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ABSTRACT. This paper considers the generation of some interpretable fuzzy rules 
for assigning an amino acid sequence into the appropriate protein superfamily. 
Since the main objective of this classifier is the interpretability of rules, we have 
used the distribution of amino acids in the sequences of proteins as features. 
These features are the occurrence probabilities of six exchange groups in the 
sequences. To generate the fuzzy rules, we have used some modified versions of 
a common approach. The generated rules are simple and understandable, 
especially for biologists. To evaluate our fuzzy classifiers, we have used four 
protein superfamilies from UniProt database. Experimental results show the 
comprehensibility of generated fuzzy rules with comparable classification 
accuracy.  

 
1. Introduction 

Bioinformatics[4]is basically conceptualizing biology in terms of macromolecules 
and applying informatics techniques to understand and organize the information 
associated with these molecules. It deals primarily with the application of computer 
and statistical techniques to the management of biological information. Because            
of the Human Genome Project and other similar efforts, a large number of 
biological data are regularly collected. It is important to organize and annotate             
this massive amount of sequential data to maximize its utility. In this regard, DNA 
sequences are translated into protein sequences using standard bioinformatics           
tools. Among these is protein sequence classification, which determines the type            
or group of proteins to which an unknown protein sequence belongs. One                               
of the benefits from this type of category grouping is that molecular analysis can            
be carried out within a particular superfamily instead of an individual protein 
sequence. A protein superfamily consists of protein sequence members that are 
evolutionally related and therefore functionally and structurally relevant to each 
other. 

Several approaches dealing with the protein classification problem have been 
proposed in the past. These include alignment of protein sequences [2], hidden 
Markov modeling [14], application of artificial neural networks [23, 24, 25], using 
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support vector machines [12, 13] and extreme learning machines [22]. In addition to 
these are approaches based on principal component analysis [6] and a combination 
of fuzzy clustering with nearest neighbor classifiers [3]. Though all these methods 
have high classification accuracy, they suffer from an important limitation from the 
point of view of biologists; The classifiers cannot not be easily interpreted and the 
results are often in a black box. 

A fuzzy rule-based classification system is a special case of fuzzy modeling where 
the output of the system is crisp. The main advantage of this classifier is                        
the interpretability of the model and its greater comprehensibility [17]. We have 
designed a fuzzy rule-based system for classification of protein sequences to                
make the best use of this advantage. Using the distribution of amino acids in each 
protein sequence in a set of training examples, our approach generates fuzzy 
classification rules which are simple and easily comprehensible, especially for 
biologists who can utilize them for classifying new proteins in more readable 
manner.  

The subsequent sections are organized as follows. Section 2, deals with the 
extraction of features from protein sequences. Section 3 describes our approach for 
designing fuzzy rule-based classifiers from data. In section 4, experimental results on 
some real-world protein sequences are presented. Section 5 concludes the paper. 

 
2. Extraction of Features from Protein Sequences 

A protein sequence contains characters from the 20-letter amino acid alphabet Σ 
= {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. An important            
issue in applying any algorithm to protein sequence classification is the encoding of 
the protein sequences. For this purpose we have used the encoding technique in   
[24] that entails the extraction of high-level features from protein sequences                 
by counting the number of occurrences of each amino acid in the sequence.                
For instance, given a protein sequence PVKVPTKPKV, this encoding method      
gives the following result: 3 for P (indicating P occurs thrice), 3 for V, 3 for K, and 1 
for T.  

Exchange groups are another commonly used piece of information. There are 
six groups of amino acids which represent high evolutionary similarity. The 6-letter 
exchange groups are {e1, e2, e3, e4, e5, e6} [24] where e1={H, R, K}, e2={D, E, N, 
Q}, e3={C}, e4={S, T, P, A, G}, e5={M, I, L, V} and e6={F, Y, W}. Exchange 
groups are effective equivalence classes of amino acids and are derived from                
PAM [5]; for example, the protein sequence PVKVPTKPKV is  represented by 
e4e5e1e5e4e4e1e4e1e5 and hence the exchange group encoding for this sequence is: 4 
for e4, 3 for e5, and 3 for e1.  

Using the amino acid encoding scheme, the problem of protein classification 
would have 20 features whereas it is 6-dimensional if the exchange group encoding 
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technique is used. Because of the great amount of computation required in the 
approach used for rule generation in this paper, we have only counted the 
occurrences of exchange groups in the sequences to extract features. Also, to avoid 
skewness in the counts value, each feature value c is scaled to a probability estimate p 
by: 

                                                   cp
l

=                                                             (1)    

where l  is the length of protein sequence. Hence for the sequence PVKVPTKPKV, 
we obtain the feature vector {(e1, 0.3), (e2, 0.0), (e3, 0.0), (e4, 0.4), (e5, 0.3), (e6, 0.0)}. 

 

3. Designing a Fuzzy Rule-based Classifier 

Fuzzy if-then rules for a pattern classification problem with n attributes can be 
written as: 

 

 Rule Rj: If x1 is Aj1 and … and xn is Ajn then class Cj, for j=1, 2, …, N         (2) 
 
where X=[x1, x2, …, xn] is an n-dimensional pattern vector, Aji (i=1, 2,…, n) is an 
antecedent linguistic value of Rj such as Small or Large, Cj is the consequent             
class, and N is the number of fuzzy rules. Generally, m labeled patterns                          
Xp=[xp1, xp2, …, xpn],  p=1, 2, …, m  are given for an M-class problem. Generally,    
each attribute is first normalized to fall within the unit interval [0, 1]. Using the 
information provided by labeled patterns, the task of a classifier design is to generate 
a set of fuzzy rules of the form (2). 

For this purpose, the pattern space is first partitioned into fuzzy subspaces             
and then, if there are some patterns in a subspace, it is identified by a fuzzy rule           
[9]. To avoid an explosion of rules in problems of high dimension, several 
approaches have employed rule evaluation criteria to select a small subset of              
rules among the larger set of candidate rules [10]. Assuming that the partitioning          
of the pattern space is provided in advance, triangular membership functions             
are commonly used to partition each input attribute into K fuzzy subsets. 
Membership functions of this type are simpler and more comprehensible than 
others. Moreover under certain assumptions, the fuzzy partitions built out                       
of the triangular membership functions lead to entropy equalization [18].               
Figure 1 shows these membership functions for four different values of K.                  
For K=3, the linguistic labels A3, A4 and A5 can be interpreted as linguistic                
values Small3, Medium3 and Large3 respectively where superscript 3 shows the                
value of K. 
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FIGURE 1. Different partitioning of each input attribute. 

 

The consequent class Cj of a fuzzy rule Rj in (2) is determined by training 
patterns in the corresponding fuzzy subspace. The grade of compatibility of this rule 
with a training pattern Xp  is defined by the antecedent part Aj =Aj1×Aj2×…×Ajn of rule 
Rj using the product operator 

                                     ∏
=

=
n

i
pijipj xX

1

)()( µµ                                              (3)   

where µji(.) is the membership function of the antecedent fuzzy set Aji. To select the 
consequence class of a fuzzy rule, we have used the heuristic method proposed                 
by Ishibuchi et al. [11], which is based on the confidence of association rules from 
the field of data mining. A fuzzy classification rule in (2) can be viewed as                       
an association rule of the form jj CClassA  ⇒ , where Aj is a multidimensional fuzzy 
set representing the antecedent combination of the rule and Cj is a class label. In 
[11], a measure for evaluating the confidence of a fuzzy association rule is provided 
by: 
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The consequent class Cj of fuzzy rule Rj is specified by identifying the class with 
maximum confidence. 

The most popular fuzzy reasoning method in fuzzy rule-based classification 
systems, which is also simple and intuitive for human users, is the reasoning based 
on a single winner rule [8]. In this method, a new pattern Xt=[xt1, xt2, …, xtn] is 
classified by the single winner rule 

jR ˆ  defined as: 

   0                                    1 

1 
 
 
0 

   K = 2      K = 3   

   K = 4      K = 5   

A1                          A2  A3              A4             A5 

A6        A7          A8        A9 A10   A11     A12     A13    A14 
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                                 ˆ ( ) max{ ( ), 1, 2,..., }t j tj
X X j Nµ µ= =                                 (5) 

where µj(Xt) is the compatibility grade (3) of fuzzy rule Rj with Xt . In other words, 
among the rules fired by Xt, the winner is one with the highest compatibility              
grade. Note that the classification of a pattern not covered by any rule in the                
rule base is rejected. This also occurs for a pattern Xt when the maximum value of 
µ(Xt) corresponds to two rules with different consequent classes.  

Since in fuzzy rule-based classifiers, the main objective is the interpretability of 
the system, the classification accuracy is not too high. Though it is possible to use 
weighted fuzzy rules [11, 16, 26] or weighting functions [15] to achieve higher 
accuracy, in order to maintain the comprehensibility of rules, in this paper we have 
used fuzzy rules with no weights. 
  

3.1. Rule Evaluation Criteria. In the field of data mining, the support of 
association rules have been often used as rule selection criteria [1]. The fuzzy 
version of support (sF) for the fuzzy classification rule jj CClassA  ⇒  is defined in 
[11] by 

                         ∑
∈

=⇒
jp CClassX

pjjjF X
m

CClassAs )(1)( µ                                        (6)  

 
where m is the number of given training patterns. The crisp version of support (sC) 
for such rule is 

                                   
m

CClassAs j
jjC

η
=⇒ )(                                                (7)  

 
 where jη  is the number of patterns truly classified by rule Rj as class Cj (i.e. the 
number of true positives).  

In [7], a heuristic rule selection criterion based on the support is used                        
for extracting fuzzy rules from numerical data. This simple criterion is specified           
by 

 
                               jjjjC CClassAf ηη −=⇒ )(                                             (8) 

 
 where jη  is the number of patterns incorrectly classified by rule Rj as class Cj (i.e. 
the number of false positives). This evaluation measure can be fuzzified as follows: 
 

                ∑∑
∉∈

−=⇒
jpjp CClassX

pj
CClassX

pjjjF XXCClassAf )()()( µµ  .                         (9)  
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Dividing the right-hand sides of (8) and (9) by m, these measures can be expressed 
by means of the crisp and fuzzy versions of the support. However, since the number 
of training patterns in (6) and (7) is equal for all fuzzy rules, it is not considered.  

In this paper, we have used four distinct criteria for evaluating candidate rules. 
The first criterion, following [7], uses the measures (9). In second criterion, we 
prefer the crisp measure (8) to the fuzzy measure (9), because in classification 
problems, the number of patterns truly classified by a rule is more important                
than the summation of their compatibility grade (e.g. the compatibility grade 
summation of two positive patterns might be less than the compatibility grade of 
one negative pattern). However, in the situation of a tie, the measure (9) is also 
considered.  

The third and fourth criteria use the same formulas as the first and second 
respectively, but they only consider training patterns in the decision subspace of 
each rule instead of its covering subspace. The patterns in the covering subspace of 
a rule have compatibility grade above zero (i.e. will cause the rule to be fired) 
whereas the patterns in the decision subspace will be classified by this rule. 
However, since it is not possible to identify the decision subspace of a rule precisely 
in the rule generation phase, we have heuristically specified a threshold ( jτ ) for rule 
Rj and the patterns with compatibility grade above this threshold are assumed to be 
in its decision subspace. Since the membership functions in Fig. 1 are 0.5-complete, 
we have defined jk

j 5.0=τ  where kj is the length of rule Rj . 
 

3.2. Rule Generation. Given an input partitioning of the pattern space, one 
approach for rule generation is to consider all possible combinations of antecedent 
linguistic values and generate a fuzzy rule for each combination if there is at least 
one training pattern covered by this rule. For higher dimensional problems, this 
approach can generate too many rules which are practically impossible to handle. 
For example, for a data set having n input variables and K fuzzy sets for each 
variable, Kn fuzzy rules may be generated by this method. One way to tackle this 
problem is to use a fuzzy rule evaluation measure which selects a small subset of 
rules from the large set of candidate rules [10]. 

This approach considers different partitions in Fig. 1 for each attribute 
simultaneously. For example, suppose one of 14 fuzzy sets can be used for each 
attribute when generating a candidate fuzzy rule. then, for an n-dimensional 
problem, there are 14n antecedent combinations to consider and this is quite 
impractical. 

One solution for the above problem, which adds the fuzzy set “don’t care” to 
each attribute, is presented in [10].  The membership function of this fuzzy set is 
defined as 1)(' =xcaretdonµ for all values of x. The trick is that instead of considering 
all antecedent combinations (156 = 11 390 625 in this example), we only consider 
short fuzzy rules having a limited number of antecedent conditions (excluding 
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“don’t care”) as candidate rules. In our example, if we use at most three antecedent 
variables, we will have   153 = 3375 candidate rules.                     

In our method, the generated candidate rules are divided into M groups 
according to their consequent class. The rules in each group are sorted in 
descending order of their evaluation measures (e.g. one of the four criteria 
mentioned in subsection 3.1). For a pre-specified number of Q, an initial rule base is 
constructed by choosing the best Q rules from each class (at most N=M×Q rules). 
When multiple rules have the same evaluation measure, the rule having fewer 
antecedent conditions (the simplest rule) is selected. In the situation of a tie, the rule 
having the larger subspace is preferred. Finally, when multiple rules have the same 
value for all the above criteria, we randomly select a rule from the set of best rules. 
The following algorithm outlines our approach briefly: 

 
Algorithm: Generating fuzzy classification rules from data. 
 

Input: m labeled patterns of an n-dimensional M-class problem and Q. 
 

Output: M×Q rules. 
 

1. Generate all fuzzy rules having three or less antecedent variables as 
candidates (at most 153 rules). 

2. Determine the consequent class of each candidate rule. 
3. Divide the candidate rules into M groups according to their consequent class. 
4. Rank the candidate rules in each group in descending order of their 

evaluation measures. 
5. Choose the best Q rules from each class as the initial rule base (at most M×Q 

rules). 
 

We propose a heuristic approach for considering the cooperation between rules 
to increase the classifier accuracy; this extracts more cooperative rules from the 
initial rule base and establishes a compact rule base with a good cooperation among 
rules. First, the “best” rule for each class according to evaluation measures of rules 
is selected. To select the second best rules, training patterns are classified by each of 
the remaining rules and, again, only those that improve the classification accuracy 
are selected. This algorithm continues for classes that add more rules to the rule 
base.   

 

4. Experimental Results 

The data used in the experiments are obtained from the Universal Protein 
Resource (UniProt), release 11.0, maintained by the UniProt Consortium [21]. The 
UniProt Knowledgebase, accessible at http://www.uniprot.org has 2 299 834 
sequences based on Release 6.0 (September 2005). In this paper, only the sequence, 
sequence type and superfamily of the entries are used. Table 1 illustrates the 
specification of four superfamily classes used in the experiments. 
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Superfamily 
name 

Number 
of 

sequences

Minimal 
length 

of sequences

Maximal 
length 

of sequences 

Globin 492 29 351 

Kinase 543 59 493 

Ras 391 96 339 

Trypsin 503 48 362 

TABLE 1. Data used in the experiments. 
 

To illustrate the interpretability of the generated rules, we have run our algorithm 
using the whole data as training patterns for constructing the rule base. These data 
are also used for testing the classifier. The error rates are computed as the number 
of misclassified patterns divided by total number of tested samples and expressed as 
percentages. The following are the best rules per class of the initial rule base, where 
p(.) is the probability estimate (1) and A1, A2, …, A14 are the linguistic labels in Fig. 1 
interpreted as Small2, Large2, …, Large5 respectively. Using the first evaluation 
criterion, our rules have error rate = 32.92 percent: 

 

If p(e3) is A10 then Globin. 

If p(e1) is A8 and p(e6) is A13 then Kinase. 

If p(e2) is A8 then Ras. 

If p(e1) is A11 then Trypsin. 
 

Translating these rules to linguistic statements will reveal their interpretability 
and readability to biologists. For incoming protein sequence X with length l, these 
rules can be expressed as: 

If the number of the amino acid C in X divided by l is Small5 then  

X belongs to superfamily Globin. 

If the number of the amino acids H, R and K in X divided by l is MediumLarge4   
and  
      the number of the amino acids F, Y and W in X divided by l is MediumLarge5  
then  

 X belongs to superfamily Kinase. 

If the number of the amino acids D, E, N and Q in X divided by l is 
MediumLarge4 then  
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X belongs to superfamily Ras. 

If the number of the amino acids H, R and K in X divided by l is MediumSmall5 
then  
      X belongs to superfamily Trypsin. 

The following rules are obtained using the second criterion (error rate = 
30.95%): 

If p(e2) is A6 and p(e3) is A10 then Globin. 

If p(e2) is A11 and p(e4) is A6 and p(e6) is A5 then Kinase. 

If p(e2) is A8 and p(e4) is A6 and p(e6) is A11 then Ras. 

If p(e1) is A7 and p(e3) is A8 and p(e4) is A8 then Trypsin. 
 

The rules corresponding to the third criterion (error rate = 29.45%) are:  
 

If p(e3) is A10 then Globin. 

If p(e3) is A11 and p(e6) is A8 then Kinase. 

If p(e2) is A8 and p(e6) is A7 then Ras. 

If p(e1) is A11 then Trypsin.  
 

Finally, using the fourth rule evaluation criterion, the we obtain the following 
rules (error rate = 24.42%): 

 

If p(e2) is A3 and p(e3) is A3 then Globin. 

If p(e1) is A8 and p(e2) is A2 and p(e6) is A8 then Kinase. 

If p(e2) is A8 and p(e4) is A1 and p(e6) is A7 then Ras. 

If p(e1) is A1 and p(e2) is A1 and p(e3) is A2 then Trypsin. 
 

Clearly, the generated rules are simple and comprehensible for humans. The 
rules obtained from the first and third criteria use the measure in (9) and are shorter 
and so more interpretable. On the other hand, the rules generated from patterns in 
the decision subspace (i.e. third and fourth criteria) are more accurate, as they rely 
more on positive patterns. 

To compare the fuzzy rule-based classifiers designed on the basis of the four 
criteria mentioned above, we have performed five runs of ten-fold cross validation 
(10-CV) on the whole data (1929 sequences). This testing method will clarify the 
generalization ability of classifiers in classifying test sequences of proteins. Table 2 
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compares the results of four rule evaluation criteria where all values are averaged. 
These results illustrate that higher accuracies are obtainable when evaluating 
candidate rules using patterns in the decision subspace. In this case, combining the 
measures in (8) and (9) achieves more accurate classifiers whereas this situation is 
reversed when using the patterns of covering subspaces. 

Criterion 
number 

Short description of 
criterion 

Error 
rate 

Number of 
rules 

First  
Measure in (9); 
Patterns in covering 
subspace 

32.92 
28.11 
26.14 
25.15 
24.76 

4.00 
5.00 
6.00 
7.00 
8.00 

Second  

Measures in (8) and 
(9); 
Patterns in covering 
subspace 

32.85 
30.38 
29.43 
28.96 
28.53 

4.00 
5.00 
5.98 
6.96 
7.92 

Third  
Measure in (9); 
Patterns in decision 
subspace 

29.45 
27.70 
25.69 
23.70 
22.30 

4.00 
5.00 
6.00 
7.00 
8.00 

Fourth  
Measures in (8) and 
(9); 
Patterns in decision 
subspace 

25.10 
22.05 
21.27 
20.77 
20.38 

4.00 
5.00 
6.00 
7.00 
8.00 

TABLE 2. Comparing the performance of fuzzy classifiers. 
 

For comparing the performance of our fuzzy classifiers with others in the 
literature, we have implemented a modified version of some approaches. Since the 
length of rules in our algorithm is restricted to three, the other methods are run 
under conditions that the comparisons fair. The PCNSA linear classifier in [6], first 
reduces the dimension of the training data set to r and then finds a null space of size 
s for each class by extracting the least variance of this class by means of eigenvalue 
decomposition. In order to provide similar conditions in this experiment, both 
parameters r and s are set to three.  

Similarly, to employ the neural networks for protein classification as in [23], we 
have used only three attributes of the data set. For this purpose, the Fisher interclass 
separability criterion [20] is used to rank the features and then three highest ranked 
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features (i.e. e2, e1 and e3) are selected for experiment. Finally, since the C4.5 
algorithm [19] is the well-known non-fuzzy rule-based classifier, its result is also 
included, butthe length of rules is again limited to three. Table 3 illustrates the error 
rates obtained from five runs of the 10-CV testing method for these approaches. It 
is clear that among these classifiers, the fuzzy approach which uses the fourth rule 
evaluation criterion is the best and the fuzzy approach which uses the second 
criterion is the worst. 

Classifier  Error 
rate 

Fuzzy, 1st   24.76 

Fuzzy, 2nd   28.53 

Fuzzy, 3rd  22.30 

Fuzzy, 4th  20.38 

PCNSA  23.70 

Neural 

Network 
26.41 

C4.5  24.35 

TABLE 3. Accuracy comparison of some protein classifiers. 
 

5. Conclusion 

In this paper, we have modified a common approach for designing fuzzy rule-
based classifiers in order to generate a compact set of simple and interpretable fuzzy 
rules for classifying the protein sequences. To extract relevant features from protein 
sequences, we counted the occurrences of six exchange groups in each sequence. 
Since the rule generation approach needed a great amount of CPU time, we 
generated fuzzy rules with only three or less antecedent variables, but in order to 
obtain higher classification accuracy, we investigated four distinct criteria for 
evaluating candidate rules and compared their accuracy with other well-known rules 
using an experimental dataset.  

We note that the accuracy of classification obtained by our fuzzy classifiers was 
low as we used a very limited number of features. It is possible to increase the 
performance through weighting fuzzy rules, but this is not favored by biologists. In 
future work, we hope to find an efficient approach, using a greater number features 
with less computational effort, for generating more accurate fuzzy rules.  
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