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FUZZY IDEALS AND FUZZY LIMIT STRUCTURES

Y. YUE AND J. FANG

Abstract. In this paper, we establish the theory of fuzzy ideal convergence on

completely distributive lattices and give characterizations of some topological

notions. We also study fuzzy limit structures and discuss the relationship
between fuzzy co-topologies and fuzzy limit structures.

1. Introduction

Since Chang [2] introduced fuzzy set theory to topology, many researchers have
tried successfully to generalize the theory of general topology to a fuzzy setting
using crisp methods. The fundamental idea of a topology itself being fuzzy, first
appeared in 1980 in [4] and again in 1991 in [15], in which a topology was an L-
subset of a traditional powerset. This was followed by L-subsets of LX in 1985 in
the independent and parallel generalizations of Kubiak [7] and Šostak [11]. In [16],
we studied topological molecular lattices in the Kubiak-Šostak sense ; we called
these lattices fuzzy topological molecular lattices (FTML) and established fuzzy
remote neighborhood systems.

In posets, the concepts of filter and ideal are dual to each other, and both these
concepts are very useful when studying problems concerning ordered structures.
Since an FTML is, in fact, an ordered structure, it is natural to use these two tools
to study its properties. It is well known that the convergence of ideal (or filter) is
an very important part in fuzzy topology. One aim of this paper is to establish the
convergence theory of fuzzy ideals in FTML.

In addition, limit structures provide a good tool for interpreting topological
structure and play an important role in fuzzy topology. In the framework of L-
topology, K. C. Min [6] introduced fuzzy limit spaces using prefilters and in the
framework of fuzzifying topology, Xu [13] introduced fuzzifying topological limit
structures and characterized fuzzifying topologies by filter convergence structures.
Yang [14] studied ideals on completely distributive lattices and Li [8] established
limit structures on completely distributive lattices using the usual ideals. Another
purpose of this paper is to study fuzzy limit structures using fuzzy ideals in the
framework of FTML.

This paper is organized as follows: In section 2, the concept of a fuzzy ideal and
its properties are introduced. In section 3, we study convergence of fuzzy ideals
and give characterizations of some topological notions. In section 4, we discuss
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relations between fuzzy co-topologies and fuzzy limit structures and find that we
can use fuzzy limit structures to interpret fuzzy co-topology. In section 5, we prove,
from a categorical point of view, that FLimML is a topological category over CDop

and FTML is a bireflective full subcategory of FlimML.

2. Preliminaries

Let a, b be elements in a complete lattice L. An element a ∈ L is said to be
coprime if a ≤ b ∨ c implies that a ≤ b or a ≤ c. The set of all coprimes of L is
denoted by M(L). Let e|a denote the set {b ∈ L|e 6≤ b, b ≥ a} and β∗(e) denote
the standard minimal set of e for e ∈ M(L). For basic results about completely
distributive lattices we refer to [3, 9].

Definition 2.1. [12] Let L1 and L2 be two complete lattices. A map f : L1 → L2

is called a generalized order-homomorphism, or briefly, a GOH, if
(1) f(a) = 0 if and only if a = 0;
(2) f is union-preserving;
(3) f` is union-preserving, where f`(b) =

∨
{a ∈ L1|f(a) ≤ b} for all b ∈ L2.

Definition 2.2. [7, 11, 16] Let L be a completely distributive lattice. A fuzzy co-
topology is a map η : L → [0, 1] such that-
(FCT1) η(1) = η(0) = 1;
(FCT2) η(u ∨ v) ≥ η(u) ∧ η(v) for all u, v ∈ L;
(FCT3) η(

∧
j∈J

uj) ≥
∧

j∈J

η(uj) for every family {uj |j ∈ J} ⊆ L.

If η is a fuzzy co-topology, then we say that (L, η) is a fuzzy topological molecular
lattice (FTML, for short). The value η(u) can be interpreted as the degree of
closeness of u ∈ L. A continuous map between two FTMLs (L1, η) and (L2, δ)
is a GOH f : L1 → L2 such that η(f`(u)) ≥ δ(u) for all u ∈ L2. The category
of FTMLs and their continuous GOHs is called the Kubiak-Šostak extension of
Wang’s TML, denoted by FTML.

Definition 2.3. [16] A fuzzy remote neighborhood system is a set R = {Re|e ∈
M(L)} of maps Re : L → [0, 1] such that:
(FRN1) Re(1) = 0, Re(0) = 1;
(FRN2) Re(u) > 0 ⇒ e 6≤ u;
(FRN3) Re(u ∨ v) = Re(u) ∧Re(v);
(FRN4) Re(u) =

∨
v∈e|u

∧
a6≤v

Ra(v).

The pair (L, R) is called a fuzzy remote neighborhood space (TFRNS, for short).
A continuous map between fuzzy remote neighborhood spaces (L1, R) and (L2, S) is
a GOH f : L1 → L2 such that Sf(e)(u) ≤ Re(f`(u)) for all e ∈ M(L1) and u ∈ L2.
The category of TFRNSs and their continuous GOHs is denoted by TFRNS.

Suppose η : L → [0, 1] is a fuzzy co-topology. Let Rη
e : L → [0, 1] be defined as

follows:

Rη
e(u) =

{ ∨
v∈e|u η(v), e 6≤ u,

0, e ≤ u.
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Then we have the following lemmas.

Lemma 2.4. [16] (1) Rη = {Rη
e |e ∈ M(L)} is a fuzzy remote neighborhood system.

(2) η(u) =
∧

e 6≤u Rη
e(u), for all u ∈ L.

Lemma 2.5. [16] A GOH f : (L1, η1) → (L2, η2) is continuous if and only if
f : (L1, R

η1) → (L2, R
η2) is continuous.

In the following discussion, the superscript η of Rη
e is usually omitted if no

confusion arises.

3. Fuzzy Ideals

In this section, we define the concept of a fuzzy ideal and discuss its properties.

Definition 3.1. A map I : L → [0, 1] is called a fuzzy ideal on L if I satisfies the
following conditions:
(FID1) I(1) = 0 and I(0) = 1;
(FID2) I(u ∨ v) = I(u) ∧ I(v).

Remark 3.2. If we replace [0, 1] with {0, 1} in the above definition, then a fuzzy
ideal is just the usual real ideal.

Remark 3.3. Let (L, η) be an FTML. Then Re is a fuzzy ideal on L. If e ∈ M(L),
then ê : L → [0, 1] is a fuzzy ideal on L, where

ê(u) =
{

1, e 6≤ u,
0, e ≤ u.

Obviously, Re ≤ ê for all e ∈ M(L).

Definition 3.4. Suppose a map B : L → [0, 1] satisfies the following conditions:
(FIB1) B(1) = 0 and

∨
v∈L B(v) = 1; (FIB2) B(u ∨ v) ≥ B(u) ∧ B(v)

then B is called a fuzzy ideal base on L.

Lemma 3.5. Let B be a fuzzy ideal base on L and define IB : L → [0, 1] as follows:
IB(u) =

∨
v≥u B(v). Then IB is a fuzzy ideal on L.

Proof. (FID1) is trivial and IB(u∨v) ≤ IB(u)∧IB(v) is obvious from the definition
of IB. In order to prove (FID2), it suffices to show that IB(u∨ v) ≥ IB(u)∧IB(v).
Let r < IB(u) ∧ IB(v). Clearly, r < IB(u) and r < IB(v). Then there exists
a ∈ L such that a ≥ u and r ≤ B(a). Similarly, there is some b ∈ L such that
b ≥ v and r ≤ B(b). Hence a ∨ b ≥ u ∨ v and r ≤ B(a) ∧ B(b) ≤ B(a ∨ b).
Therefore, r ≤

∨
d≥u∨v B(d) = IB(u ∨ v). From the arbitrariness of r, we have

IB(u ∨ v) ≥ IB(u) ∧ IB(v). �

Lemma 3.6. Let I be a fuzzy ideal on L and define I[t] = {u|I(u) ≥ t} for
t ∈ [0, 1], It = {u|I(u) > t} for t ∈ [0, 1). Then we have:
(1) I[t] and It are usual real ideals;
(2) I[t] =

∧
s<t I[s] =

∧
s<t Is and It =

∨
s>t I[s] =

∨
s>t Is;

(3) I =
∨

t∈[0,1](t ∧ I[t]), I =
∨

t∈[0,1)(t ∧ It).
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Lemma 3.7. Let f : L → L1 be a GOH and I be a fuzzy ideal on L. Define
f [I] : L1 → [0, 1] by f [I](u) =

∨
f`(u)≤v I(v) = I(f`(u)). Then f [I] is a fuzzy

ideal on L1.

Lemma 3.8. Let Fidl(L) denote all fuzzy ideals on L. If 1 ∈ M(L), then Fidl(L)
is a complete lattice.

Proof. It is easy to check that
∧

t∈T It defined by (
∧

t∈T It)(u) =
∧

t∈T (It(u)) is
just the infimum of {It}t∈T and it is routine to verify that

∨
t∈T It defined by∨

t∈T

It(u) =
∨
{∧i=n

i=1Iti(ui) | u = ∨i=n
i=1ui, 1 ≤ i ≤ n, ui ∈ L n ∈ N }

is the supremum of {It}t∈T . �

As the following example shows, if 1 6∈ M(L), then Fidl(L) is not necessarily a
complete lattice.

Example 3.9. Let L be the diamond lattice, i.e., L = {0, a, b, 1} with a ∨ b = 1
and a ∧ b = 0. Then we have 1 6∈ M(L). Define I1 : L → [0, 1] and I2 : L → [0, 1]
as follows:

I1(u) =
{

1, u = {0, a}
0, u ∈ {b, 1},

and

I2(u) =
{

1, u = {0, b},
0, u ∈ {a, 1},

Then it is easy to verify that I1 and I2 are two fuzzy ideals on L, and there is no
fuzzy ideal on L bigger than both I1 and I2.

Definition 3.10. Let I be a fuzzy ideal on L. If there is no other fuzzy ideal L
bigger than I, then I is called a maximal fuzzy ideal.

By Definition 3.10, both I1 and I2 in Example 3.9 are maximal fuzzy ideals.

4. Convergence of Fuzzy Ideals and its Applications

The purpose of this section is to introduce the convergence theory of fuzzy ideals
and discuss its applications.

Definition 4.1. Let (L, η) be an FTML and I be a fuzzy ideal on L. If Re ≤ I,
then we say that e is a limit point of I (or I converges to e): in symbols, I → e.
If

∨
A∨P=1(Re(A) ∧ I(P )) = 0, then we say that e is a cluster point of I or I

accumulates to e (briefly I∞e). We denote the union of all limit points of I by
limI and the union of all cluster points by adI.

Remark 4.2. From the above definition, we have Re → e. If 1 ∈ M(L), then I∞e
for all I ∈ Fidl(L) and e ∈ M(L), i.e., adI = 1 for all I ∈ Fidl(L).
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Theorem 4.3. The following statements are true:
(1) I → e ⇔ e ≤ limI;
(2) I∞e ⇔ e ≤ adI;
(3) If e ≥ u, then I → e(resp. I∞e) =⇒ I → u(resp. I∞u); (4) If I1 ≤ I2, then
limI1 ≤ limI2 and adI2 ≤ adI1;
(5) I → e =⇒ I∞e.

Proof. We only prove (1) and (5), the others are trivial and omitted.
(1) I → e =⇒ e ≤ limI is obvious. Let e ≤ limI and λ < Re(u) =∨

v∈e|u
∧

a6≤v Ra(v). Then there exists v ∈ L such that e 6≤ v ≥ u and λ ≤∧
a6≤v Ra(v). Since e 6≤ v and e =

∨
β∗(e), there exists r ∈ β∗(e) such that

r 6≤ v ≥ u. Hence λ ≤ Rr(v) ≤ Rr(u). Furthermore, by r ∈ β∗(e) and e ≤ limI,
there is some µ ∈ M(L) such that I → µ and r ≤ µ. Thus Rr ≤ Rµ ≤ I. Therefore,
λ ≤ I(u), as desired.

(5) Let I → e, i.e., Re ≤ I. Then we have∨
A∨P=1

(Re(A) ∧ I(P )) ≤
∨

A∨P=1

(I(A) ∧ I(P ))

=
∨

A∨P=1

I(A ∨ P )

= I(1) = 0,

i.e., I∞e. �

Theorem 4.4. For any I ∈ Fidl(L), e ≤ adI if and only if there exists I∗ ∈
Fidl(L) such that I ≤ I∗ and I∗ → e.

Proof. Let e ≤ adI. From Theorem 4.3 (2), we have I∞e, i.e.,
∨

A∨P=1(Re(A) ∧
I(P )) = 0. Define I∗ : L → [0, 1] as follows:

∀u ∈ L, I∗(u) =
∨
{Re(u1) ∧ I(u2) | u = u1 ∨ u2}.

Then we have I∗ ∈ Fidl(L), Re ≤ I∗ and I ≤ I∗. Hence I∗ → e.
Conversely, if there exists I∗ ∈ Fidl(L) such that I ≤ I∗ and I∗ → e, then we

have e ≤ limI∗ ≤ adI∗ ≤ adI from (2), (4) and (5) of Theorem 4.3. �

Theorem 4.5. If I is a maximal fuzzy ideal on L, then adI = limI.

Proof. We need to prove adI ≤ limI. Let e ≤ adI. From Theorem 4.4, we know
that there exists I∗ ∈ Fidl(L) such that I ≤ I∗ and I∗ → e. Since I is a maximal
fuzzy ideal, we have I = I∗. Hence I → e, i.e., e ≤ limI, as desired. �

From Theorem 4.4 and Theorem 4.5, we have the following Corollary.

Corollary 4.6. For an FTML (L, η), the following conditions are equivalent:
(1) Every fuzzy ideal has cluster points;
(2) Every maximal fuzzy ideal has limit points.

Definition 4.7. Let e ∈ M(L) and a ∈ L. If Re(a) = 0, then e is called an
adherence point of a.
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It is easy to verify the following theorem.

Theorem 4.8. e is an adherence point of a if and only if there exists a fuzzy ideal
I such that I(a) = 0 and I → e.

Definition 4.9. An FTML (L, η) is called T2 if ∀a, b ∈ M(L) with a∧ b = 0(a and
b are disjoint) implies

∨
P∨Q=1(Ra(P ) ∧Rb(Q)) > 0.

Theorem 4.10. (L, η) is T2 if and only if for each fuzzy ideal I on L, limI contains
no disjoint points.

Proof. Assume that limI contains two disjoint points a and b, i.e., I → a, I → b
and a ∧ b = 0. Hence∨

P∨Q=1

(Ra(P ) ∧Rb(Q)) ≤
∨

P∨Q=1

(I(P ) ∧ I(Q)) =
∨

P∨Q=1

I(P ∨Q) = 0

This is in contradiction to
∨

P∨Q=1(Ra(P ) ∧Rb(Q)) > 0.
Conversely, suppose that there exist a ∈ M(L) and b ∈ M(L) with a∧b = 0 such

that
∨

P∨Q=1(Ra(P ) ∧ Rb(Q)) = 0. Then Rb∞a. From Theorem 4.4, there exists
I∗ ∈ Fidl(L) such that Rb ≤ I∗ and I∗ → a. Hence I∗ → a and I∗ → b. Therefore,
limI∗ contains two disjoint points. This contradicts the given condition. �

Theorem 4.11. A GOH f : (L, η) → (L1, η1) is continuous if and only if f [I] →
f(e) when I → e (or f(limI) ≤ limf [I]).

Proof. Let I → e. Then Re ≤ I. Hence Re(f`(u)) ≤ I(f`(u)) = f [I](u).
Since f : (L, η) → (L1, η1) is continuous, we have Rf(e)(u) ≤ Re(f`(u)). Thus
Rf(e)(u) ≤ f [I](u). Therefore, f [I] → f(e).

Conversely, we want to prove Rf(e)(u) ≤ Re(f`(u)). By Re → e, we have
f [Re] → f(e). In other words, Rf(e)(u) ≤ f [Re](u) = Re(f`(u)).

5. Fuzzy Limit Structures

In this section, we mainly study fuzzy limit structures using fuzzy ideals and
discuss the relationship between fuzzy limit structures and fuzzy co-topologies.

Definition 5.1. A fuzzy limit structure on L is a subset FLimS of Fidl(L)×M(L)
satisfying the following conditions:
(L1) (ê, e) ∈ FLimS for all e ∈ M(L);
(L2) If a ≤ b and (I, b) ∈ FLimS, then (I, a) ∈ FLimS;
(L3) If I1 ⊆ I2 and (I1, e) ∈ FLimS, then (I2, e) ∈ FLimS;
(L4) If (I1, e) ∈ FLimS and (I2, e) ∈ FLimS, then (I1 ∧ I2, e) ∈ FLimS.

The pair (L,FLimS) is called a fuzzy limit molecular lattice. For two limit
molecular lattices (L,FLimSL) and (N,FLimSN ), a GOH f : (L,FLimSL) →
(N,FLimSN ) is called limit continuous if (I, e) ∈ FLimSL always implies that
(f [I], f(e)) ∈ FLimSN . Let FLimML denote the category of fuzzy limit molecular
lattices and limit continuous GOHs.
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Lemma 5.2. Let (L, η) be an FTML and FLimSη = {(I, e)|I → e}. Then
FLimSη is a fuzzy limit structure.

Lemma 5.3. Let (L,FLimS) be a fuzzy limit molecular lattice and ηFLimS : L →
[0, 1] be defined by

ηFLimS(a) =
∧
e 6≤a

∧
(I,e)∈FLimS

I(a).

Then ηFLimS is a fuzzy co-topology on L.

Proof. (FCT1) is obvious from the definition of ηFLimS . Now we prove (FCT2)
and (FCT3)

(FCT2): Let λ ≤ ηFLimS(a)∧ηFLimS(b), i.e., λ ≤ ηFLimS(a) and λ ≤ ηFLimS(b).
For each e ∈ M(L) with e 6≤ a ∨ b and for each I ∈ Fidl(L) with (I, e) ∈ FLimS,
we have e 6≤ a and e 6≤ b. Hence λ ≤ I(a) and λ ≤ I(b). Thus λ ≤ I(a) ∧ I(b) =
I(a ∨ b), as desired.

(FCT3): Let λ ≤
∧

t∈T ηFLimS(at). Then λ ≤ ηFLimS(at) for all t ∈ T . Let
e ∈ M(L) and I ∈ Fidl(L) be such that e 6≤

∧
t∈T at and (I, e) ∈ FLimS. Then

there exists t0 ∈ T such that e 6≤ at0 . Hence λ ≤ I(at0) ≤ I(
∧

t∈T at) and FCT3
follows. �

From the above two lemmas we may conclude that we can construct a fuzzy
limit structure FLimSη from a fuzzy co-topology η as well as a fuzzy co-topology
ηFLimS from a given fuzzy limit structure FLimS. In what follows, we study their
relationship.

Theorem 5.4. Let (L, η) be an FTML. Then ηFLimSη

= η.

Proof. From the definition of ηFLimSη

and Lemma 2.4, we have the following com-
putation:

ηFLimSη

(a) =
∧
e 6≤a

∧
(I,e)∈FLimSη

I(a)

=
∧
e 6≤a

Rη
e(a)

= η(a).

This is to say that ηFLimSη

= η. �

Theorem 5.5. Let (L,FLimS) be a fuzzy limit molecular lattice. Then FLimS ⊆
FLimSηF LimS

.
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Proof. Let (I, e) ∈ FLimS. We want to Prove that (I, e) ∈ FLimSηF LimS

. It
suffices to Show that RηF LimS

e ≤ I. In fact, we have

RηF LimS

e (u) =
∨

v∈e|u

ηFLimS(v)

=
∨

v∈e|u

∧
a6≤v

∧
(I∗,a)∈FLimS

I∗(v)

≤
∨

v∈e|u

I(v)

= I(u).

�

Definition 5.6. Let (L,FLimS) be a fuzzy limit molecular lattice. FLimS is
said to be topological generated if there exists a fuzzy co-topology η such that
FLimS = FLimSη.

Remark 5.7. If FLimS is topological generated, then FLimSηF LimS

= FLimS
according to Theorem 5.4.

Theorem 5.8. f : (L1, η1) → (L2, η2) is continuous if and only if f : (L1, FLimSη1)
→ (L2, FLimSη2) is limit continuous.

Proof. In fact, this theorem is just Theorem 4.11. �

Theorem 5.9. If f : (L1, FLimS1) → (L2, FLimS2) is limit continuous, then
f : (L1, η

FLimS1) → (L2, η
FLimS2) is continuous.

Proof. We need to show that ηFLimS2(u) ≤ ηFLimS1(f`(u)) for all u ∈ L2. Since f :
(L1, FLimS1) → (L2, FLimS2) is limit continuous, we have (f [I], f(e)) ∈ FLimS2

whenever (I, e) ∈ FLimS1. Therefore,

ηFLimS2(u) =
∧

w 6≤u

∧
(I1,w)∈FLimS2

I1(u)

≤
∧

f(e) 6≤u

∧
(f [I],f(e))∈FLimS2

f [I](u)

≤
∧

e 6≤f`(u)

∧
(I,e)∈FLimS1

I(f`(u))

= ηFLimS1(f`(u)),

as desired. �

6. Category of FLimML

Let CD denote the category of completely distributive lattices with complete
lattice morphisms as morphisms. We know that the category of completely dis-
tributive lattices with GOHs as its morphisms is the dual category of CD. For
definitions and preliminaries of category theory, please refer to [1, 5, 10].
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Theorem 6.1. FLimML is a topological category over CDop.

Proof. We only prove that it fulfills the initial lift property. Let {fj : N →
(Lj , FLimSj)}j∈J (fj is GOH for all j ∈ J) be a source in LimML and let
FLimS ⊆ Fidl(N)×M(N) be defined by

(I, e) ∈ FLimS if and only if (fj [I], fj(e)) ∈ FLimSj for all j ∈ J

Then it is routine to show that FLimSN is the unique FLimML-structure on N
which is initial with respect to the source {fj : N → (Lj , FLimSj)}j∈J . �

Let TFLimML denote the category of all topological fuzzy limit molecular
lattices and their limit continuous maps. It is easy to verify that TFLimML is a
full subcategory of FLimML. Moreover, we have the following theorem.

Theorem 6.2. TFLimML is a bireflective full subcategory of FLimML.

Proof. Assume that (L,FLimS) is an FLimML. We assert that its TFlimML-
reflection is defined by idL : (L,FLimS) → (L,FLimSηF LimS

). This can be proved
as follows:

(1) It is obvious that (L,FLimSηF LimS

) is TFlimML. (2) It is trivial by Theorem
5.5 that idL : (L,FLimS) → (L, FLimSηF LimS

) is limit continuous.
(3) We now prove that for each TFLimML (N,FLimS∗) and each GOH f :

L → N , the continuity of f : (L,FLimS) → (N,FLimS∗) implies the continuity
of f : (L,FLimSηF LimS

) → (N,FLimS∗). In fact, from Theorem 5.9, we have
f : (L, ηFLimS) → (N, ηFLimS∗) is continuous if f : (L, FLimS) → (N,FLimS∗)
is limit continuous. Hence f : (L,FLimSηF LimS

) → (N,FLimSηF LimS∗

) is limit
continuous from Theorem 4.8, i.e., f : (L,FLimSηF LimS

) → (N,FLimS∗) is limit
continuous on account of Remark 5.7. �

The following theorem follows from Theorems 5.4, 5.8, 5.9 and Remark 5.7.
theorem.

Theorem 6.3. TFLimML is isomorphic to FTML.

Corollary 6.4. FTML is a bireflective full subcategory of FlimML.

Question 6.5. In Theorem 6.1, It is shown that FLimML is a topological cat-
egory over CDop. Is FLimML M-topological, Monotopological or topologically
algebraic?
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