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THE p-CENTER PROBLEM ON FUZZY NETWORKS AND
REDUCTION OF COST

S. M. A. NAYEEM AND M. PAL

Abstract. Here we consider the p-center problem on different types of fuzzy

networks. In particular, we are interested in the networks with interval and

triangular fuzzy arc lengths and vertex-weights. A methodology to obtain the
best satisfaction level of the decision maker who wishes to reduce the cost

within the tolerance limits is proposed. Illustrative examples are provided.

1. Introduction

The p-center problem is a well-known facility location problem. It arises in the
following way. Suppose some demand points are given by the vertices of a network,
and the weight of each vertex represents the demand at that point, and there is a
path between every pair of vertices in order to transport products from one vertex
to another. The decision maker is to locate p locations within the network where
the facilities are to be located such that the maximum cost to transport products to
each demand point from the nearest facility is minimized. It is assumed that these
costs are directly proportional to the distances to be covered and the quantities
of product to be transported. If the facilities are considered to be located at the
vertices only, the p-center problem can be defined as follows.

Let G = (V,E) be a connected undirected network, where V = {v1, v2, . . . , vn}
is the set of vertices of G and E is the set of edges. As G is connected, there exists
a path between every pair of vertices. The distance d(vi, vj) between two vertices
vi and vj is denoted by dij , the length of the shortest path joining the vertices
vi and vj . The weight wi is associated with the vertex vi for all i = 1, 2, . . . , n.
Let us consider all the subsets of {1, 2, . . . , n} with p number of elements. Let
those subsets be A1, A2, . . . , Am. So for a given set covering Ai, the distance to
be covered in order to serve the vertex vj is given by δij = min

l∈Ai

dlj . Also for each

Ai, we define ρi = max
vj∈V

δij .wj . Thus the p-center problem is to find the set Ak

for which the corresponding ρ is minimum among all ρi’s and that minimum is
called the p-radius of the network. Hence, if ρ∗ = mini ρi be the p-radius, then the
p-center is given by Ak such that ρk = ρ∗. Clearly, the p-center of a network is not
unique.

Kariv and Hakimi [17] showed that the problem is NP-complete. They described
an algorithm of time complexity O(|E|p|V |2p−1 log |V |/(p−1)!) (or O(|E|p|V |2p−1/(p
−1)!)) for finding the p-center of a vertex-weighted (or vertex-unweighted) network.
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Tamir [32] improved the complexity bounds by using dynamic data structure, and
showed that the weighted and unweighted p-center on network can be found in
O(|E|p|V |p log2 |V |) and O(|E|p|V |p log3 |V |) time. p-center problems on different
subclasses of graph such as trees, circular-arc graphs etc. have been investigated by
some authors [2, 10]. Also exact algorithms to solve the vertex p-center problem and
capacitated vertex p-center problems are found in [1, 28]. The location problems
correspond to large-scale optimization models that can not be solved in polynomial
time, and so efficient heuristics are required [15, 19, 20]. Recently Nayeem and Pal
[24] have proposed a genetic algorithmic approach to solve the p-center problem
where the computational times are reported to be reasonably lower.

The classical location problems deal with the networks for which all the informa-
tion, i.e., the set of vertices, the set of edges, the weights of vertices and edges are
known and certain. But the data and the environments which are available in real-
ity are vague and imprecise in nature in most cases. Thus the fuzzy considerations
arise. Let us consider a network whose vertices represent some cities/towns in a
country and the edges represent the roads linking the cities/towns. Now the prop-
erty of being a town has no crisp boundary. A locality with 50,000 inhabitants may
not be considered as a town by someone, while a locality with 25,000 inhabitants
may be considered as a town by some other else. These can be managed easily by
taking both the localities as towns with different membership values. Hence the
vertex set becomes a fuzzy set in this case.

Similarly depending upon characteristics like goodness, roughness, crowd, etc.
of the roads or links, the edge set becomes fuzzy. Moreover, the demands and
the distances or transportation cost per unit item between a demand point and a
facility are almost impossible to obtain as crisp values. Hence the cases of fuzzy
weights take place.

The concept of fuzzy graphs was first proposed by Rosenfeld [29], though it
originates from the pioneering work of Zadeh [33]. A lot of works have been already
done on this topic in [5, 6, 7, 12, 14]. An extensive review can be found in Mordeson
and Nair [22]. Some network problems, namely, shortest path problem [25, 27],
PERT problem [9, 26] etc. with fuzzy arc-lengths are also found in the literature.
Fuzzy location problems are addressed in [23]. The fuzzy p-median problem and a
global analysis of the solutions are provided by Canós et al. [3, 4]. They give an
algorithm to minimize the transportation cost with an acceptable reduction of the
covered demand to cut down the cost by a significant amount.

Different fuzzy networks and location models are given in Section 2. In this
paper, we consider networks with the edge-weights or vertex-weights as interval
numbers and triangular fuzzy numbers and give a straight-forward method to find
the p-center. This method largely depends on the ranking methods of the imprecise
numbers under consideration. So we develop the arithmetic and comparison rules
of interval numbers and triangular fuzzy numbers in Section 3, and using those
rules we obtain the method to find the p-center in Section 4. The most important
part of this paper is Section 5, as we propose there a method to obtain the grade
of satisfaction of the decision maker who wishes to fix the value of the p-radius by
a crisp number within the tolerance limits.
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2. Fuzzy Network and Different location Models

Fuzzyness of a network may arise in many ways. Rosenfeld [29] has given the
definition of a fuzzy graph in the following way.

Definition 2.1. A fuzzy graph is a structure G = (V,E, σ, µ), where V = {v1, v2,
. . . , vn} is the vertex set, σ : V → [0, 1] is the membership function of the vertex
set, E = {eij : vi, vj ∈ V, i 6= j} is the edge set, provided that

max µ(eij) ≤ min{σ(vi), σ(vj)} for all vi, vj ∈ V,

i.e., the membership µ of every edge between two vertices vi and vj must be less
than or equal to that of each of vi and vj .

We denote a fuzzy graph G as G̃ = (Ṽ , Ẽ).
If the membership value of each vertex of G̃ is 1, then the vertex set Ṽ becomes

a crisp set. Then we write G̃ = (V, Ẽ).
If Ẽ is a crisp set, i.e., each edge of G̃ has the membership value 1 in Ẽ, then

from Definition 2.1 it follows that Ṽ is also a crisp set. Thus in this case, G̃ becomes
the crisp graph G = (V,E). Although in reality in a few cases fuzzy graphs with
fuzzy vertex set and crisp edge set may be found. As for example, during some
military actions, roads through some odd locations in hill regions are constructed
instantly and those are destroyed just after reaching of the whole company to the
next location. This is done in order to reuse some equipments for construction and
to avoid the chance of taking advantage of the roads by the enemies. But, to follow
Rosenfelds definition, we ignore this kind of exceptional fuzzy graphs. Albeit these
can be treated in the same way as that of the others which are considered in this
paper.

With reference to a fuzzy graph G̃ = (Ṽ , Ẽ), we can have a fuzzy network as
follows.

Let w(.) and l(.) be two functions defined for every members of Ṽ and Ẽ called
the weight and length respectively. Now if w(.) assumes fuzzy values for all or
some of the members of Ṽ , then we denote the fuzzy valued weight function as w̃(.)
and similarly the fuzzy valued length function is denoted by l̃(.). The structure
Ñ = (Ṽ , Ẽ, w̃, l̃) is a called fuzzy network.

A fuzzy network can be classified into the following classes. We may consider
fuzzy location models of the following types.

(1) (a) The most general fuzzy network Ñ = (Ṽ , Ẽ, w̃, l̃), where the vertex set
and edge set both are fuzzy sets and the weight function and length
function are both fuzzy-valued.

(b) The vertex set and the edge set are fuzzy sets and either the weight
function or the length function or both are crisp-valued,
i.e., Ñ = (Ṽ , Ẽ, w̃, l) or, Ñ = (Ṽ , Ẽ, w, l̃) or, Ñ = (Ṽ , Ẽ, w, l).

(2) (a) Vertex set V is crisp, the edge set Ẽ is fuzzy and the weight and length
functions are both fuzzy-valued,
i.e., Ñ = (V, Ẽ, w̃, l̃).
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(b) V is a crisp set, Ẽ is a fuzzy set and either the weight function or the
length function or the both are crisp-valued,
i.e., Ñ = (V, Ẽ, w, l̃) or, Ñ = (V, Ẽ, w̃, l) or, Ñ = (V, Ẽ, w, l).

(3) (a) Vertex set and edge set both are crisp sets and both the weight function
and the length function are fuzzy-valued,
i.e., Ñ = (V,E, w̃, l̃).

(b) V and E are both crisp sets and either the weight function or the length
function is fuzzy-valued, but not both. If both the weight function
and the length function are crisp, then the network becomes a crisp
network.
i.e., Ñ = (V,E,w, l̃) or, Ñ = (V,E, w̃, l).

The fuzzy p-center problem, or more generally the fuzzy location problems can
be modelled in either of the above classes of fuzzy networks. Using the α-cut
techniques, the fuzzy location models of Type (1) or Type (2) can be reduced to
solving a finite series of models of Type (3) [23].

Definition 2.2. The α-cut, α ∈ [0, 1], of a fuzzy graph G = (V,E, σ, µ) is the
classical graph Gα = (V α, Eα) with V α = {v ∈ V : σ(v) ≥ α} and Eα = {e ∈ E :
µ(e) ≥ α}.

In this paper, we solve the p-center problem on a fuzzy network of Type (3)(b),
i.e., on a network with crisp sets of vertices and edges and (i) imprecise edge-
weights, or (ii) imprecise vertex-weights. They both on combination give rise to
the solution of a model of Type (3)(a). In particular, we consider the imprecise
numbers as interval numbers or triangular fuzzy numbers.

3. Arithmetic of Imprecise Numbers

The arithmetic of imprecise numbers, especially, the comparison rules of those
play an important role in solving this problem. In this section, interval numbers
and triangular fuzzy numbers are introduced. Addition and comparison techniques
between two such numbers are also discussed.

3.1. Interval Number and Interval Arithmetic. As said in the previous sec-
tion, the distance ‘about 5 KM’ may be considered as [4.5,5.5] KM. Clearly, to
someone it may appear to lie within, say, [4.6,5.3] KM, etc.

In general, an interval number is defined as

A = [aL, aR] = {a : aL ≤ a ≤ aR} (1)
where, aL and aR are the real numbers called the left end point and the right end
point of the interval A.

Another way to represent an interval number in terms of midpoint and width is

A = 〈m(A), w(A)〉, where, m(A) = midpoint of A =
aR + aL

2

and w(A) = half width of A =
aR − aL

2
. (2)
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A crisp real number k may be considered as a degenerate interval [k, k] = 〈k, 0〉.
The addition of two interval numbers A = [aL, aR] and B = [bL, bR] is given by

A⊕B = [aL + bL, aR + bR]. (3)
Alternately, in mean-width notations, if A = 〈m1, w1〉 and B = 〈m2, w2〉 then,

A⊕B = 〈m1 + m2, w1 + w2〉. (4)
The product of two interval numbers A = [aL, aR] and B = [bL, bR] is given by

A�B = [min{aL.bL, aR.bL, aL, bR, aR.bR},max{aL.bL, aR.bL, aL.bR, aR.bR}].

(5)
If A and B are both positive, then (5) becomes A � B = [aL.bL, aR.bR]. The

negation of an interval number A = [aL, aR] given by −A = [−aR,−aL].
The subtraction of two interval numbers A = [aL, aR] and B = [bL, bR] is given

by
A	B = [aL − bR, aR − bL]. (6)

Alternately, in mean-width notations, if A = 〈m1, w1〉 and B = 〈m2, w2〉 then,

A	B = 〈m1 −m2, w1 + w2〉. (7)
The quotient of two interval numbers A = [aL, aR] and B = [bL, bR] is given by

A�B = [min{aL/bL, aR/bL, aL/bR, aR/bR},max{aL/bL, aR/bL, aL/bR, aR/bR}].

(8)
If A and B are both positive, then (8) becomes A�B = [aL/bL, aR/bR].
Comparison between two interval numbers is very important in interval arith-

metic. This is discussed in the following.

3.1.1. Comparison of Interval Numbers. As in [21], A is strictly less than B
if and only if aR < bL and this is denoted by A < B.

And A is contained in B if and only if aL ≥ bL and aR ≤ bR and this is denoted
by A ⊆ B.

Two more order relations ≤LR and ≤MW are introduced in [13] as,

A ≤LR B iff aL ≤ bL and aR ≤ bR (9)

and A ≤MW B iff m1 ≤ m2 and w1 ≥ w2 (10)
along with the strict order relations <LR and <MW as,

A <LR B iff A ≤LR B and A 6= B (11)

and A <MW B iff A ≤MW B and A 6= B. (12)
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Some probabilistic views to order relation are incorporated in [31]. But the order
relation which seems to us most significant and which is used in our algorithm is
given by Sengupta et al. [30]. They have introduced an acceptability index (A-
index) to the proposition ‘A is inferior to B’ as

A(A ≺ B) =
m2 −m1

w1 + w2
.

(13)

In connection with this ‘acceptability index’, we define ‘total dominance’ and ‘par-
tial dominance’ of two interval numbers A =< m1, w1 > and B =< m2, w2 > one
over another as follows:

Definition 3.1. If A(A ≺ B) ≥ 1 then, A is said to be ‘totally dominating’ over
B in the sense of minimization and B is said to be ‘totally dominating’ over A in
the sense of maximization. We denote this by A ≺ B.

Definition 3.2. If 0 < A(A ≺ B) < 1 then A is said to be ‘partially dominating’
over B in the sense of minimization and B is said to be ‘partially dominating’ over
A in the sense of maximization. This is denoted by A ≺P B.

But, when A(A ≺ B) = 0, i.e., m1 = m2 then we may not get an order relation
from the above definitions. Then we may emphasize on the widths of the interval
numbers A and B.

If w1 > w2 then the left end point of A is less than that of B and on finding a
minimum distance, there is a chance that the distance may lie on A. But at the
same time, since the right end point of A is greater than that of B, if one prefers
A to B in minimization then in worst case, he may be looser than one who prefers
B to A. Thus in such a situation an optimistic decision-maker would prefer A to
B whereas a pessimistic decision-maker would do the converse.

3.1.2. Numerical Examples. Example 1: Let A = [160, 170] = 〈165, 5〉 and
B = [180, 186] = 〈183, 3〉. Then A(A ≺ B) = 183−165

5+3 = 2.25 > 1. So in minimiza-
tion, A is totally dominating over B.

Example 2: Let A = [160, 170] = 〈165, 5〉 and C = [166, 180] = 〈173, 7〉. Then
A(A ≺ B) = 173−165

5+7 = 2
3 = 0.67. So in minimization, A is partially dominating

over B with level of satisfaction 0.67.

3.2. Triangular Fuzzy Number and its Arithmetic. In the previous section,
we have considered the distance ‘about 5 KM’ as an interval [4.5,5.5]. Similarly,
we can fuzzify it as a triangular fuzzy number with the distance 5 KM with mem-
bership degree 1 and the distances lying between 4.5 - 5 KM and 5 - 5.5 KM with
membership values within 0 and 1 as follows.

µ(x) =
{

x−4.5
0.5 for 4.5 < x ≤ 5

5.5−x
0.5 for 5 ≤ x < 5.5.

(14)
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Figure 1. Membership function of 〈5, 0.5, 0.5〉.

In general, a triangular fuzzy number is represented by a triplet Ã = 〈m,α, β〉
with the membership function

µ(x) =


0 for x ≤ m− α
1− m−x

α for m− α < x < m
1 for x = m
1− x−m

β for m < x < m + β

0 for x ≥ m + β. (15)

�
�
�
�
�
�
�
�C

C
C
C
C
C
C
Cα

mm− α m + β
β

0

1

x

µ(x)

Figure 2. Membership function of 〈m,α, β〉.

i.e., m is the point whose membership value is 1 and α and β are the left spread
and right spread respectively.

Another way of representation of a triangular fuzzy number is given by the triplet
(a, a, ā). Here, a has the membership value 1 and left spread and right spread are
a− a and ā− a respectively. Like interval numbers, a crisp real number k may be
represented as a triangular fuzzy number as (k, k, k) = 〈k, 0, 0〉.

Let M̃ = 〈m,α, β〉 and Ñ = 〈n, γ, δ〉 be two triangular fuzzy numbers. Then the
fuzzy sum of these two numbers is given by

M̃ ⊕ Ñ = 〈m + n, α + β, γ + δ〉. (16)

and similarly the other binary operations may be defined as follows.

M̃ 	 Ñ = 〈m− n, α + δ, β + γ〉 (17)
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8 S. M. A. Nayeem and M. Pal

M̃ � Ñ =

 〈mn, mγ + nα,mδ + nβ〉, when m ≥ 0, n ≥ 0.
〈mn, nα−mδ, nβ −mγ〉, when m ≤ 0, n ≥ 0.
〈mn,−nβ −mδ,−nα−mγ〉, when m ≤ 0, n ≤ 0.

(18)
and

M̃ � Ñ =
〈m

n
,
mδ + nα

n2
,
mγ + nβ

n2

〉
. (19)

In particular, if Ñ be a crisp number k, then M̃ � Ñ = M̃.k = 〈m.k, α.k, β.k〉
and M̃ � Ñ = M̃/k = 〈m/k, α/k, β/k〉.
Clearly, the product and quotient of a triangular fuzzy number and a crisp

number is a triangular fuzzy number.

3.2.1. Comparison of Triangular Fuzzy Numbers. Like interval numbers, var-
ious order relations for triangular fuzzy numbers are available in the literature
[8, 18]. A generalized order relation for flat fuzzy numbers is given by Okada and
Soper [27] and as a special case, order relation for triangular fuzzy numbers can be
developed. They have used three notations ≺,�,�h. For triangular fuzzy numbers
ã = 〈a, α, β〉 and b̃ = 〈b, γ, δ〉 those are accomplished as

(i) ã � b̃ iff a ≤ b, a− α ≤ b− γ and a + β ≤ b + δ,
(ii) ã ≺ b̃ iff ã � b̃ and ã 6= b̃, i.e., a = b, α = γ and β = δ all do not hold

simultaneously,
(iii) ã �h b̃ iff a ≤ b, a−α(1−h) ≤ b−γ(1−h) and a−β(1−h) ≤ b− δ(1−h).

As they have asserted ã �h b̃ will hold for two flat fuzzy numbers ã = (a, ā, α, β)
with membership function

µã(x) =


L(a−x

α ) for x < a
1 for a ≤ x ≤ ā
R(x−ā

β ) for x > ā (20)

and b̃ = (b, b̄, γ, δ) with membership function

µb̃(x) =


L( b−x

γ ) for x < b

1 for b ≤ x ≤ b̄

R(x−b̄
δ ) for x > b̄

(21)

iff a ≤ b, ā ≤ b̄, a − αL−1(h) ≤ b − γL−1(h) and ā + βR−1(h) ≤ b̄ + δR−1(h).

Now for triangular fuzzy numbers, L(x) = R(x) =
{

1− x for 0 ≤ x ≤ 1
0 for x > 1 and the

above results follow.
Clearly, ã �h b̃ holds with h = 1 iff a ≤ b. Thus, the decision-maker is to prefer

ã to b̃ with satisfaction level 1 in case of minimization only if a ≤ b.
That is, �h becomes insignificant in case of triangular fuzzy numbers. But if
we introduce the A-index idea also here, then the result will hold with different
satisfaction grades for different widths of the numbers. These can be incorporated
as in the following.
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The p-center Problem on Fuzzy Networks and Reduction of Cost 9

Definition 3.3. The acceptability index (A-index) of the proposition ‘ ã = 〈a, α, β〉
is preferred to b̃ = 〈b, γ, δ〉’ is given by

A(ã ≺ b̃) =
b− a

β + γ
· (22)

Using this A-index we may define the following ranking orders.

Definition 3.4. If A(ã ≺ b̃) ≥ 1 then ã is said to be totally dominating over b̃ in
case of minimization and the case is converse in case of maximization and this is
denoted by ã ≺ b̃.

Definition 3.5. If 0 < A(ã ≺ b̃) < 1 then ã is said to be ‘partially dominating’
over b̃ in the sense of minimization and b̃ is said to be ‘partially dominating’ over
ã in the sense of maximization. This is denoted by ã ≺P b̃.

Now to consider the preference of the decision maker when the points attaining
the membership values 1 for two triangular fuzzy numbers are the same, we have
to emphasize on the left spreads and right spreads of the numbers as in the case
of the interval numbers. Let ã = 〈a, α, β〉 and b̃ = 〈a, γ, δ〉. Now if β = δ also,
then the number with larger left spread will be preferred in minimization and the
number with smaller left spread will be preferred in maximization. Similarly, if
α = γ, then the number with smaller right spread will be preferred in minimization
and the number with larger right spread will be preferred in maximization. In this
connection, we define two more order relations as below.

Definition 3.6. Let ã = 〈a, α, β〉 and b̃ = 〈a, γ, δ〉. If β = δ and α > γ then ã is
said to be right dominating over b̃ in case of minimization and the case is converse
in case of maximization and this is denoted by ã ≺R b̃.

Definition 3.7. Let ã = 〈a, α, β〉 and b̃ = 〈a, γ, δ〉. If α = γ and β < δ then ã is
said to be left dominating over b̃ in case of minimization and the case is converse
in case of maximization and this is denoted by ã ≺L b̃.

But if both α 6= γ and β 6= δ, then it is important whether the decision maker is
optimistic or pessimistic. An optimistic decision maker will be indifferent about the
equality of α and γ in maximization and that of β and δ in case of minimization.
Whereas, a pessimistic decision maker will be indifferent about the equality of α
and γ in minimization and that of β and δ in case of maximization.

3.2.2. Numerical Examples. Example 3: Let ã = (95, 100, 102) and b̃ = (105, 107,

115) be two triangular fuzzy numbers. Then A(ã ≺ b̃) = 107−100
2+2 = 1.75 > 1. Thus

ã ≺ b̃ which is also compatible with our intuition.
Example 4: Let ã = (90, 95, 106) and b̃ = (97, 100, 107) be two triangular

fuzzy numbers. Then A(ã ≺ b̃) = 100−95
11+3 = 5

14 < 1. Thus ã ≺P b̃ with degree of
satisfaction 0.36.

Example 5: Let ã = (120, 125, 128) and b̃ = (117, 127, 130) be two triangular
fuzzy numbers. Then A(ã ≺ b̃) = 127−125

3+10 = 2
13 < 1. Thus ã ≺P b̃ with degree of

satisfaction 0.15 only.
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Figure 3. Illustration of ã ≺ b̃.
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Figure 4. Illustration of ã ≺P b̃.
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Figure 5. Illustration of ã ≺P b̃.

3.3. A Unified Algorithm Involving the Dominance of Interval Numbers
and Triangular Fuzzy Numbers. Two interval numbers A = 〈mA, wA〉 and
B = 〈mB , wB〉 are said to be non-dominating if (i) mA = mB and (ii) wA 6= wB .

Likewise, two triangular fuzzy numbers Ã = 〈a, α, β〉 and B̃ = 〈b, γ, δ〉 are said
to be non-dominating if (i) a = b and (ii) α 6= γ and β 6= δ.

The following function computes the minimum between two interval numbers
(or triangular fuzzy numbers). This reduces to finding the crisp minimum when
the numbers are degenerate interval numbers (or triangular fuzzy numbers).

Function m̃in(A,B)
if A = 〈mA, wA〉 (or 〈a, α, β〉) and B = 〈mB , wB〉 (or 〈b, γ, δ〉) are
not
non-dominating then

if ((A ≺ B) or (A ≺P B) or (A ≺R B) or (A ≺L B)) then
minimum = A;

else
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minimum = B;
endif;

else
if (wA < wB) (or α < γ) then

if the decision maker is optimistic, then minimum=B;
if the decision maker is pessimistic, then minimum=A;

endif;
endif;
return(minimum);
End m̃in.

Similarly, in the following we have given another function m̃ax which determines
the maximum between two interval numbers (or triangular fuzzy numbers). This
also gives the crisp maximum when the numbers are degenerate interval numbers
(or triangular fuzzy numbers).

Function m̃ax(A,B)

if A = 〈mA, wA〉 (or 〈a, α, β〉) and B = 〈mB , wB〉 (or 〈b, γ, δ〉)
are not
non-dominating then

if ((A ≺ B) or (A ≺P B) or (A ≺R B) or (A ≺L B)) then
maximum = B;

else
maximum = A;

endif;
else

if (wA > wB) (or β > δ) then
if the decision maker is optimistic, then maximum=A;
if the decision maker is pessimistic, then maximum=B;

endif;
endif;
return(maximum);
End m̃ax.

4. Solution Methodology of the Fuzzy p-center Problem

In this section, we discuss the solution methodology of the fuzzy p-center problem
on a network (i) Ñ = (V,E, w, l̃), or (ii) Ñ = (V,E, w̃, l). In reality these cases
arise frequently, since, it is more appropriate to measure a length or distance by a
fuzzy number, instead of a crisp number.

Let V be the set of vertices; W be the set of points at which the facilities can
be located, which we have also considered as V in this paper; dij be the distance
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12 S. M. A. Nayeem and M. Pal

between the vertices vi and vj ; and wi be the weight associated with the vertex vi.
An integer programming (IP) formulation of the p-center problem can be given as
follows [11].

Minimize ρ

subject to
∑

vj∈W

xij = 1 for all vi ∈ V

xij ≤ yj ∀ vi ∈ V, vj ∈ W∑
j∈W

yj ≤ p

∑
j∈W

dij xij wi ≤ ρ ∀ vi ∈ V

xij , yj ∈ {0, 1} ∀ vi ∈ V, vj ∈ W. (23)

where, the variable xij assumes the value 1 if the facility site j is assigned to cover
the demand wi at the vertex vi and the value 0 otherwise. The binary variable yj

assumes the value 1 if the facility site j is chosen for locating a facility and the value
0 otherwise, and the variable ρ on minimization gives the p-radius of the network.

When the edge-weights or the vertex-weights are imprecise in nature, the above
IP problem becomes fuzzy. Different types of fuzzy IP problems are described
by Herrera and Verdegay [16]. It is well known that solving to optimality the p-
center problem using the IP formulation is very much time consuming even for
small instances. Solving of the fuzzy version of the IP formulation of the problem
is more time consuming and complicated. The following enumeration approach is
comparatively better when the number of vertices is not too large.

We start by enumerating all possible subsets of the vertex set V with cardinality
p and by numbering them as C1, C2, . . . , Cm; m = nCp. Now we construct the
matrix ∆ = (δij)n×m as follows.

δij = d(vi, Cj) = m̃in
u∈Cj

d(vi, u).

Denoting the column maxima m̃ax
1≤i≤n

δijwi by Mj for all j = 1, 2, . . . ,m, the p-

radius is obtained by finding the minimum among all Mj , j = 1, 2, . . . ,m and the
corresponding Cj is the required p-center. This can be written in the form of a
procedure as follows.

Procedure Fuzzypcenter(V,D, p)
Input: The vertex set V and the distance matrix D = (dij)n×n, n = |V | being the
number of vertices of the graph, and the number of facilities (p) to be located.
Output: The p-center and the p-radius of the graph.

Step 1: Construct all the subsets of V having cardinality p and
enumerate them as C1, C2, . . . , Cm; m = nCp.

Archive of SID

www.SID.ir



The p-center Problem on Fuzzy Networks and Reduction of Cost 13

j j
k k

j k

b
b

b
b

b
bb

"
"

"
"

"
""

���
����

H
HHH

HHH

Q
Q

Q
Q

Q
Q

"
"

"
"

"
""

1 2

3 4

5 6

5

12

6

10 11

14

8

8

15 6

9

Figure 6. A network with n = 6.

1 2 3 4 5 6
1 0 5 10 17 6 11
2 5 0 11 12 11 6
3 10 11 0 8 14 15
4 17 12 8 0 17 9
5 6 11 14 17 0 8
6 11 6 15 9 8 0

Table 1. Distance matrix of the network in Figure 6.

Step 2: Construct the matrix ∆ = (δij)n×m as

δij = d(vi, Cj) = m̃in
u∈Cj

{d(vi, u)}.

Step 3: for (j = 1 to m) do
find Mj = m̃ax

1≤i≤n
{δij .wi}

Endfor;
Step 4: Find Mk = m̃in

1≤j≤m
{Mj}. Mk is the p-radius of the graph.

Step 5: Find Cj∗ such that Mk = m̃ax
1≤i≤n

{δij∗ .wi}.
Cj∗ is the p-center of the graph.

End Fuzzypcenter

Although, different approximate algorithms are available in the literature [24] to
find the p-center of a network, but none are found to deal with imprecise data.

4.1. Illustrative Examples. We illustrate the procedure stated in the earlier sec-
tion with the help of a network with n = 6 and p = 2. The network is given in the
Figure 6.

4.1.1. Network with Imprecise Vertex-weights. In the following, we consider
that the vertex weights of the network of Figure 6 are imprecise and the edge
weights are taken as crisp numbers. The distance matrix is given in the Table 1.
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14 S. M. A. Nayeem and M. Pal

At first, we enumerate all the 2-member subsets of the vertex set V = {1, 2,
. . . , 6} as follows.

C1 = {1, 2}, C2 = {1, 3}, C3 = {1, 4}, C4 = {1, 5}, C5 = {1, 6},
C6 = {2, 3}, C7 = {2, 4}, C8 = {2, 5}, C9 = {2, 6},

C10 = {3, 4}, C11 = {3, 5}, C12 = {3, 6},
C13 = {4, 5}, C14 = {4, 6},

C15 = {5, 6}.

Then the matrix ∆ = (δij)6×15 is obtained as below.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

1 0 0 0 0 0 5 5 5 5 10 6 10 6 11 6
2 0 5 5 5 5 0 0 0 0 11 11 6 11 6 6
3 10 0 8 10 10 0 8 11 11 0 0 0 8 8 14
4 12 8 0 17 9 8 0 12 9 0 8 8 0 0 9
5 6 6 6 0 6 11 11 0 8 14 0 8 0 8 0
6 6 11 9 8 0 6 6 6 0 9 8 0 8 0 0

Table 2. The ∆-matrix of the network in Figure 6.

(a) Vertex weights are interval numbers: The vertex weights are taken as w1 =
〈11, 1〉, w2 = 〈2.5, 0.5〉, w3 = 〈10.5, 1.5〉, w4 = 〈5.5, 0.5〉, w5 = 〈3, 1〉, w6 = 〈4.5, 0.5〉.

Thus we get the Table 3.

Finally, we get the 2-radius of the network as m̃in
1≤j≤15

Mj = 〈49.5, 5.5〉 and the

2-center as C2 = {1, 3}.
(b) Vertex weights are triangular fuzzy numbers: Now we consider the vertex
weights of the network as triangular fuzzy numbers. Those are taken as w̃1 =
〈11.5, 1, 0.5〉, w̃2 = 〈2.5, 0.5, 0.5〉, w̃3 = 〈10.5, 1.5, 1〉, w̃4 = 〈5.5, 0.5, 0.5〉, w̃5 = 〈3, 1,
0.5〉, w̃6 = 〈4.5, 0.5, 1〉.

Then we get the Table 4.
Finally, we get the 2-radius of the network as m̃in

1≤j≤15
M̃j = 〈49.5, 5.5, 11〉 and the

2-center as C2 = {1, 3}.

4.1.2. Network with Imprecise Edge-weights. Here, we consider the same net-
work with imprecise edge weights and the vertex weights are considered as crisp
numbers.
(a) Edge weights are interval numbers: Let the edge weights are given as in Figure
7.

In mean-width form the distance matrix is given by Table 6.
Using this distance matrix, the matrix ∆ = (δij)6×15 is to be found. Here,

d(2, C11) = m̃in{d23, d25} = m̃in{〈11.5, 0.5〉, 〈11.5, 1.5〉} = 〈11.5, 1.5〉 if the decision

Archive of SID

www.SID.ir



The p-center Problem on Fuzzy Networks and Reduction of Cost 15

vi δi1.wi δi2.wi δi3.wi δi4.wi δi5.wi wi

1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈11, 1〉
2 〈0, 0〉 〈12.5, 2.5〉 〈12.5, 2.5〉 〈12.5, 2.5〉 〈12.5, 2.5〉 〈2.5, 0.5〉
3 〈105, 15〉 〈0, 0〉 〈84, 12〉 〈105, 15〉 〈105, 15〉 〈10.5, 1.5〉
4 〈66, 6〉 〈44, 4〉 〈0, 0〉 〈93.5, 8.5〉 〈49.5, 4.5〉 〈5.5, 0.5〉
5 〈18, 6〉 〈18, 6〉 〈18, 6〉 〈0, 0〉 〈18, 6〉 〈3, 1〉
6 〈27, 3〉 〈49.5, 5.5〉 〈40.5, 4.5〉 〈36, 4〉 〈0, 0〉 〈4.5, 0.5〉

Mj 〈105, 15〉 〈49.5, 5.5〉 〈84, 12〉 〈105, 15〉 〈105, 15〉
vi δi6.wi δi7.wi δi8.wi δi9.wi δi 10.wi wi

1 〈55, 5〉 〈55, 5〉 〈55, 5〉 〈55, 5〉 〈110, 10〉 〈11, 1〉
2 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈27.5, 5.5〉 〈2.5, 0.5〉
3 〈0, 0〉 〈84, 12〉 〈115.5, 16.5〉 〈115.5, 16.5〉 〈0, 0〉 〈10.5, 1.5〉
4 〈44, 4〉 〈0, 0〉 〈66, 6〉 〈49.5, 4.5〉 〈0, 0〉 〈5.5, 0.5〉
5 〈33, 11〉 〈33, 11〉 〈0, 0〉 〈24, 8〉 〈42, 14〉 〈3, 1〉
6 〈27, 3〉 〈27, 3〉 〈27, 3〉 〈0, 0〉 〈40.5, 4.5〉 〈4.5, 0.5〉

Mj 〈55, 5〉 〈84, 12〉 〈115.5, 16.5〉 〈115.5, 16.5〉 〈110, 10〉
vi δi 11.wi δi 12.wi δi 13.wi δi 14.wi δi 15.wi wi

1 〈66, 6〉 〈110, 10〉 〈66, 6〉 〈121, 11〉 〈66, 6〉 〈11, 1〉
2 〈27.5, 5.5〉 〈15, 3〉 〈27.5, 5.5〉 〈15, 3〉 〈15, 3〉 〈2.5, 0.5〉
3 〈0, 0〉 〈0, 0〉 〈84, 12〉 〈84, 12〉 〈147, 21〉 〈10.5, 1.5〉
4 〈44, 4〉 〈44, 4〉 〈0, 0〉 〈0, 0〉 〈49.5, 4.5〉 〈5.5, 0.5〉
5 〈0, 0〉 〈24, 8〉 〈0, 0〉 〈24, 8〉 〈0, 0〉 〈3, 1〉
6 〈36, 4〉 〈0, 0〉 〈36, 4〉 〈0, 0〉 〈0, 0〉 〈4.5, 0.5〉

Mj 〈66, 6〉 〈110, 10〉 〈84, 12〉 〈121, 11〉 〈147, 21〉

Table 3. The ∆-matrix being multiplied with the interval number
weights of the vertices.
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Figure 7. A network with interval edge-weights.

maker is optimistic, and 〈11.5, 0.5〉 if the decision maker is pessimistic. Thus ac-
cording to the different views of the decision maker, we get the following matrices
shown in Table 7 and Table 9.
Case - I: Optimistic View

Multiplying with the corresponding weights, we get the Table 8.
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vi δi1.w̃i δi2.w̃i δi3.w̃i δi4.w̃i δi5.w̃i w̃i

1 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈11.5, 1, 0.5〉
2 〈0, 0, 0〉 〈12.5, 2.5, 2.5〉 〈12.5, 2.5, 2.5〉 〈12.5, 2.5, 2.5〉 〈12.5, 2.5, 2.5〉 〈2.5, 0.5, 0.5〉
3 〈105, 15, 10〉 〈0, 0, 0〉 〈84, 12, 8〉 〈105, 15, 10〉 〈105, 15, 10〉 〈10.5, 1.5, 1〉
4 〈66, 6, 6〉 〈44, 4, 4〉 〈0, 0, 0〉 〈93.5, 8.5, 8.5〉 〈49.5, 4.5, 4.5〉 〈5.5, 0.5, 0.5〉
5 〈18, 6, 3〉 〈18, 6, 3〉 〈18, 6, 3〉 〈0, 0, 0〉 〈18, 6, 3〉 〈3, 1, 0.5〉
6 〈27, 3, 6〉 〈49.5, 5.5, 11〉 〈40.5, 4.5, 9〉 〈36, 4, 8〉 〈0, 0, 0〉 〈4.5, 0.5, 1〉

M̃j 〈105, 15, 10〉 〈49.5, 5.5, 11〉 〈84, 12, 8〉 〈105, 15, 10〉 〈105, 15, 10〉
vi δi6.w̃i δi7.w̃i δi8.w̃i δi9.w̃i δi 10.w̃i w̃i

1 〈57.5, 5, 2.5〉 〈57.5, 5, 2.5〉 〈57.5, 5, 2.5〉 〈57.5, 5, 2.5〉 〈115, 10, 5〉 〈11.5, 1, 0.5〉
2 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈27.5, 5.5, 5.5〉 〈2.5, 0.5, 0.5〉
3 〈0, 0, 0〉 〈84, 12, 8〉 〈115.5, 16.5, 11〉 〈115.5, 16.5, 11〉 〈0, 0, 0〉 〈10.5, 1.5, 1〉
4 〈44, 4, 4〉 〈0, 0, 0〉 〈66, 6, 6〉 〈49.5, 4.5, 4.5〉 〈0, 0, 0〉 〈5.5, 0.5, 0.5〉
5 〈33, 11, 5.5〉 〈33, 11, 5.5〉 〈0, 0, 0〉 〈24, 8, 4〉 〈42, 14, 7〉 〈3, 1, 0.5〉
6 〈27, 3, 6〉 〈27, 3, 6〉 〈27, 3, 6〉 〈0, 0, 0〉 〈40.5, 4.5, 9〉 〈4.5, 0.5, 1〉

M̃j 〈57.5, 5, 2.5〉 〈84, 12, 8〉 〈115.5, 16.5, 11〉 〈115.5, 16.5, 11〉 〈115, 10, 5〉
vi δi 11.w̃i δi 12.w̃i δi 13.w̃i δi 14.w̃i δi 15.w̃i w̃i

1 〈69, 6, 3〉 〈115, 10, 5〉 〈69, 6, 3〉 〈126.5, 11, 5.5〉 〈69, 6, 3〉 〈11.5, 1, 0.5〉
2 〈27.5, 5.5, 5.5〉 〈15, 3, 3〉 〈27.5, 5.5, 5.5〉 〈15, 3, 3〉 〈15, 3, 3〉 〈2.5, 0.5, 0.5〉
3 〈0, 0, 0〉 〈0, 0, 0〉 〈84, 12, 8〉 〈84, 12, 8〉 〈147, 21, 14〉 〈10.5, 1.5, 1〉
4 〈44, 4, 4〉 〈44, 4, 4〉 〈0, 0, 0〉 〈0, 0, 0〉 〈49.5, 4.5, 4.5〉 〈5.5, 0.5, 0.5〉
5 〈0, 0, 0〉 〈24, 8, 4〉 〈0, 0, 0〉 〈24, 8, 4〉 〈0, 0, 0〉 〈3, 1, 0.5〉
6 〈36, 4, 8〉 〈0, 0, 0〉 〈36, 4, 8〉 〈0, 0, 0〉 〈0, 0, 0〉 〈4.5, 0.5, 1〉

M̃j 〈69, 6, 3〉 〈115, 10, 5〉 〈84, 12, 8〉 〈126.5, 11, 5.5〉 〈147, 21, 14〉

Table 4. The ∆-matrix being multiplied with the triangular fuzzy
number weights of the vertices.

1 2 3 4 5 6 Weights
1 [0, 0] [5, 6] [10, 12] [16, 18] [5, 7] [12, 16] 11
2 [5, 6] [0, 0] [11, 12] [11, 12] [10, 13] [7, 10] 3
3 [10, 12] [11, 12] [0, 0] [8, 10] [13, 15] [14, 17] 10
4 [16, 18] [11, 12] [8, 10] [0, 0] [17, 20] [9, 10] 5
5 [5, 7] [10, 13] [13, 15] [17, 20] [0, 0] [8, 10] 3
6 [12, 16] [7, 10] [14, 17] [9, 10] [8, 10] [0, 0] 4

Table 5. Distance matrix of the network of Figure 7.

Thus we get the 2-radius of the network as m̃in
1≤j≤15

Mj = 〈56, 8〉 and the 2-center

as C2 = {1, 3}.
Case - II: Pessimistic View

Multiplying with the corresponding weights, we get the Table 10.
Thus in this case also, we get the 2-radius of the network as m̃in

1≤j≤15
Mj = 〈56, 8〉

and the 2-center as C2 = {1, 3}.

Archive of SID

www.SID.ir



The p-center Problem on Fuzzy Networks and Reduction of Cost 17

1 2 3 4 5 6 Weights
1 〈0, 0〉 〈5.5, 0.5〉 〈11, 1〉 〈17, 1〉 〈6, 1〉 〈14, 2〉 11
2 〈5.5, 0.5〉 〈0, 0〉 〈11.5, 0.5〉 〈11.5, 0.5〉 〈11.5, 1.5〉 〈8.5, 1.5〉 3
3 〈11, 1〉 〈11.5, 0.5〉 〈0, 0〉 〈9, 1〉 〈14, 1〉 〈15.5, 1.5〉 10
4 〈17, 1〉 〈11.5, 0.5〉 〈9, 1〉 〈0, 0〉 〈18.5, 1.5〉 〈9.5, 0.5〉 5
5 〈6, 1〉 〈11.5, 1.5〉 〈14, 1〉 〈18.5, 1.5〉 〈0, 0〉 〈9, 1〉 3
6 〈14, 2〉 〈8.5, 1.5〉 〈15.5, 1.5〉 〈9.5, 0.5〉 〈9, 1〉 〈0, 0〉 4

Table 6. Distance matrix of the network of Figure 7 in mean-
width form.

C1 C2 C3 C4 C5 Weights
1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 11
2 〈0, 0〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 3
3 〈11, 1〉 〈0, 0〉 〈9, 1〉 〈11, 1〉 〈11, 1〉 10
4 〈11.5, 0.5〉 〈9, 1〉 〈0, 0〉 〈17, 1〉 〈9.5, 0.5〉 5
5 〈6, 1〉 〈6, 1〉 〈6, 1〉 〈0, 0〉 〈6, 1〉 3
6 〈8.5, 1.5〉 〈14, 2〉 〈9.5, 0.5〉 〈9, 1〉 〈0, 0〉 4

C6 C7 C8 C9 C10 Weights
1 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈11, 1〉 11
2 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈11.5, 0.5〉 3
3 〈0, 0〉 〈9, 1〉 〈11.5, 0.5〉 〈11.5, 0.5〉 〈0, 0〉 10
4 〈9, 1〉 〈0, 0〉 〈11.5, 0.5〉 〈9.5, 0.5〉 〈0, 0〉 5
5 〈11.5, 1.5〉 〈11.5, 1.5〉 〈0, 0〉 〈9, 1〉 〈14, 1〉 3
6 〈8.5, 1.5〉 〈8.5, 1.5〉 〈8.5, 1.5〉 〈0, 0〉 〈9.5, 0.5〉 4

C11 C12 C13 C14 C15 Weights
1 〈6, 1〉 〈11, 1〉 〈6, 1〉 〈14, 2〉 〈6, 1〉 11
2 〈11.5, 1.5〉 〈8.5, 1.5〉 〈11.5, 1.5〉 〈8.5, 1.5〉 〈8.5, 1.5〉 3
3 〈0, 0〉 〈0, 0〉 〈9, 1〉 〈9, 1〉 〈14, 1〉 10
4 〈9, 1〉 〈9, 1〉 〈0, 0〉 〈0, 0〉 〈9.5, 0.5〉 5
5 〈0, 0〉 〈9, 1〉 〈0, 0〉 〈9, 1〉 〈0, 0〉 3
6 〈9, 1〉 〈0, 0〉 〈9, 1〉 〈0, 0〉 〈0, 0〉 4

Table 7. The ∆-matrix of the network in Figure 7 from optimistic view.

(b) Edge weights are triangular fuzzy numbers: Let us consider the edge weights as
triangular fuzzy numbers as indicated in the Figure 8. The distance matrix of the
network is given in Table 11. From this matrix the ∆-matrix can be obtained as
given in Table 12.

Multiplying with the corresponding weights, we get the Table 13.
Hence we get the 2-radius of the network as m̃in

1≤j≤15
M̃j = 〈54, 6, 10〉 and the

2-center as C2 = {1, 3}.
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vi δi1.wi δi2.wi δi3.wi δi4.wi δi5.wi Weights
1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 11
2 〈0, 0〉 〈16.5, 1.5〉 〈16.5, 1.5〉 〈16.5, 1.5〉 〈16.5, 1.5〉 3
3 〈110, 10〉 〈0, 0〉 〈90, 10〉 〈110, 10〉 〈110, 10〉 10
4 〈57.5, 2.5〉 〈45, 5〉 〈0, 0〉 〈85, 5〉 〈47.5, 2.5〉 5
5 〈18, 3〉 〈18, 3〉 〈18, 3〉 〈0, 0〉 〈18, 3〉 3
6 〈34, 6〉 〈56, 8〉 〈38, 2〉 〈36, 4〉 〈0, 0〉 4

Mj 〈110, 10〉 〈56, 8〉 〈90, 10〉 〈110, 10〉 〈110, 10〉
vi δi6.wi δi7.wi δi8.wi δi9.wi δi 10.wi Weights
1 〈60.5, 5.5〉 〈60.5, 5.5〉 〈60.5, 5.5〉 〈60.5, 5.5〉 〈121, 11〉 11
2 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈34.5, 1.5〉 3
3 〈0, 0〉 〈90, 10〉 〈115, 5〉 〈115, 5〉 〈0, 0〉 10
4 〈45, 5〉 〈0, 0〉 〈57.5, 2.5〉 〈47.5, 2.5〉 〈0, 0〉 5
5 〈34.5, 4.5〉 〈34.5, 4.5〉 〈0, 0〉 〈27, 3〉 〈42, 3〉 3
6 〈34, 6〉 〈34, 6〉 〈34, 6〉 〈0, 0〉 〈38, 2〉 4

Mj 〈60.5, 5.5〉 〈90, 10〉 〈115, 5〉 〈115, 5〉 〈121, 11〉
vi δi 11.wi δi 12.wi δi 13.wi δi 14.wi δi 15.wi Weights
1 〈66, 11〉 〈121, 11〉 〈66, 11〉 〈154, 22〉 〈66, 11〉 11
2 〈34.5, 4.5〉 〈25.5, 4.5〉 〈34.5, 4.5〉 〈25.5, 4.5〉 〈25.5, 4.5〉 3
3 〈0, 0〉 〈0, 0〉 〈90, 10〉 〈90, 10〉 〈140, 10〉 10
4 〈45, 5〉 〈45, 5〉 〈0, 0〉 〈0, 0〉 〈47.5, 2.5〉 5
5 〈0, 0〉 〈27, 3〉 〈0, 0〉 〈27, 3〉 〈0, 0〉 3
6 〈36, 4〉 〈0, 0〉 〈36, 4〉 〈0, 0〉 〈0, 0〉 4

Mj 〈66, 11〉 〈121, 11〉 〈90, 10〉 〈154, 22〉 〈140, 10〉
Table 8. The ∆-matrix being multiplied with the weights of the vertices.
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〈9.5, 0.5, 0.5〉

Figure 8. Network with triangular fuzzy edge-weights.

5. Reduction of Cost

In Section 4, we have seen that if the vertex weights or the edge weights are
imprecise, then the p-radius of the network is also an imprecise number of same
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C1 C2 C3 C4 C5 Weights
1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 11
2 〈0, 0〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 3
3 〈11, 1〉 〈0, 0〉 〈9, 1〉 〈11, 1〉 〈11, 1〉 10
4 〈11.5, 0.5〉 〈9, 1〉 〈0, 0〉 〈17, 1〉 〈9.5, 0.5〉 5
5 〈6, 1〉 〈6, 1〉 〈6, 1〉 〈0, 0〉 〈6, 1〉 3
6 〈8.5, 1.5〉 〈14, 2〉 〈9.5, 0.5〉 〈9, 1〉 〈0, 0〉 4

C6 C7 C8 C9 C10 Weights
1 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈5.5, 0.5〉 〈11, 1〉 11
2 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈11.5, 0.5〉 3
3 〈0, 0〉 〈9, 1〉 〈11.5, 0.5〉 〈11.5, 0.5〉 〈0, 0〉 10
4 〈9, 1〉 〈0, 0〉 〈11.5, 0.5〉 〈9.5, 0.5〉 〈0, 0〉 5
5 〈11.5, 1.5〉 〈11.5, 1.5〉 〈0, 0〉 〈9, 1〉 〈14, 1〉 3
6 〈8.5, 1.5〉 〈8.5, 1.5〉 〈8.5, 1.5〉 〈0, 0〉 〈9.5, 0.5〉 4

C11 C12 C13 C14 C15 Weights
1 〈6, 1〉 〈11, 1〉 〈6, 1〉 〈14, 2〉 〈6, 1〉 11
2 〈11.5, 0.5〉 〈8.5, 1.5〉 〈11.5, 0.5〉 〈8.5, 1.5〉 〈8.5, 1.5〉 3
3 〈0, 0〉 〈0, 0〉 〈9, 1〉 〈9, 1〉 〈14, 1〉 10
4 〈9, 1〉 〈9, 1〉 〈0, 0〉 〈0, 0〉 〈9.5, 0.5〉 5
5 〈0, 0〉 〈9, 1〉 〈0, 0〉 〈9, 1〉 〈0, 0〉 3
6 〈9, 1〉 〈0, 0〉 〈9, 1〉 〈0, 0〉 〈0, 0〉 4

Table 9. The ∆-matrix of the network in Figure 7 from pes-
simistic view.

kind. The p-radius value may be considered as the cost to cover the furthest vertex
from the p-center set.

Suppose, in a proposed local area network (LAN), there are five servers and
hundred clients which are to be served by the servers. Also suppose that a client
can be connected to a server or a client by a single cable with no joining allowed.
Then the length of the longest cable required to cover all the clients deserves much
importance than the sum of the length of all the cables required. This can be
modelled easily as a p-center problem with n = 100 and p = 5.

Again the length of a cable may vary depending upon the situation of a client
within a building or a room. So the length of each cable may be considered as
interval numbers. Consequently the model consists of a network with interval edge
weights. Suppose the p-radius value for the model is 〉m,w〈 and we have no cable
of length ≥ m. Then we have to check whether a p-center set can be found with
the cost (p-radius value) as the length of the longest cable available, i.e., we have
to find a p-center set with some reduced cost. Also, it is clear that a p-center set
with reduced cost can not cover all the vertices with the weight assigned to it. In
the following, we define the ‘degree of attainment’ of a crisp number within an
interval (or a triangular fuzzy number), i.e., we describe a measure by which the
crisp number is less than the mean of the interval (or the point with membership
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vi δi1.wi δi2.wi δi3.wi δi4.wi δi5.wi Weights
1 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 11
2 〈0, 0〉 〈16.5, 1.5〉 〈16.5, 1.5〉 〈16.5, 1.5〉 〈16.5, 1.5〉 3
3 〈110, 10〉 〈0, 0〉 〈90, 10〉 〈110, 10〉 〈110, 10〉 10
4 〈57.5, 2.5〉 〈45, 5〉 〈0, 0〉 〈85, 5〉 〈47.5, 2.5〉 5
5 〈18, 3〉 〈18, 3〉 〈18, 3〉 〈0, 0〉 〈18, 3〉 3
6 〈34, 6〉 〈56, 8〉 〈38, 2〉 〈36, 4〉 〈0, 0〉 4

Mj 〈110, 10〉 〈56, 8〉 〈90, 10〉 〈110, 10〉 〈110, 10〉
vi δi6.wi δi7.wi δi8.wi δi9.wi δi 10.wi Weights
1 〈60.5, 5.5〉 〈60.5, 5.5〉 〈60.5, 5.5〉 〈60.5, 5.5〉 〈121, 11〉 11
2 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉 〈34.5, 1.5〉 3
3 〈0, 0〉 〈90, 10〉 〈115, 5〉 〈115, 5〉 〈0, 0〉 10
4 〈45, 5〉 〈0, 0〉 〈57.5, 2.5〉 〈47.5, 2.5〉 〈0, 0〉 5
5 〈34.5, 4.5〉 〈34.5, 4.5〉 〈0, 0〉 〈27, 3〉 〈42, 3〉 3
6 〈34, 6〉 〈34, 6〉 〈34, 6〉 〈0, 0〉 〈38, 2〉 4

Mj 〈60.5, 5.5〉 〈90, 10〉 〈115, 5〉 〈115, 5〉 〈121, 11〉
vi δi 11.wi δi 12.wi δi 13.wi δi 14.wi δi 15.wi Weights
1 〈66, 11〉 〈121, 11〉 〈66, 11〉 〈154, 22〉 〈66, 11〉 11
2 〈34.5, 1.5〉 〈25.5, 4.5〉 〈34.5, 1.5〉 〈25.5, 4.5〉 〈25.5, 4.5〉 3
3 〈0, 0〉 〈0, 0〉 〈90, 10〉 〈90, 10〉 〈140, 10〉 10
4 〈45, 5〉 〈45, 5〉 〈0, 0〉 〈0, 0〉 〈47.5, 2.5〉 5
5 〈0, 0〉 〈27, 3〉 〈0, 0〉 〈27, 3〉 〈0, 0〉 3
6 〈36, 4〉 〈0, 0〉 〈36, 4〉 〈0, 0〉 〈0, 0〉 4

Mj 〈66, 11〉 〈121, 11〉 〈90, 10〉 〈154, 22〉 〈140, 10〉
Table 10. The ∆-matrix of the network in Figure 7 being multi-
plied with the vertex weights.

value 1). The minimum degree of attainment by which the weights of the vertices
can be covered is taken as the ‘satisfaction grade’ of the corresponding p-center.

Definition 5.1. The ‘degree of attainment’ of a crisp number α within an interval
A = [aL, aU ] is defined as

µ(A,α) =


1 if α ≥ aU
α− aL

aU − aL
if aL ≤ α ≤ aU

0 if α ≤ aL
(24)

Definition 5.2. The ‘degree of attainment’ of a crisp number α within a triangular
fuzzy number Ã = (a, a, a) is defined as

µ(Ã, α) =


1 if α ≥ a
α− a

a− a
if a ≤ α ≤ a

0 if α ≤ a (25)
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1 2 3 Weights
1 〈0, 0, 0〉 〈5.5, 0.5, 0.5〉 〈11, 1, 1〉 11
2 〈5.5, 0.5, 0.5〉 〈0, 0, 0〉 〈11.5, 0.5, 0.5〉 3
3 〈11, 1, 1〉 〈11.5, 0.5, 0.5〉 〈0, 0, 0〉 10
4 〈16, 1, 2〉 〈10.5, 0.5, 1.5〉 〈9.5, 1.5, 0.5〉 5
5 〈5.5, 0.5, 1.5〉 〈11, 1, 2〉 〈11, 1, 2〉 3
6 〈13.5, 1.5, 2.5〉 〈8, 1, 2〉 〈16, 1, 2〉 4

4 5 6 Weights
1 〈16, 1, 2〉 〈5.5, 0.5, 1.5〉 〈13.5, 1.5, 2.5〉 11
2 〈10.5, 0.5, 1.5〉 〈11, 1, 2〉 〈8, 1, 2〉 3
3 〈9.5, 1.5, 0.5〉 〈11, 1, 2〉 〈16, 1, 2〉 10
4 〈0, 0, 0〉 〈18.5, 1.5, 1.5〉 〈9.5, 0.5, 0.5〉 5
5 〈18.5, 1.5, 1.5〉 〈0, 0, 0〉 〈9, 1, 1〉 3
6 〈9.5, 0.5, 0.5〉 〈9, 1, 1〉 〈0, 0, 0〉 4

Table 11. The distance matrix of the network of Figure 8.

C1 C2 C3 C4 C5 Weights

1 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 11
2 〈0, 0, 0〉 〈5.5, 0.5, 0.5〉 〈5.5, 0.5, 0.5〉 〈5.5, 0.5, 0.5〉 〈5.5, 0.5, 0.5〉 3
3 〈11, 1, 1〉 〈0, 0, 0〉 〈9.5, 1.5, 0.5〉 〈11, 1, 2〉 〈11, 1, 1〉 10
4 〈10.5, 0.5, 1.5〉 〈9.5, 1.5, 0.5〉 〈0, 0, 0〉 〈16, 1, 2〉 〈9.5, 0.5, 0.5〉 5
5 〈5.5, 0.5, 1.5〉 〈5.5, 0.5, 1.5〉 〈5.5, 0.5, 1.5〉 〈0, 0, 0〉 〈5.5, 0.5, 1.5〉 3
6 〈8, 1, 2〉 〈13.5, 1.5, 2.5〉 〈9.5, 0.5, 0.5〉 〈9, 1, 1〉 〈0, 0, 0〉 4

C6 C7 C8 C9 C10 Weights

1 〈5.5, 0.5, 0.5〉 〈5.5, 0.5, 0.5〉 〈5.5, 0.5, 1.5〉 〈5.5, 0.5, 0.5〉 〈11, 1, 1〉 11
2 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈10.5, 0.5, 1.5〉 3
3 〈0, 0, 0〉 〈9.5, 1.5, 0.5〉 〈11, 1, 2〉 〈11.5, 0.5, 0.5〉 〈0, 0, 0〉 10
4 〈9.5, 1.5, 0.5〉 〈0, 0, 0〉 〈10.5, 0.5, 1.5〉 〈9.5, 0.5, 0.5〉 〈0, 0, 0〉 5
5 〈11, 1, 2〉 〈11, 1, 2〉 〈0, 0, 0〉 〈9, 1, 1〉 〈11, 1, 2〉 3
6 〈8, 1, 2〉 〈8, 1, 2〉 〈8, 1, 2〉 〈0, 0, 0〉 〈9.5, 0.5, 0.5〉 4

C11 C12 C13 C14 C15 Weights

1 〈5.5, 0.5, 1.5〉 〈11, 1, 1〉 〈5.5, 0.5, 1.5〉 〈13.5, 1.5, 2.5〉 〈5.5, 0.5, 1.5〉 11
2 〈11, 1, 2〉 〈8, 1, 2〉 〈10.5, 0.5, 1.5〉 〈8, 1, 2〉 〈8, 1, 2〉 3
3 〈0, 0, 0〉 〈0, 0, 0〉 〈9.5, 1.5, 0.5〉 〈9.5, 1.5, 0.5〉 〈11, 1, 2〉 10
4 〈9.5, 1.5, 0.5〉 〈9.5, 1.5, 0.5〉 〈0, 0, 0〉 〈0, 0, 0〉 〈9.5, 0.5, 0.5〉 5
5 〈0, 0, 0〉 〈9, 1, 1〉 〈0, 0, 0〉 〈9, 1, 1〉 〈0, 0, 0〉 3
6 〈9, 1, 1〉 〈0, 0, 0〉 〈9, 1, 1〉 〈0, 0, 0〉 〈0, 0, 0〉 4

Table 12. The ∆-matrix of the network of Figure 8.

Next we state the bounds within which the reduced cost may be fixed.
Suppose the weight of the vertex vi is wi = [ai, bi] for all i = 1, 2, . . . , n. Then we

solve the problem twice, once taking the weights as ai, for which the result obtained
is, say, ρL and next taking the weights as bi, for which the obtained p-radius is,
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vi δ̃i1.wi δ̃i2.wi δ̃i3.wi δ̃i4.wi δ̃i5.wi Weights

1 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 11
2 〈0, 0, 0〉 〈16.5, 1.5, 1.5〉 〈16.5, 1.5, 1.5〉 〈16.5, 1.5, 1.5〉 〈16.5, 1.5, 1.5〉 3

3 〈110, 10, 10〉 〈0, 0, 0〉 〈95, 15, 5〉 〈110, 10, 20〉 〈110, 10, 10〉 10
4 〈52.5, 2.5, 7.5〉 〈47.5, 7.5, 2.5〉 〈0, 0, 0〉 〈80, 5, 10〉 〈47.5, 2.5, 2.5〉 5

5 〈16.5, 1.5, 4.5〉 〈16.5, 1.5, 4.5〉 〈16.5, 1.5, 4.5〉 〈0, 0, 0〉 〈16.5, 1.5, 4.5〉 3

6 〈32, 4, 8〉 〈54, 6, 10〉 〈38, 2, 2〉 〈36, 4, 4〉 〈0, 0, 0〉 4

M̃j 〈110, 10, 10〉 〈54, 6, 10〉 〈95, 15, 5〉 〈110, 10, 10〉 〈110, 10, 10〉
vi δ̃i6.wi δ̃i7.wi δ̃i8.wi δ̃i9.wi δ̃i 10.wi Weights

1 〈60.5, 5.5, 5.5〉 〈60.5, 5.5, 5.5〉 〈60.5, 5.5, 16.5〉 〈60.5, 5.5, 5.5〉 〈121, 11, 11〉 11

2 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈31.5, 1.5, 4.5〉 3
3 〈0, 0, 0〉 〈95, 15, 5〉 〈110, 10, 20〉 〈115, 5, 5〉 〈0, 0, 0〉 10

4 〈47.5, 7.5, 2.5〉 〈0, 0, 0〉 〈52.5, 2.5, 7.5〉 〈47.5, 2.5, 2.5〉 〈0, 0, 0〉 5

5 〈33, 3, 6〉 〈33, 3, 6〉 〈0, 0, 0〉 〈27, 3, 3〉 〈33, 3, 6〉 3
6 〈32, 4, 8〉 〈32, 4, 8〉 〈32, 4, 8〉 〈0, 0, 0〉 〈38, 2, 2〉 4

M̃j 〈60.5, 5.5, 5.5〉 〈95, 15, 5〉 〈110, 10, 20〉 〈115, 5, 5〉 〈121, 11, 11〉
vi δ̃i 11.wi δ̃i 12.wi δ̃i 13.wi δ̃i 14.wi δ̃i 15.wi Weights

1 〈60.5, 5.5, 16.5〉 〈121, 11, 11〉 〈60.5, 5.5, 16.5〉 〈148.5, 16.5, 27.5〉 〈60.5, 5.5, 16.5〉 11
2 〈33, 3, 6〉 〈24, 3, 6〉 〈31.5, 1.5, 4.5〉 〈24, 3, 6〉 〈24, 3, 6〉 3

3 〈0, 0, 0〉 〈0, 0, 0〉 〈95, 15, 5〉 〈95, 15, 5〉 〈110, 10, 20〉 10

4 〈47.5, 7.5, 2.5〉 〈47.5, 7.5, 2.5〉 〈0, 0, 0〉 〈0, 0, 0〉 〈47.5, 2.5, 2.5〉 5
5 〈0, 0, 0〉 〈27, 3, 3〉 〈0, 0, 0〉 〈27, 3, 3〉 〈0, 0, 0〉 3

6 〈36, 4, 4〉 〈0, 0, 0〉 〈36, 4, 4〉 〈0, 0, 0〉 〈0, 0, 0〉 4

M̃j 〈60.5, 5.5, 16.5〉 〈121, 11, 11〉 〈95, 15, 5〉 〈148.5, 16.5, 27.5〉 〈110, 10, 20〉

Table 13. The ∆-matrix of the network of Figure 8 being multi-
plied with the vertex weights.

say, ρU . Now we can state the following theorem involving the bounds ρL and ρU

of the p-radius.

Theorem 5.3. Let G = (V,E) be a network of which each vertex vi ∈ V assumes
an interval weight wi = [ai, bi] for all i = 1, 2, . . . , n. The crisp p-radius problem
with corresponding weights ai has the solution ρL and the same with the weights bi

has the solution ρU . For a fixed value within ρL and ρU , there exists at least one
p-center with non-zero satisfaction grade.

Similarly, when the weights of the vertices are triangular fuzzy number, we have
the following theorem.

Theorem 5.4. Let G = (V,E) be a network of which each vertex vi ∈ V assumes
a triangular fuzzy number weight wi = (αi, βi, γi) for all i = 1, 2, . . . , n. The crisp
p-radius problem with corresponding weights αi has the solution ρL and the same
with the weights γi has the solution ρU . For a fixed value within ρL and ρU , there
exists at least one p-center with non-zero satisfaction grade.

If ρ be a crisp number fixed by the decision maker as the p-radius, then we
denote the degree of attainment of

ρ

δij
within wi by µij , i.e., µij = µ

(
wi,

ρ

δij

)
. The
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minimum of all µij , i = 1, 2, . . . , n is denoted by λj . Our aim is to find the best
possible degree of satisfaction λ∗ = max

1≤j≤m
{λj}. Now we can give the algorithm.

Algorithm Best-p-center
Input: The ∆-matrix of the network and the value ρ to which the p-radius value
is fixed.
Output: The best possible p-center C∗.

Step 1: Order all vertices vi1 , vi2 , . . . , vin
according to decreasing

values of δij . Clearly, if n′ = n− p, then δikj = 0 for all
k > n′, since vik

, k > n′ are those vertices where the
facilities are located.

Step 2: Compute µikj for all k = 1, 2, . . . , n′, if all are found to
have non-zero values. But if µik′ j = 0, then leave the
calculations for all k > k′.

Step 3: For a column j of which each µikj is non-zero, find λj .
Clearly λj = 0 for all the rest columns.

Step 4. Finally, obtain the best possible degree of satisfaction as
λ∗ = max

1≤j≤m
{λj}. The set C∗ corresponding to λ∗ is the

best possible p-center.
End Best-p-center.

5.1. Illustrative Examples. Now we illustrate the algorithm with the help of the
network given in Figure 7. The edge weights and vertex weights are taken as same
as in Section 4.
(a) Vertex weights are interval numbers: At first, we find the bounds within which
the p-radius can be fixed. The vertex weights are given by w1 = 〈11, 1〉 = [10, 12],
w2 = 〈2.5, 0.5〉 = [2, 3], w3 = 〈10.5, 1.5〉 = [9, 12], w4 = 〈5.5, 0.5〉 = [5, 6], w5 = 〈3, 1〉
= [2, 4], w6 = 〈4.5, 0.5〉 = [4, 5]. Thus we have to solve the crisp problem once
taking the weights w1 = 10, w2 = 2, w3 = 9, w4 = 5, w5 = 2, w6 = 4 and next
taking the weights w1 = 12, w2 = 3, w3 = 12, w4 = 6, w5 = 4, w6 = 5. Solving
those, we get ρL = 44 and ρU = 55. Those corresponds to the p-center C6 = {2, 3}
in both the cases. Let the decision maker wishes to fix the maximum cost i.e., the
p-radius value by 54. We have to find the p-center with best possible satisfaction
grade.

Arranging the δij ’s in decreasing order, we construct the following table. The
subscript of each entry indicates the corresponding vertex.

Now we calculate
ρ

δikj
and µikj in the Table 15. µikjs are given in the subscripts.

Once we find that the µ-value of an entry is zero, the successive entries in that
column are left blank.

So we obtain the 2-center as C2 = {1, 3} in this case also, but the grade of
satisfaction is 0.91.
(b) Vertex weights are triangular fuzzy numbers: Now we consider the vertex
weights of the network as triangular fuzzy numbers. Those are given by w̃1 =
〈11.5, 1, 0.5〉 = (10.5, 11.5, 12), w̃2 = 〈2.5, 0.5, 0.5〉 = (2, 2.5, 3), w̃3 = 〈10.5, 1.5, 1〉 =
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

124 116 96 174 103 115 115 124 113 145 112 101 112 111 143

103 84 83 103 94 84 83 113 94 112 84 84 83 83 94

65 65 65 86 65 66 66 66 85 101 86 85 86 85 61

66 52 52 52 52 51 51 51 51 96 61 62 61 62 62

01 01 01 01 01 02 02 02 02 03 03 03 04 04 05

02 03 04 05 06 03 04 05 06 04 05 06 05 06 06

Table 14. Arrangement of the δij ’s in decreasing order.

C1 C2 C3 C4 C5 C6 C7 C8

4.50 4.910.91 61 3.180 5.40 4.911 4.911 4.50

− 6.751 6.750 − − 6.751 6.750 −
− 91 − − − 91 − −
− 10.81 − − − 10.80.4 − −

λj 0 0.91 0 0 0 0.4 0 0
C9 C10 C11 C12 C13 C14 C15

4.910 3.860.93 4.911 5.40 4.911 4.910 3.860

− 4.911 6.751 − 6.750 − −
− 5.40 6.751 − − − −
− − 90 − − − −

λj 0 0 0 0 0 0 0

Table 15. The values of
ρ

δikj
’s and µikj ’s (in the subscripts) for

interval vertex weights.

(9, 10.5, 11.5), w̃4 = 〈5.5, 0.5, 0.5〉 = (5, 5.5, 6), w̃5 = 〈3, 1, 0.5〉 = (2, 3, 3.5), w̃6 =
〈4.5, 0.5, 1〉 = (4, 4.5, 5.5). Thus in this case, we have to solve the crisp problem
once taking the weights w1 = 10.5, w2 = 2, w3 = 9, w4 = 5, w5 = 2, w6 = 4 and
next taking the weights w1 = 12, w2 = 3, w3 = 11.5, w4 = 6, w5 = 3.5, w6 = 5.5.
Solving those, we get ρL = 44 which corresponds to C2 = {1, 3} and ρU = 60 which
corresponds to the p-center C6 = {2, 3}. Let the decision maker wishes to fix the
maximum cost i.e., the p-radius value by 50. We have to find the p-center with best
possible satisfaction grade. As earlier, we get the final table as Table 16.

So we obtain the 2-center as C2 = {1, 3} in this case, and the grade of satisfaction
is 1.

6. Conclusion

In this paper, we have considered and solved the p-center problems on different
kinds of fuzzy graphs and provided several illustrative examples. Also we have
considered a fuzzy aspect of the problem by fixing the maximum cost (i.e., p-
radius value) within some bounds which can also be determined. We have given
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C1 C2 C3 C4 C5 C6 C7 C8

4.170 4.541 5.561 2.940 50 4.541 4.541 4.170

− 6.251 6.250 − − 6.251 6.250 −
− 8.331 − − − 8.331 − −
− 101 − − − 100 − −

λj 0 1 0 0 0 0 0 0
C9 C10 C11 C12 C13 C14 C15

4.540 3.571 4.541 50 4.541 4.540 3.570

− 4.541 6.251 − 6.250 − −
− 50 6.251 − − − −
− − 8.330 − − − −

λj 0 0 0 0 0 0 0

Table 16. The values of
ρ

δikj
’s and µikj ’s (in the subscripts) for

triangular fuzzy weights.

an algorithm to find a p-center with specified cost and to obtain the satisfaction
degree of that p-center.
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