when A = 1x is near PS-compact, we
call (LX,6§) a near PS-compact space.

3. Countably Near PS-compactness and its Characterizations

Definition 3.1. Let (L%,§) be an L-ts and A € L*. A is called a countably near
PS-compact set if every countable a-PSC-RF ® of A has a finite subfamily ¥ of
® such that ¥ is an a-PSC-RF of A(a € M(L)). Specifically, when A = 1x is
countably near PS-compact, we call (LX) a countably near PS-compact space.

Clearly, every near PS-compact set is countably near PS-compact.

Definition 3.2. [2] Let (LX,8) be an L-ts, A € LX, u ¢ PSO(LX), r € pr(L).
w is called an r-PS-cover of A if for each x € ¢,/(A), there is U € p such that
U(z) £r.

Theorem 3.3. Let (LX,8) be an L-ts, r € pr(L). A € LX is a countably near
PS-compact set iff every countable r-PS-cover p of A has a finite subfamily v of
such that v is an r-PS-cover of A.
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Proof. Let A be a countably near PS-compact set, u be a countable r-PS-cover of
Aand r € pr(L). Put ® = ¢/, then ® C PSC(LYX) and for each = € ¢,/ (A) there
is @ = U’ € ® such that U(x) £ r, i.e., v € Q(z). Now r € pr(L), implies that
r’ € M(L) and since z,» £ @, we have Q € ((z,7). Hence ® is an r’-PSC-RF of
A. Since A is countably near PS-compact, there is a finite subfamily v of p such
that ¥ = v/ is an ’-PSC-RF of A, i.e. for each z € £,/(A), there is V € v such
that V' € {(x,), i.e. (z,) & V' or, equivalently, ' £ V'(z); for each x € e,.(A),
there is V' € v such that V(z) £ r. Thus p has a finite subfamily v which is an
r-PS-cover of A.

Conversely, suppose every countable r-PS-cover of A has a finite subfamily which
is an r-PS-cover of A. Let ® be an a-PSC-RF of A, p = ® and r = o/. Since
a € M(L), hence r € pr(L). For each z € €,(A) = ¢(A), i.e. o € A, there
is P € ® such that p € (xq, ie. 24 € P, or @« £ P(z). So P'(z) £ o'. Put
U= P, then U € p and U(z) £ r. Hence p is a countable r-PS-cover of A. By
supposition, ® has a finite subfamily ¥ such that ¥’ is an r-PS-cover of A. So for
each x € £,/ (A) = €,(A4), i.e. x4 € A, there is Q € ¥ such that Q'(x) £ r. Hence,
r=a £ Q(x), i.e. Q€ ((xy). This shows that ¥ is an a-PSC-RF of A. Thus A
is countably near PS-compact. O

Definition 3.4. Let (L*,0) be an L-ts, A € LX, r € pr(L) and ® C LX. If for
every finite subfamily ¥ of ®, there is « € €, (A) such that (A ¥)(z) > r/, then we
say that ® has an r-finite intersection property in A.

Theorem 3.5. Let (LX,8) be an L-ts, A € L and r € pr(L). A is a countably
near PS-compact set iff for every countable subfamily ® C PSC(LX) which has the
r-finite intersection property in A, there is x € €,/(A) such that (A ®)(x) > r'.

Proof. Let A be a countably near PS-compact set. Suppose there is an r € pr(L)
and some countable subfamily ® € PSC(L¥X) which has an r-finite intersection
property in A, for each x € &,4(A) such that (A ®)(x) # . Then there exists
P € ® such that P(z) # r/, i.e.,, P'(x) € r. This shows that ® is a countable
r-PS-cover of A. By Theorem 3.3, there is a finite subfamily ¥ = {Py, ..., P,} of ®
such that ¥’ is an -PS-cover of A. Hence for each x € ¢, (A), there is P; € ¥ such
that P/(z) £ r. And so
n n

(4V1 P)(x) £rie (ANV)(z) = (p/\1 P)(x) 27,

= =
which contradicts the fact that ® hés an r-finite intersection property in A.

Conversely, let p be a countable r-PS-cover of A and r € pr(L). If none of the
finite subfamily v of p is an r-PS-cover of A, then there exists « € ,(A) such that
B(z) <r for each B € v and so (\/ v)(z) < r or, equivalently, (A v')(z) > r’. This
shows that the subfamily p/ € PSC(L¥) has an r-finite intersection property in A.
Hence there is « € £,/(A) such that (A p')(z) >/, ie. (V p)(z) <r. This implies
that p is not a countable r-PS-cover of A, a contradiction. By Theorem 3.3, A is
countably near PS-compact. O
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Lemma 3.6. [2] Let (X,0) be a crisp topological space and A C X. If A is
pre-semiopen in (X,5) then xa is pre-semiopen in the L-ts (LX,wr(8)), where
(LY, wr(8)) is L-ts topologically generated by a crisp topological space (X, 9).

Definition 3.7. Let (LX,6) be an L-ts, A € LX and r € pr(L). Put [,.(A) = {x €
X : A(x) £ r}, and 1,.(6) = {l.(A) : A € ¢}, then [,(d) is a crisp topology on X,
called the r-cut topology of § [13]. Also, [.(PSO(L¥X)) = {I.(A) : A € PSO(L¥)}
is the family of pre-semiopen sets in r-cut topological space (X, [,.(9)).

We say that a topological space (X, §) is countably PS-compact iff every count-
able PS-cover of X has a finite subcover.

Theorem 3.8. Let (LX,6) be an L-ts. Then A € L is countably near PS-compact
iff the subset e, (A) of (X,1-(9)) is countably PS-compact for each r € pr(L).

Proof. Necessity. For any r € pr(L), suppose that p is a countable PS-cover of
g,4/(A). Then there exists a countable family ¢ € PSO(LX) such that pu = [,.(¢)) =
{l,(U) : U € ¢}. For each z € £,4(A), there is U € 9 such that x € [,.(U), i.e.
U(z) £ r. Hence v is a countable r-PS-cover of A. Since A is countably near
PS-compact, from Theorem 3.3 there is a finite subfamily v of ¢ such that v is an
r-PS-cover of A. We now prove that a finite subfamily I,.(v) is a PS-cover of &,,(A).
In fact, for each x € €,/(A), by v is an r-PS-cover of A there is U € v such that
U(x) £ r,ie. © € I,(U) € l,(v). This shows that [,(v) is indeed a PS-cover of
g (A), and thus €,/ (A) is countably PS-compact.

Sufficiency. Suppose that p is a countable r-PS-cover of A(r € pr(L)). Then for
each = € €,/(A), there exists U € p such that U(x) £ r, i.e. x € [,.(U). Hence
I.(n) ={l,(U) : U € p} is a countable PS-cover of €,/ (A). Since &,/ (A) is countably
PS-compact, there is a finite subfamily v of i such that [,-(v) is a PS-cover of e, (A).
It is not difficult to see that v is an r-PS-cover of A. By Theorem 3.3, A is countably
near PS-compact. O

Theorem 3.9. Let (LX,wr(5)) be an L-ts topologically generated by a crisp topo-
logical space (X,8). Then (L, wr(3)) is countably near PS-compact iff (X,§) is
countably PS-compact.

Proof. Necessity. Suppose that p is a countable PS-cover of (X,d). Then, by
Lemma 3.6, X, = {xg : E € u} is a family of semi-pre-open sets of (LX,w(d)).
For each r € pr(L) we will prove that y,, is a countable r-PS-cover of 1x. In fact, for
each = € £,/(1x) = X, there exists F € pu such that z € E, and so xg(z) =1 £ r.
Hence, x,, is a countable r-PS-cover of 1x. Since (L¥,wr(d)) is countably near
PS-compact, there is a finite subcover v of u such that x, is an r-PS-cover of 1y,
i.e. for each z € X, there exists F € v such that xg(z) £ r, and so € E. This
shows that v is a PS-cover of X, and hence (X, ) countably PS-compact.
Sufficiency. For any r € pr(L), suppose that p is a countable r-PS-cover of
1x. Then for each z € ¢,v(1x) = X, there exists U € u such that U(z) £ r, ie.
x € 1,.(U), where I,.(U) is pre-semiopen set in (X, §). Hence, I,.(u) = {I.(U) : U € u}
is a countable PS-cover of (X,d). Since (X,¢) is countably PS-compact, there
is a finite subcover v of p such that [,.(v) is a cover of (X,d). Thus, for each
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x € X = e(1lx), there exists U € v such that x € [,.(U) € .(v), i.e. U(z) £ r.
This shows that v is an r-PS-cover of 1y, and hence (L¥,wr,(§)) is countably near
PS-compact. O

4. Some Other Properties

Theorem 4.1. Let A be a countably near PS-compact set in L-ts (LX,65). Then
for each B € PSC (LX), AN B is countably near PS-compact.

Proof. Let ® be a countable a-PSC-RF of AAB (a € M(L))and put ®; = PU{B}.
Then & is a countable a-PSC-RF of A. In fact, for each z, € A, if z, € B then
Zo € AN B. Hence, there is P € ® C ®; such that P € {(z4). If 4 € B, then
B € @&, and B € ((x,). Thus, ® is indeed a countable a-PSC-RF of A. Since A
is a countably near PS-compact set, there exists a finite subfamily ¥; of ®; such
that ¥y is an a-PSC-RF of A. Let U = U; — {B}, then ¥ is a finite subfamily
of &, and V¥ is an a-PSC-RF of A A B. In fact, z, € A A B implies z, € A and
hence from the definition of ¥y, there exists P € ¥y with P € ((z,). However,
Zo € B so P # B, and thus P € ¥; — {B} = U. Hence, A A B is countably near
PS-compact. (Il

Corollary 4.2. Let (LX,5) be a countably near PS-compact space and B € PSC(LX).
Then B is countably near PS-compact.

Theorem 4.3. Let A and B be two countably near PS-compact sets in L-ts (L%, 9).
Then AV B is countably near PS-compact.

Proof. Let ® be a countable o-PSC-RF of AV B (a« € M(L)). Then & is not
only a countable a-PSC-RF of A, but also a countable a-PSC-RF of B. Since A4 is
countably near PS-compact, there is a finite subfamily ¥, of ® such that ¥, is an
a-PSC-RF of A. Similarly, since B is countably near PS-compact, there is a finite
subfamily Wy of ® such that ¥, is an a-PSC-RF of B. Put ¥ = ¥, V Wy. Then ¥
is a finite subfamily of ® and W is an a-PSC-RF of AV B. Thus, AV B is countably
near PS-compact. O

Definition 4.4. [2] Let (LX,6) and (LY, 7) be two L-ts’s and f : (LX,8) — (LY, )
an L-mapping. f is called a PS-irresolute mapping if f~1(B) € PSO(L¥X) for each
B € PSO(LY).

Theorem 4.5. Let f: (L~X,0) — (LY, 7) be an PS-irresolute mapping and A be a
countably near PS-compact set in (L, 68). Then f(A) is countably near PS-compact
in (LY, 7).

Proof. Let ® be a countable a-PSC-RF of f(A)(a € M(L)). To begin with, we
show that f~1(®) = {f~1(P) : P € ®} is a countable a-PSC-RF of A. Since
f is a PS-irresolute mapping, f~1(®) c PSC(LX). Let x, € A; then f(z,) =
(f(z))a € f(A) and since ¢ is a countable a-PSC-RF of f(A), there is P € ®
with P € {((f(z))a), e, (f(z))a € P or, equivalently, P(f(z)) 2 «. By the
definition of inverse mapping, f~*(P)(z) = P(f(z)) # «a, hence x,, & f~1(P), i.e.,
f~YP) € ¢(xs). Therefore f~1(®) is a countable a-PSC-RF of A. Since A is
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countably near PS-compact, there is a finite subfamily ¥ of ® such that f~1(¥) is

an

a-PSC-RF of A. It is easy to show that U is an a-PSC-RF of f(A). Thus f(A)
O

is countably near PS-compact.
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