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A COMMON FIXED POINT THEOREM FOR ψ-WEAKLY
COMMUTING MAPS IN L-FUZZY METRIC SPACES

R. SAADATI, S. SEDGHI AND H. ZHOU

Abstract. In this paper, a common fixed point theorem for ψ-weakly com-

muting maps in L-fuzzy metric spaces is proved.

1. Introduction and Preliminaries

The notion of fuzzy sets was introduced by Zadeh [26] and various concepts of
fuzzy metric spaces were considered in [7, 8, 14, 15]. Many authors have studied
fixed point theory in fuzzy metric spaces. The most interesting references are
[3, 4, 10, 11, 16, 18, 25].

In the sequel, we shall adopt the usual terminology, notation and conventions of
L-fuzzy metric spaces introduced by Saadati et al. [21, 22] and [1].

Definition 1.1. [10] Let L = (L,≤L) be a complete lattice, and U a non-empty
set called universe. An L-fuzzy set A on U is defined as a mapping A : U −→ L.
For each u in U , A(u) represents the degree (in L) to which u satisfies A.

Lemma 1.2. [6] Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice .

Definition 1.3. [2] An intuitionistic fuzzy set Aζ,η on a universe U is an ob-
ject Aζ,η = {(ζA(u), ηA(u)) : u ∈ U}, where, for all u ∈ U , ζA(u) ∈ [0, 1] and
ηA(u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η, and furthermore satisfy ζA(u) + ηA(u) ≤ 1.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, com-
mutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all
x ∈ [0, 1]. These definitions can be straightforwardly extended to any lattice
L = (L,≤L). Define first 0L = inf L and 1L = supL.

Definition 1.4. A triangular norm (t-norm) on L is a mapping T : L2 → L
satisfying the following conditions:

(i) (∀x ∈ L)(T (x, 1L) = x); (boundary condition)
(ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)); (commutativity)
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(iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)); (associativity)
(iv) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′)).

(monotonicity)

A t-norm can also be defined recursively as an (n+1)-ary operation (n ∈ N\{0})
by T 1 = T and

T n(x(1), · · · , x(n+1)) = T (T n−1(x(1), · · · , x(n)), x(n+1))

for n ≥ 2 and x(i) ∈ L.

Definition 1.5. [5] A t-norm T on L∗ is called t-representable if and only if there
exist a t-norm T and a t-conorm S on [0, 1] such that, for all x = (x1, x2), y =
(y1, y2) ∈ L∗,

T (x, y) = (T (x1, y1), S(x2, y2)).

Definition 1.6. A negation on L is any decreasing mapping N : L→ L satisfying
N (0L) = 1L and N (1L) = 0L . If N (N (x)) = x, for all x ∈ L, then N is called an
involutive negation.

If, for all x ∈ [0, 1], Ns(x) = 1 − x, we say that Ns is the standard negation on
([0, 1],≤).

Definition 1.7. The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space if
X is an arbitrary (non-empty) set, T is a continuous t–norm on L and M is an
L-fuzzy set on X2× ]0,+∞[ satisfying the following conditions for every x, y, z in
X and t, s in ]0,+∞[:

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t+ s);
(e) M(x, y, ·) : ]0,∞[→ L is continuous.

In this case M is called an L-fuzzy metric. If M = MM,N is an intuitionistic fuzzy
set (see Definition 1.3) then the 3-tuple (X,MM,N , T ) is said to be an intuitionistic
fuzzy metric space.

Example 1.8. [24] Let (X, d) be a metric space. Set T (a, b) = (a1b1,min(a2 +
b2, 1)) for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) = (
t

t+md(x, y)
,

d(x, y)
t+ d(x, y)

),

in which m > 1. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Example 1.9. [22] Let X = N. Define T (a, b) = (max(0, a1+b1−1), a2+b2−a2b2)
for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) =

{
(xy ,

y−x
y ) if x ≤ y

( yx ,
x−y
x ) if y ≤ x.
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for all x, y ∈ X and t > 0. Then (X,MM,N , T ) is an intuitionistic fuzzy metric
space.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ ]0,+∞[, we define the open
ball B(x, r, t) with center x ∈ X and radius r ∈ L \ {0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.

A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and r ∈ L\{0L, 1L}
such that B(x, r, t) ⊆ A. Let τM denote the family of all open subsets of X. Then
τM is called the topology induced by the L-fuzzy metric M.

Lemma 1.10. [9] Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t) is
nondecreasing with respect to t, for all x, y in X.

Proof. Let t, s ∈ ]0,+∞[ be such that t < s. Then k = s− t > 0 and

M(x, y, t) = T (M(x, y, t), 1L) = T (M(x, y, t),M(y, y, k)) ≤L M(x, y, s).

�

Definition 1.11. A sequence {xn}n∈N in an L-fuzzy metric space (X,M, T ) is
called a Cauchy sequence, if for each ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N
such that for all m ≥ n ≥ n0 (n ≥ m ≥ n0),

M(xm, xn, t) >L N (ε).

The sequence {xn}n∈N is said to be convergent to x ∈ X in the L-fuzzy metric space
(X,M, T ) (denoted by xn

M−→ x) if M(xn, x, t) = M(x, xn, t) → 1L whenever
n→ +∞ for every t > 0. A L-fuzzy metric space is said to be complete if and only
if every Cauchy sequence is convergent.

Definition 1.12. Let (X,M, T ) be an L-fuzzy metric space. M is said to be
continuous on X ×X×]0,∞[ if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever a sequence {(xn, yn, tn)} in X ×X×]0,∞[ converges to a point (x, y, t) ∈
X×X×]0,∞[ i.e., limnM(xn, x, t) = limnM(yn, y, t) = 1L and limnM(x, y, tn) =
M(x, y, t).

Lemma 1.13. Let (X,M, T ) be an L-fuzzy metric space. Then M is a continuous
function on X ×X×]0,∞[.

Proof. The proof is same as for fuzzy metric spaces (see Proposition 1 of [20]). �

2. The Main Results

Definition 2.1. Let f and g be maps from an L-fuzzy metric space (X,M, T )
into itself. The maps f and g are said to be weakly commuting if

M(fgx, gfx, t) ≥L M(fx, gx, t)

for each x in X and t > 0.
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Definition 2.2. Let f and g be maps from an L-fuzzy metric space (X,M, T )
into itself. The maps f and g are said to be ψ-weakly commuting if there exists a
positive real function ψ : (0,∞) → (0,∞) such that

M(fgx, gfx, t) ≥L M(fx, gx, ψ(t))

for each x in X and t > 0.

Weak commutativity implies ψ-weak commutativity in L-fuzzy metric spaces.
However, ψ-weak commutativity implies weak commutativity only when ψ(t) ≥ t.

Example 2.3. Let X = R. Let T (a, b) = (a1b1,min(a2 + b2, 1)) for all a =
(a1, a2), b = (b1, b2) ∈ L∗ and let MM,N be the intuitionistic fuzzy set on X ×
X× ]0,+∞[ defined as follows:

MM,N (x, y, t) =

(
(exp(

|x− y|
t

))−1,
exp( |x−y|t )− 1

exp( |x−y|t )

)
,

for all t ∈ R+. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space. Define
f(x) = 2x− 1 and g(x) = x2. Then

MM,N (fgx, gfx, t) =

(
(exp(2

|x− 1|2

t
))−1,

exp(2 |x−1|2
t

)− 1

exp(2 |x−1|2
t

)

)

=

(exp(
|x− 1|2

t/2
))−1,

exp( |x−1|2
t/2

)− 1

exp( |x−1|2
t/2

)

 = MM,N (fx, gx, t/2)

<L∗

(
(exp(

|x− 1|2

t
))−1,

exp( |x−1|2
t

)− 1

exp( |x−1|2
t

)

)
= MM,N (fx, gx, t)

Therefore, for ψ(t) = t/2, f and g are ψ-weakly commuting. But f and g are not
weakly commuting since the exponential function is strictly increasing.

Theorem 2.4. Let (X,M, T ) be a left complete L-fuzzy metric space and let f and
g be ψ-weakly commuting self-mappings of X satisfying the following conditions:

(a) f(X) ⊆ g(X);
(b) Either f or g is continuous;
(c) M(fx, fy, t) ≥L C(M(gx, gy, t)), where C : L −→ L is a continuous function

such that C(a) >L a for each a ∈ L \ {0L, 1L}.
Then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. By (a), choose a point x1 in X such that
fx0 = gx1. In general choose xn+1 such that fxn = gxn+1. Then for t > 0,

M(fxn, fxn+1, t) ≥L C(M(gxn, gxn+1, t)) = C(M(fxn−1, fxn, t))
>L M(fxn−1, fxn, t)

Thus {M(fxn, fxn+1, t);n ≥ 0} is an increasing sequence in L and therefore, tends
to a limit a ≤L 1L. We claim that a = 1L. For if a <L 1L, when n −→ ∞ in the
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above inequality we get a ≥L C(a) >L a, a contradiction. Hence a = 1L, i.e.,

lim
n
M(fxn, fxn+1, t) = 1L.

If we define

(2.1) cn(t) = M(fxn, fxn+1, t)

then limn→∞ cn(t) = 1L. Now, we prove that {fxn} is a Cauchy sequence in
f(X). Suppose that {fxn} is not a Cauchy sequence in f(X). For convenience, let
yn = fxn for n = 1, 2, 3, · · · . Then there is an ε ∈ L \ {0L, 1L} such that for each
integer k, there exist integers m(k) and n(k) with m(k) > n(k) ≥ k such that

(2.2) dk(t) = M(yn(k), ym(k), t) ≤ N (ε) for k = 1, 2, · · · .
We may assume that

(2.3) M(yn(k), ym(k)−1, t) > N (ε),

by choosing m(k) to be the smallest number exceeding n(k) for which (2.2) holds.
Using (2.1), we have
(2.4)
N (ε) ≥ dk(t) ≥ T (M(yn(k), ym(k)−1, t/2),M(ym(k)−1, ym(k), t/2)) ≥ T (ck(t/2),N (ε))

Hence, dk(t) −→ N (ε) for every t > 0 as k −→∞.
We note that

dk(t) = M(yn(k), ym(k), t)

≥ T 2(M(yn(k), yn(k)+1, t/3),M(yn(k)+1, ym(k)+1, t/3),M(ym(k)+1, ym(k), t/3)

≥ T 2(ck(t/3), C(M(yn(k), ym(k), t/3)), ck(t/3))

= T 2(ck(t/3), C(dk(t/3)), ck(t/3)).

Thus, as k −→∞ in the above inequality we have

N (ε) ≥ C(N (ε)) > N (ε)

which is a contradiction. Thus, {fxn}n is Cauchy and by the completeness of X, {fxn}n

converges to z in X. Also {gxn}n converges to z in X. Let us suppose that the mapping
f is continuous. Then limn ffxn = fz and limn fgxn = fz. Further we have since f and
g are ψ-weakly commuting

M(fgxn, gfxn, t) ≥L M(fxn, gxn, ψ(t)).

On letting n → ∞ in the above inequality we get limn gfxn = fz, by Lemma 1.13. We
now prove that z = fz. Suppose z 6= fz then M(z, fz, t) <L 1L. By (c)

M(fxn, ffxn, t) ≥L C(M(gxn, gfxn, t)).

Letting n→∞ in the above inequality we get

M(z, fz, t) ≥L C(M(z, fz, t)) >L M(z, fz, t),

a contradiction. Therefore, z = fz. Since f(X) ⊆ g(X) we can find z1 in X such that
z = fz = gz1. Now,

M(ffxn, fz1, t) ≥L C(M(gfxn, gz1, t)).

Taking limits as n→∞ we get

M(fz, fz1, t) ≥L C(M(fz, gz1, t)) = 1L
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. Since C(1L) = 1L, this implies that fz = fz1, i.e., z = fz = fz1 = gz1. Also for any
t > 0,

M(fz, gz, t) = M(fgz1, gfz1, t) ≥L M(fz1, gz1, ψ(t)) = 1L

which again implies that fz = gz. Thus z is a common fixed point of f and g.
Now, to prove uniqueness suppose z′ 6= z is another common fixed point of f and g.

Then there exists t > 0 such that M(z, z′, t) <L 1L, and

M(z, z′, t) = M(fz, fz′, t) ≥L C(M(gz, gz′, t)) = C(M(z, z′, t))

>L M(z, z′, t)

which is contradiction. Therefore, z = z′, i.e., z is a unique common fixed point of f and
g. �

Example 2.5. Consider Example 1.8 in which X = [0, 1]. Define f(x) = 1 and

g(x) =

{
1, if x is rational,
0, if x is irrational,

on X. It is evident that f(X) ⊆ g(X), f is continuous and g is discontinuous.
Define C : L∗ → L∗ by C(a) = (

√
a1, a

2
2), then

C(a) = (
√
a1, a

2
2) >L∗ (a1, a2) = a

for 0 < ai < 1, i = 1, 2 and

M(fx, fy, t) ≥L∗ C(M(gx, gy, t))

for all x, y in X, f and g are ψ-weakly commuting. Thus all the conditions of last
theorem are satisfied and 1 is a common fixed point of f and g.
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