Iranian Journal of Fuzzy Systems Vol. 5, No. 1, (2008) pp. 47-53

A COMMON FIXED POINT THEOREM FOR ψ -WEAKLY COMMUTING MAPS IN \mathcal{L} -FUZZY METRIC SPACES

R. SAADATI, S. SEDGHI AND H. ZHOU

ABSTRACT. In this paper, a common fixed point theorem for ψ -weakly commuting maps in \mathcal{L} -fuzzy metric spaces is proved.

1. Introduction and Preliminaries

The notion of fuzzy sets was introduced by Zadeh [26] and various concepts of fuzzy metric spaces were considered in [7, 8, 14, 15]. Many authors have studied fixed point theory in fuzzy metric spaces. The most interesting references are [3, 4, 10, 11, 16, 18, 25].

In the sequel, we shall adopt the usual terminology, notation and conventions of \mathcal{L} -fuzzy metric spaces introduced by Saadati et al. [21, 22] and [1].

Definition 1.1. [10] Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice, and U a non-empty set called universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \longrightarrow L$. For each u in $U, \mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 1.2. [6] Consider the set L^* and operation \leq_{L^*} defined by:

 $L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},\$

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq y_1 \text{ and } x_2 \geq y_2, \text{ for every } (x_1, x_2), (y_1, y_2) \in L^*.$ Then (L^*, \leq_{L^*}) is a complete lattice.

Definition 1.3. [2] An intuitionistic fuzzy set $\mathcal{A}_{\zeta,\eta}$ on a universe U is an object $\mathcal{A}_{\zeta,\eta} = \{(\zeta_{\mathcal{A}}(u), \eta_{\mathcal{A}}(u)) : u \in U\}$, where, for all $u \in U, \zeta_{\mathcal{A}}(u) \in [0,1]$ and $\eta_{\mathcal{A}}(u) \in [0,1]$ are called the membership degree and the non-membership degree, respectively, of u in $\mathcal{A}_{\zeta,\eta}$, and furthermore satisfy $\zeta_{\mathcal{A}}(u) + \eta_{\mathcal{A}}(u) \leq 1$.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \to [0,1]$ satisfying T(1,x) = x, for all $x \in [0,1]$. These definitions can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} = \inf L$ and $1_{\mathcal{L}} = \sup L$.

Definition 1.4. A triangular norm (t-norm) on \mathcal{L} is a mapping $\mathcal{T} : L^2 \to L$ satisfying the following conditions:

- (i) $(\forall x \in L)(\mathcal{T}(x, 1_{\mathcal{L}}) = x);$ (boundary condition)
- (ii) $(\forall (x, y) \in L^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x));$ (commutativity)

Key words and phrases: \mathcal{L} -Fuzzy contractive mapping, Complete \mathcal{L} -fuzzy metric space, Common fixed point theorem, ψ -weakly commuting maps.

Received: June 2006; Revised: December 2006; Accepted: February 2007

48

R. Saadati, S. Sedghi and H. Zhou

- (iii) $(\forall (x, y, z) \in L^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z));$ (associativity)
- (iv) $(\forall (x, x', y, y') \in L^4)(x \leq_L x' \text{ and } y \leq_L y' \Rightarrow \mathcal{T}(x, y) \leq_L \mathcal{T}(x', y')).$ (monotonicity)

A t-norm can also be defined recursively as an (n+1)-ary operation $(n \in \mathbb{N} \setminus \{0\})$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{n}(x_{(1)}, \cdots, x_{(n+1)}) = \mathcal{T}(\mathcal{T}^{n-1}(x_{(1)}, \cdots, x_{(n)}), x_{(n+1)})$$

for $n \geq 2$ and $x_{(i)} \in L$.

Definition 1.5. [5] A t-norm \mathcal{T} on L^* is called *t-representable* if and only if there exist a t-norm T and a t-conorm S on [0,1] such that, for all $x = (x_1, x_2), y = (y_1, y_2) \in L^*$,

$$\mathcal{T}(x, y) = (T(x_1, y_1), S(x_2, y_2)).$$

Definition 1.6. A negation on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L$, then \mathcal{N} is called an involutive negation.

If, for all $x \in [0, 1]$, $N_s(x) = 1 - x$, we say that N_s is the standard negation on $([0, 1], \leq)$.

Definition 1.7. The 3-tuple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times [0, +\infty[$ satisfying the following conditions for every x, y, z in X and t, s in $[0, +\infty[$:

- (a) $\mathcal{M}(x, y, t) >_L 0_{\mathcal{L}};$
- (b) $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ for all t > 0 if and only if x = y;
- (c) $\mathcal{M}(x, y, t) = \mathcal{M}(y, x, t);$
- (d) $\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t+s);$
- (e) $\mathcal{M}(x, y, \cdot) : [0, \infty] \to L$ is continuous.

In this case \mathcal{M} is called an \mathcal{L} -fuzzy metric. If $\mathcal{M} = \mathcal{M}_{M,N}$ is an intuitionistic fuzzy set (see Definition 1.3) then the 3-tuple $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is said to be an *intuitionistic* fuzzy metric space.

Example 1.8. [24] Let (X, d) be a metric space. Set $\mathcal{T}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = (\frac{t}{t + md(x,y)}, \frac{d(x,y)}{t + d(x,y)}),$$

in which m > 1. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Example 1.9. [22] Let $X = \mathbf{N}$. Define $\mathcal{T}(a, b) = (\max(0, a_1+b_1-1), a_2+b_2-a_2b_2)$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = \begin{cases} \left(\frac{x}{y}, \frac{y-x}{y}\right) & if \quad x \le y\\ \left(\frac{y}{x}, \frac{x-y}{x}\right) & if \quad y \le x. \end{cases}$$

www.SID.ir

A Common Fixed Point Theorem for ψ -weakly Commuting Maps in \mathcal{L} -Fuzzy Metric Spaces 49

for all $x, y \in X$ and t > 0. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. For $t \in]0, +\infty[$, we define the *open* ball B(x, r, t) with center $x \in X$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, as

 $B(x, r, t) = \{ y \in X : \mathcal{M}(x, y, t) >_L \mathcal{N}(r) \}.$

A subset $A \subseteq X$ is called *open* if for each $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subseteq A$. Let $\tau_{\mathcal{M}}$ denote the family of all open subsets of X. Then $\tau_{\mathcal{M}}$ is called the *topology induced by the* \mathcal{L} -fuzzy metric \mathcal{M} .

Lemma 1.10. [9] Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then, $\mathcal{M}(x, y, t)$ is nondecreasing with respect to t, for all x, y in X.

Proof. Let $t, s \in [0, +\infty)$ be such that t < s. Then k = s - t > 0 and

$$\mathcal{M}(x,y,t) = \mathcal{T}(\mathcal{M}(x,y,t), \mathbf{1}_{\mathcal{L}}) = \mathcal{T}(\mathcal{M}(x,y,t), \mathcal{M}(y,y,k)) \leq_{L} \mathcal{M}(x,y,s).$$

Definition 1.11. A sequence $\{x_n\}_{n \in \mathbb{N}}$ in an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is called a *Cauchy sequence*, if for each $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$,

$$\mathcal{M}(x_m, x_n, t) >_L \mathcal{N}(\varepsilon)$$

The sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be *convergent* to $x \in X$ in the \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ (denoted by $x_n \xrightarrow{\mathcal{M}} x$) if $\mathcal{M}(x_n, x, t) = \mathcal{M}(x, x_n, t) \to 1_{\mathcal{L}}$ whenever $n \to +\infty$ for every t > 0. A \mathcal{L} -fuzzy metric space is said to be *complete* if and only if every Cauchy sequence is convergent.

Definition 1.12. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. \mathcal{M} is said to be continuous on $X \times X \times]0, \infty[$ if

$$\lim_{n \to \infty} \mathcal{M}(x_n, y_n, t_n) = \mathcal{M}(x, y, t)$$

whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X \times X \times]0, \infty[$ converges to a point $(x, y, t) \in X \times X \times]0, \infty[$ i.e., $\lim_n \mathcal{M}(x_n, x, t) = \lim_n \mathcal{M}(y_n, y, t) = 1_{\mathcal{L}}$ and $\lim_n \mathcal{M}(x, y, t_n) = \mathcal{M}(x, y, t)$.

Lemma 1.13. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then \mathcal{M} is a continuous function on $X \times X \times]0, \infty[$.

Proof. The proof is same as for fuzzy metric spaces (see Proposition 1 of [20]). \Box

2. The Main Results

Definition 2.1. Let f and g be maps from an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ into itself. The maps f and g are said to be weakly commuting if

$$\mathcal{M}(fgx, gfx, t) \ge_L \mathcal{M}(fx, gx, t)$$

for each x in X and t > 0.

Definition 2.2. Let f and g be maps from an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ into itself. The maps f and g are said to be ψ -weakly commuting if there exists a positive real function $\psi : (0, \infty) \to (0, \infty)$ such that

$$\mathcal{M}(fgx, gfx, t) \ge_L \mathcal{M}(fx, gx, \psi(t))$$

for each x in X and t > 0.

Weak commutativity implies ψ -weak commutativity in \mathcal{L} -fuzzy metric spaces. However, ψ -weak commutativity implies weak commutativity only when $\psi(t) \geq t$.

Example 2.3. Let $X = \mathbf{R}$. Let $\mathcal{T}(a,b) = (a_1b_1,\min(a_2+b_2,1))$ for all $a = (a_1,a_2), b = (b_1,b_2) \in L^*$ and let $\mathcal{M}_{M,N}$ be the intuitionistic fuzzy set on $X \times X \times [0,+\infty[$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = \left((\exp(\frac{|x-y|}{t}))^{-1}, \frac{\exp(\frac{|x-y|}{t}) - 1}{\exp(\frac{|x-y|}{t})} \right),$$

for all $t \in \mathbf{R}^+$. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space. Define f(x) = 2x - 1 and $g(x) = x^2$. Then

$$\mathcal{M}_{M,N}(fgx,gfx,t) = \left((\exp(2\frac{|x-1|^2}{t}))^{-1}, \frac{\exp(2\frac{|x-1|^2}{t}) - 1}{\exp(2\frac{|x-1|^2}{t})} \right)$$
$$= \left((\exp(\frac{|x-1|^2}{t/2}))^{-1}, \frac{\exp(\frac{|x-1|^2}{t/2}) - 1}{\exp(\frac{|x-1|^2}{t/2})} \right) = \mathcal{M}_{M,N}(fx,gx,t/2)$$
$$<_{L^*} \left((\exp(\frac{|x-1|^2}{t}))^{-1}, \frac{\exp(\frac{|x-1|^2}{t}) - 1}{\exp(\frac{|x-1|^2}{t})} \right) = \mathcal{M}_{M,N}(fx,gx,t)$$

Therefore, for $\psi(t) = t/2$, f and g are ψ -weakly commuting. But f and g are not weakly commuting since the exponential function is strictly increasing.

Theorem 2.4. Let $(X, \mathcal{M}, \mathcal{T})$ be a left complete \mathcal{L} -fuzzy metric space and let f and g be ψ -weakly commuting self-mappings of X satisfying the following conditions:

(a) $f(X) \subseteq g(X)$;

(b) Either f or g is continuous;

(c) $\mathcal{M}(fx, fy, t) \geq_L \mathcal{C}(\mathcal{M}(gx, gy, t))$, where $\mathcal{C} : L \longrightarrow L$ is a continuous function such that $\mathcal{C}(a) >_L a$ for each $a \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$. Then f and g have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. By (a), choose a point x_1 in X such that $fx_0 = gx_1$. In general choose x_{n+1} such that $fx_n = gx_{n+1}$. Then for t > 0,

$$\mathcal{M}(fx_n, fx_{n+1}, t) \geq_L \mathcal{C}(\mathcal{M}(gx_n, gx_{n+1}, t)) = \mathcal{C}(\mathcal{M}(fx_{n-1}, fx_n, t))$$
$$>_L \mathcal{M}(fx_{n-1}, fx_n, t)$$

Thus $\{\mathcal{M}(fx_n, fx_{n+1}, t); n \ge 0\}$ is an increasing sequence in L and therefore, tends to a limit $a \le_L 1_{\mathcal{L}}$. We claim that $a = 1_{\mathcal{L}}$. For if $a <_L 1_{\mathcal{L}}$, when $n \longrightarrow \infty$ in the

50

A Common Fixed Point Theorem for ψ -weakly Commuting Maps in \mathcal{L} -Fuzzy Metric Spaces 51

above inequality we get $a \geq_L C(a) >_L a$, a contradiction. Hence $a = 1_{\mathcal{L}}$, i.e.,

$$\lim_{n} \mathcal{M}(fx_n, fx_{n+1}, t) = 1_{\mathcal{L}}.$$

If we define

(2.1)
$$c_n(t) = \mathcal{M}(fx_n, fx_{n+1}, t)$$

then $\lim_{n\to\infty} c_n(t) = 1_{\mathcal{L}}$. Now, we prove that $\{fx_n\}$ is a Cauchy sequence in f(X). Suppose that $\{fx_n\}$ is not a Cauchy sequence in f(X). For convenience, let $y_n = fx_n$ for $n = 1, 2, 3, \cdots$. Then there is an $\epsilon \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that for each integer k, there exist integers m(k) and n(k) with $m(k) > n(k) \ge k$ such that

(2.2)
$$d_k(t) = \mathcal{M}(y_{n(k)}, y_{m(k)}, t) \le \mathcal{N}(\epsilon) \text{ for } k = 1, 2, \cdots.$$

We may assume that

(2.3)
$$\mathcal{M}(y_{n(k)}, y_{m(k)-1}, t) > \mathcal{N}(\epsilon),$$

by choosing m(k) to be the smallest number exceeding n(k) for which (2.2) holds. Using (2.1), we have (2.4)

 $\mathcal{N}(\epsilon) \ge d_k(t) \ge \mathcal{T}(\mathcal{M}(y_{n(k)}, y_{m(k)-1}, t/2), \mathcal{M}(y_{m(k)-1}, y_{m(k)}, t/2)) \ge \mathcal{T}(c_k(t/2), \mathcal{N}(\epsilon))$ Hence, $d_k(t) \longrightarrow \mathcal{N}(\epsilon)$ for every t > 0 as $k \longrightarrow \infty$.

We note that

 $d_k(t) = \mathcal{M}(y_{n(k)}, y_{m(k)}, t)$ $\geq \mathcal{T}^2(\mathcal{M}(y_{n(k)}, y_{n(k)+1}, t/3), \mathcal{M}(y_{n(k)+1}, y_{m(k)+1}, t/3), \mathcal{M}(y_{m(k)+1}, y_{m(k)}, t/3))$

- $\geq \mathcal{T}^2(c_k(t/3), \mathcal{C}(\mathcal{M}(y_{n(k)}, y_{m(k)}, t/3)), c_k(t/3))$
- $= \mathcal{T}^2(c_k(t/3), \mathcal{C}(d_k(t/3)), c_k(t/3)).$

Thus, as $k \longrightarrow \infty$ in the above inequality we have

 $\mathcal{N}(\epsilon) \geq \mathcal{C}(\mathcal{N}(\epsilon)) > \mathcal{N}(\epsilon)$

which is a contradiction. Thus, $\{fx_n\}_n$ is Cauchy and by the completeness of X, $\{fx_n\}_n$ converges to z in X. Also $\{gx_n\}_n$ converges to z in X. Let us suppose that the mapping f is continuous. Then $\lim_n ffx_n = fz$ and $\lim_n fgx_n = fz$. Further we have since f and g are ψ -weakly commuting

$$\mathcal{M}(fgx_n, gfx_n, t) \ge_L \mathcal{M}(fx_n, gx_n, \psi(t)).$$

On letting $n \to \infty$ in the above inequality we get $\lim_n gfx_n = fz$, by Lemma 1.13. We now prove that z = fz. Suppose $z \neq fz$ then $\mathcal{M}(z, fz, t) <_L 1_{\mathcal{L}}$. By (c)

$$\mathcal{M}(fx_n, ffx_n, t) \ge_L \mathcal{C}(\mathcal{M}(gx_n, gfx_n, t))$$

Letting $n \to \infty$ in the above inequality we get

$$\mathcal{M}(z, fz, t) \geq_L \mathcal{C}(\mathcal{M}(z, fz, t)) >_L \mathcal{M}(z, fz, t),$$

a contradiction. Therefore, z = fz. Since $f(X) \subseteq g(X)$ we can find z_1 in X such that $z = fz = gz_1$. Now,

$$\mathcal{M}(ffx_n, fz_1, t) \ge_L \mathcal{C}(\mathcal{M}(gfx_n, gz_1, t)).$$

Taking limits as $n \to \infty$ we get

 $\mathcal{M}(fz, fz_1, t) \ge_L \mathcal{C}(\mathcal{M}(fz, gz_1, t)) = 1_{\mathcal{L}}$

52

R. Saadati, S. Sedghi and H. Zhou

. Since $C(1_{\mathcal{L}}) = 1_{\mathcal{L}}$, this implies that $fz = fz_1$, i.e., $z = fz = fz_1 = gz_1$. Also for any t > 0,

$$\mathcal{M}(fz, gz, t) = \mathcal{M}(fgz_1, gfz_1, t) \ge_L \mathcal{M}(fz_1, gz_1, \psi(t)) = 1_{\mathcal{L}}$$

which again implies that fz = gz. Thus z is a common fixed point of f and g.

Now, to prove uniqueness suppose $z' \neq z$ is another common fixed point of f and g. Then there exists t > 0 such that $\mathcal{M}(z, z', t) <_L 1_{\mathcal{L}}$, and

$$\mathcal{M}(z, z', t) = \mathcal{M}(fz, fz', t) \ge_L \mathcal{C}(\mathcal{M}(gz, gz', t)) = \mathcal{C}(\mathcal{M}(z, z', t))$$
$$>_L \quad \mathcal{M}(z, z', t)$$

which is contradiction. Therefore, z = z', i.e., z is a unique common fixed point of f and g.

Example 2.5. Consider Example 1.8 in which X = [0, 1]. Define f(x) = 1 and

$$g(x) = \begin{cases} 1, & \text{if } x \text{ is rational,} \\ 0, & \text{if } x \text{ is irrational,} \end{cases}$$

on X. It is evident that $f(X) \subseteq g(X)$, f is continuous and g is discontinuous. Define $\mathcal{C}: L^* \to L^*$ by $\mathcal{C}(a) = (\sqrt{a_1}, a_2^2)$, then

$$\mathcal{C}(a) = (\sqrt{a_1}, a_2^2) >_{L^*} (a_1, a_2) = a$$

for $0 < a_i < 1, i = 1, 2$ and

$$\mathcal{M}(fx, fy, t) \ge_{L^*} \mathcal{C}(\mathcal{M}(gx, gy, t))$$

for all x, y in X, f and g are ψ -weakly commuting. Thus all the conditions of last theorem are satisfied and 1 is a common fixed point of f and g.

Acknowledgements. The authors would like to thank the referees for their useful comments and suggestions.

References

- H. Adibi, Y. J. Cho, D. O'Regan and R. Saadati, Common fixed point theorems in *L*-fuzzy metric spaces, Appl. Math. Comput., 182 (2006), 820-828.
- [2] A. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [3] S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang, Coincidence point and minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 88 (1997), 119-128.
- [4] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems, 93 (1998), 99-111.
- [5] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
- [6] G. Deschrijver and E. E Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 33 (2003), 227-235.
- [7] Z. K. Deng, Fuzzy pseduo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74-95.
- [8] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205-230.
- [9] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
- [10] J. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl., 18 (1967), 145-174.
- [11] V. Gregori and A. Sapena, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252.

A Common Fixed Point Theorem for ψ -weakly Commuting Maps in \mathcal{L} -Fuzzy Metric Spaces 53

- [12] O. Hadžić and E. Pap, Fixed point theory in PM spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [13] O. Hadžić and E. Pap, New classes of probabilistic contractions and applications to random operators, in: Y. J. Cho, J. K. Kim and S. M. Kong (Eds.), Fixed point theory and application, Nova Science Publishers, Hauppauge, NewYork, 4 (2003), 97-119.
- [14] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
- [15] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
- [16] D. Miheot, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2004), 431-439.
- [17] S. B. Hosseini, D. O'Regan and R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Systems, 4 (2007), 53-64.
- [18] E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl., 202 (1996), 433-449.
- [19] A. Razani and M. Shirdaryazdi, Some results on fixed points in the fuzzy metric space, J. Appl. Math. and Computing, 20 (2006), 401-408.
- [20] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273-283.
- [21] R. Saadati, Notes to the paper "Fixed points in intuitionistic fuzzy metric spaces" and its generalization to \mathcal{L} -fuzzy metric spaces, Chaos, Solitons and Fractals, **35**(2008), 176-180.
- [22] R. Saadati, A. Razani and H. Adibi, A Common fixed point theorem in *L*-fuzzy metric spaces, Chaos, Solitons and Fractals, **33** (2007), 358-363.
- [23] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
- [24] R. Saadati and J. H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1(2) (2006), 86-90.
- [25] S. Sessa and B. Fisher, On common fixed points of weakly commuting mappings and set valued mappings, Internat. J. Math. Math. Sci., 9(2) (1986), 323-329.
- [26] L. A. Zadeh, *Fuzzy sets*, Inform. and control, 8 (1965), 338-353.

R. SAADATI^{*}, FACULTY OF SCIENCES, UNIVERSITY OF SHOMAL, AMOL, P.O. BOX 731, IRAN *E-mail address*: rsaadati@eml.cc

S. Sedghi, Department of Mathematics, Islamic Azad University-Ghaemshahr Branch, Ghaemshar, P.O. Box 163, Iran

H. ZHOU, DEPARTMENT OF MATHEMATICS, SHIJIAZHUANG MECHNICAL ENGINEERING UNIVERSITY, SHIJIAZHUANG 050003, PEOPLE'S REPUBLIC OF CHINA

*Corresponding Author