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A NEW NOTION OF FUZZY PS-COMPACTNESS

S. Z. BAI

Abstract. In this paper, using pre-semi-open L-sets and their inequality, a
new notion of PS-compactness is introduced in L-topological spaces, where L is

a complete De Morgan algebra. This notion does not depend on the structure

of the basis lattice L and L does not need any distributivity.

1. Introduction

It is known that compactness and its stronger and weaker forms play very im-
portant roles in topology. Based on fuzzy topological spaces introduced by Chang
[4], various kinds of fuzzy compactness [2-4,7,11] have been established. However,
these concepts of fuzzy compactness rely on the structure of L and L is required
to be completely distributive. In [10], for a complete De Morgan algebra L, Shi in-
troduced a new definition of fuzzy compactness in L-topological spaces using open
L-sets and their inequality. This new definition doesn’t depend on the structure of
L.

In this paper, following the lines of [10], we introduce a new notion of PS-
compactness in L-topological spaces by means of pre-semi-open L-sets and their
inequality. This notion can also be characterized by pre-semi-closed L-sets and
their inequality and is a strong form of semi-compactness[9]. This form of PS-
compactness is a good generalization and has many characterizations when L is
completely distributive De Morgan algebra.

2. Preliminaries

Throughout this paper, (L,∨,∧,′ ) is a complete De Morgan algebra, X a nonempty
set and LX the set of all L-fuzzy sets (or L-sets for short) on X. The smallest ele-
ment and the largest element in LX are denoted by 0 and 1. An element a in L is
called a prime element if b ∧ c ≤ a implies that b ≤ a or c ≤ a. a in L is called a
co-prime element if a′ is a prime element [6] The set of nonunit prime elements in
L is denoted by P (L) and the set of nonzero co-prime elements in L by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b iff for every
subset D ⊆ L, the relation b ≤ supD always implies the existence of d ∈ D with
a ≤ d [5]. In a completely distributive De Morgan algebra L, each element b is a
sup of {a ∈ L|a ≺ b}. The set β(b) = {a ∈ L|a ≺ b} is called the greatest minimal
family of b in the sense of [7,11]. Now, for b ∈ L, we define β∗(b) = β(b) ∩M(L),
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α(b) = {a ∈ L|a′ ≺ b′} and α∗(b) = α(b) ∩ P (L). For a ∈ L and A ∈ LX , we write
A(a) = {x ∈ X|A(x) 6≤ a} and A(a) = {x ∈ X|a ∈ β(A(x))} and for a subfamily
ψ ⊆ LX , 2(ψ) will denote the set of all finite subfamilies of ψ.

An L-topological space (or L-ts for short) is a pair (X, δ), where δ is a subfamily
of LX which contains 0

¯
, 1
¯

and is closed for any suprema and finite infima. δ is
called an L-topology on X. Each member of δ is called an open L-set and its
quasi-complement is called a closed L-set.

Definition 2.1. [7,11] For a topological space (X, τ), let ωL(τ) denote the family of
all the lower semi-continuous maps from (X, τ) to L; i.e. ωL(τ) = {A ∈ LX |A(a) ∈
τ, a ∈ L}. Then ωL(τ) is an L-topology on X and (X,ωL(τ)) is topologically
generated by (X, τ).

Definition 2.2. [7,11] An L-ts (X, δ) is weak induced if, for all a ∈ L and for all
A ∈ δ, it follows that A(a) ∈ [δ], where [δ] denotes the topology formed by all crisp
sets in δ. It is obvious that (X,ωL(τ)) is weak induced.

Definition 2.3. [9] Let (X, δ) be an L-ts, a ∈ L \ {1}, and A ∈ LX . A family
µ ⊆ LX is called

(1) an a-shading of A if for any x ∈ X, (A′(x) ∨
∨
B∈µB(x)) 6≤ a.

(2) a strong a-shading (briefly S-a-shading) of A if
∧
x∈X(A′(x)∨

∨
B∈µB(x)) 6≤

a.
(3) an a-R-neighborhood family (briefly a-R-NF) of A if for any x ∈ X, (A(x)∧∧
B∈µB(x)) 6≥ a.
(4) a strong a-R-neighborhood family (briefly S-a-R-NF)of A if

∨
x∈X(A(x) ∧∧

B∈µB(x)) 6≥ a.

It is obvious that an S-a-shading of A is an a-shading of A, an S-a-R-NF of A is
an a-R-NF of A, and µ is an S-a-R-NF of A iff µ′ is an S-a-shading of A.

Definition 2.4. [9] Let (X, δ) be an L-ts, a ∈ L \ {0} and A ∈ LX . A family
µ ⊆ LX is called

(1)a βa-cover of A if for any x ∈ X, it follows that a ∈ β(A′(x) ∨
∨
B∈µB(x)).

(2) a strong βa-cover (briefly S-βa-cover) ofA if a ∈ β(
∧
x∈X(A′(x)∨

∨
B∈µB(x))).

(3) a Qa-cover of A if for any x ∈ X, it follows that A′(x) ∨
∨
B∈µB(x) ≥ a.

It is obvious that an S-βa-cover of A must be a βa-cover of A, and a βa-cover of
A must be a Qa-cover of A.

Definition 2.5. [9] Let a ∈ L \ {0} and A ∈ LX . A family µ ⊆ LX is said to have
weak a-nonempty intersection in A if

∨
x∈X(A(x) ∧

∧
B∈µB(x)) ≥ a. µ is said to

have the finite weak a-intersection property in A if every finite subfamily ν of µ has
weak a-nonempty intersection in A.

Lemma 2.6. [8] Let L be a complete Heyting algebra, f : X → Y a map and
f→L : LX → LY the extension of f . Then for any family ψ ⊆ LY ,∨

y∈Y
(f→L (A)(y) ∧

∧
B∈ψ

B(y)) =
∨
x∈X

(A(x) ∧
∧
B∈ψ

f→L (B)(x)).
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Definition 2.7. [1] Let (X, δ) be an L-ts, A ∈ LX . Then A is called a pre-semi-
open set if A ≤ (A−)o, and A is called a pre-semi-closed set if A ≥ (Ao)−, where
Ao, A−, Ao and A− are the interior, closure, semi-interior and semi-closure of A,
respectively.

Definition 2.8. [1,2] Let (X, δ) and (Y, τ) be two L-ts’s. A map f : (X, δ) → (Y, τ)
is called

(1) pre-semi-continuous if f←L (B) is pre-semi-open in (X, δ) for every B ∈ τ .
(2) pre-semi-irresolute if f←L (B) is pre-semi-open in (X, δ) for every pre-semi-

open L-set B in (Y, τ).

3. Definition and Properties of PS-compactness

Definition 3.1. Let (X, δ) be an L-ts. A ∈ LX is called PS-compact if for every
family µ of pre-semi-open L-sets, it follows that∧

x∈X
(A′(x) ∨

∨
B∈µ

B(x)) ≤
∨

ν∈2(µ)

∧
x∈X

(A′(x) ∨
∨
B∈ν

B(x)).

(X, δ) is called PS-compact if 1
¯

is PS-compact.

Example 3.2. Let X = {x} and L = {0, 1/3, 2/3, 1}. For each a ∈ L define
a′ = 1 − a. Let δ = {∅, A,X}, where A(x) = 2/3, then δ is a topology on X.
Clearly, any L-set in (X, δ) is PS-compact.

Example 3.3. Let X be an infinite set or a singleton, A and C be two [0, 1]-sets
on X defined as A(x) = 0.5, for all x ∈ X; C(x) = 0.6, for all x ∈ X. Take
δ = {∅, A,X}, then δ is a topology on X. Obviously, any [0,1]-set in (X, δ) is
pre-semi-open, and the set of all semi-open [0,1]-sets in (X, δ) is δ. In this case, we
easily obtain that C is not PS-compact, and any [0,1]-set in (X, δ) is semi-compact.

Remark 3.4. Since every semi-open L-set is pre-semi-open[1], every PS-compact
L-set is semi-compact. Example 3.3 shows that a semi-compact L-set needn’t be
PS-compact.

Theorem 3.5. Let (X, δ) be an L-ts. A ∈ LX is PS-compact iff for every family
µ of pre-semi-closed L-sets, it follows that∨

x∈X
(A(x) ∧

∧
B∈µ

B(x)) ≥
∧

ν∈2(µ)

∨
x∈X

(A(x) ∧
∧
B∈ν

B(x)).

Proof. This is immediate from Definition 3.1 and quasi-complements. �

Theorem 3.6. Let (X, δ) be an L-ts and A ∈ LX . Then the following conditions
are equivalent.

(1) A is PS-compact.
(2) For any a ∈ L \ {1}, each pre-semi-open S-a-shading µ of A has a finite

subfamily which is an S-a-shading of A.
(3) For any a ∈ L \ {0}, each pre-semi-closed S-a-R-NF ψ of A has a finite

subfamily which is an S-a-R-NF of A.
(4) For any a ∈ L \ {0}, each family of pre-semi-closed L-sets which has the

finite weak a-intersection property in A has weak a-nonempty intersection in A.

Proof. The theorem follows immediately from Definition 3.1 and Theorem 3.5. �
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82 S. Z. Bai

Theorem 3.7. Let L be a complete Heyting algebra. If both C and D are PS-
compact, then C ∨D is PS-compact.

Proof. By Theorem 3.5 for any family µ of pre-semi-closed L-sets, we have∨
x∈X

((C ∨D)(x) ∧
∧
B∈µ

B(x))

= {
∨
x∈X

(C(x) ∧
∧
B∈µ

B(x))} ∨ {
∨
x∈X

(D(x) ∧
∧
B∈µ

B(x))}

≥ {
∧

ν∈2(µ)

∨
x∈X

(C(x) ∧
∧
B∈ν

B(x))} ∨ {
∧

ν∈2(µ)

∨
x∈X

(D(x) ∧
∧
B∈ν

B(x))}

=
∧

ν∈2(µ)

∨
x∈X

((C ∨D)(x) ∧
∧
B∈ν

B(x)).

This shows that C ∨D is PS-compact. �

Theorem 3.8. Let (X, δ) be an L-ts and C,D ∈ LX . If C is PS-compact and D
is pre-semi-closed, then C ∧D is PS-compact.

Proof. By Theorem 3.5, for any family µ of pre-semi-closed L-sets, we have∨
x∈X

((C ∧D)(x) ∧
∧
B∈µ

B(x))

=
∨
x∈X

(C(x) ∧
∧

B∈µ∪{D}
B(x))

≥
∧

ν∈2(µ∪{D})

∨
x∈X

(C(x) ∧
∧
B∈ν

B(x))

= {
∧

ν∈2(µ)

∨
x∈X

(C(x) ∧
∧
B∈ν

B(x))} ∧ {
∧

ν∈2(µ)

∨
x∈X

(C(x) ∧D(x) ∧
∧
B∈ν

B(x))}

= {
∧

ν∈2(µ)

∨
x∈X

(C(x) ∧D(x) ∧
∧
B∈ν

B(x))}

=
∧

ν∈2(µ)

∨
x∈X

((C ∧D)(x) ∧
∧
B∈ν

B(x)).

This shows that C ∧D is PS-compact. �

Corollary 3.9. Let (X, δ) be PS-compact and D ∈ LX be pre-semi-closed. Then
D is PS-compact.

Definition 3.10. Let (X, δ) and (Y, τ) be two L-ts’s. A map f : (X, δ) → (Y, τ) is
called

(1) strongly pre-semi-continuous if f←L (B) is pre-semi-open in (X, δ) for every
semi-open L-set B in (Y, τ).

(2) strongly pre-semi-irresolute if f←L (B) is semi-open in (X, δ) for every pre-
semi-open L-set B in (Y, τ).

It is obvious that a strongly pre-semi-continuous map is pre-semi-continuous,
and a strongly pre-semi-irresolute map is pre-semi-irresolute.

From Lemma 2.6 and Definitions 2.7, 2.8, 3.10, we can obtain the following
theorems.

Theorem 3.11. Let L be a complete Heyting algebra and f : (X, δ) → (Y, τ) be
an pre-semi-irresolute map. If A is a PS-compact L-set in (X, δ), then f→L (A) is a
PS-compact L-set in (Y, τ).
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Theorem 3.12. Let L be a complete Heyting algebra and f : (X, δ) → (Y, τ) be a
pre-semi-continuous map. If A is a PS-compact L-set in (X, δ), then f→L (A) is a
compact L-set in (Y, τ).

Theorem 3.13. Let L be a complete Heyting algebra and f : (X, δ) → (Y, τ) be
a strongly pre-semi-continuous map. If A is a PS-compact L-set in (X, δ), then
f→L (A) is a semi-compact L-set in (Y, τ).

Theorem 3.14. Let L be a complete Heyting algebra and f : (X, δ) → (Y, τ) be
a strongly pre-semi-irresolute map. If A is a semi-compact L-set in (X, δ), then
f→L (A) is a PS-compact L-set in (Y, τ).

4. Further Properties of PS-compactness and Goodness

In this section, we assume that L is a completely distributive de Morgan algebra.

Theorem 4.1. Let (X, δ) be an L-ts and A ∈ LX . Then the following conditions
are equivalent.

(1) A is PS-compact.
(2) For any a ∈ L \ {0}, each pre-semi-closed S-a-R-NF ψ of A has a finite

subfamily which is an S-a-R-NF of A.
(3) For any a ∈ L \ {0}, each pre-semi-closed S-a-R-NF ψ of A has a finite

subfamily which is an a-R-NF of A.
(4) For any a ∈ L \ {0} and any pre-semi-closed S-a-R-NF ψ of A, there exist a

finite subfamily ϕ of ψ and b ∈ β(a) such that ϕ is an S-b-R-NF of A.
(5) For any a ∈ L \ {0} and any pre-semi-closed S-a-R-NF ψ of A, there exist a

finite subfamily ϕ of ψ and b ∈ β(a) such that ϕ is a b-R-NF of A.
(6) For any a ∈ M(L), each pre-semi-closed S-a-R-NF ψ of A has a finite

subfamily which is an S-a-R-NF of A.
(7) For any a ∈ M(L), each pre-semi-closed S-a-R-NF ψ of A has a finite

subfamily which is an a-R-NF of A.
(8) For any a ∈ M(L) and any pre-semi-closed S-a-R-NF ψ of A, there exist a

finite subfamily ϕ of ψ and b ∈ β∗(a) such that ϕ is an S-b-R-NF of A.
(9) For any a ∈ M(L) and any pre-semi-closed S-a-R-NF ψ of A, there exist a

finite subfamily ϕ of ψ and b ∈ β∗(a) such that ϕ is a b-R-NF of A.
(10) For any a ∈ L \ {1}, each pre-semi-open S-a-shading µ of A has a finite

subfamily which is an S-a-shading of A.
(11) For any a ∈ L \ {1}, each pre-semi-open S-a-shading µ of A has a finite

subfamily which is an a-shading of A.
(12) For any a ∈ L \ {1} and any pre-semi-open S-a-shading µ of A, there exist

a finite subfamily ν of µ and b ∈ α(a) such that ν is an S-b-shading of A.
(13) For any a ∈ L \ {1} and any pre-semi-open S-a-shading µ of A, there exist

a finite subfamily ν of µ and b ∈ α(a) such that ν is a b-shading of A.
(14) For any a ∈ P (L), each pre-semi-open S-a-shading µ of A has a finite

subfamily which is an S-a-shading of A.
(15) For any a ∈ P (L), each pre-semi-open S-a-shading µ of A has a finite

subfamily which is an a-shading of A.
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84 S. Z. Bai

(16) For any a ∈ P (L) and any pre-semi-open S-a-shading µ of A, there exist a
finite subfamily ν of µ and b ∈ α∗(a) such that ν is an S-b-shading of A.

(17) For any a ∈ P (L) and any pre-semi-open S-a-shading µ of A, there exist a
finite subfamily ν of µ and b ∈ α∗(a) such that ν is a b-shading of A.

(18) For any a ∈ L \ {0}, each pre-semi-open S-βa-cover µ of A has a finite
subfamily which is an S-βa-cover of A.

(19) For any a ∈ L \ {0}, each pre-semi-open S-βa-cover µ of A has a finite
subfamily which is a βa-cover of A.

(20) For any a ∈ L \ {0} and any pre-semi-open S-βa-cover µ of A, there exist a
finite subfamily ν of µ and b ∈ L with a ∈ β(b) such that ν is an S-βb-cover of A.

(21) For any a ∈ L \ {0} and any pre-semi-open S-βa-cover µ of A, there exist
a finite subfamily ν of µ and b ∈ L with a ∈ β(b) such that ν is a βb-cover of A.

(22) For any a ∈ M(L), each pre-semi-open S-βa-cover µ of A has a finite
subfamily which is an S-βa-cover of A.

(23) For any a ∈ M(L), each pre-semi-open S-βa-cover µ of A has a finite
subfamily which is a βa-cover of A.

(24) For any a ∈M(L) and any pre-semi-open S-βa-cover µ of A, there exist a
finite subfamily ν of µ and b ∈ M(L) with a ∈ β∗(b) such that ν is an S-βb-cover
of A.

(25) For any a ∈M(L) and any pre-semi-open S-βa-cover µ of A, there exist a
finite subfamily ν of µ and b ∈M(L) with a ∈ β∗(b) such that ν is a βb-cover of A.

(26) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each pre-semi-open Qa-cover
µ of A has a finite subfamily which is a Qb-cover of A.

(27) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each pre-semi-open Qa-cover
µ of A has a finite subfamily which is a βb-cover of A.

(28) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each pre-semi-open Qa-cover
µ of A has a finite subfamily which is an S-βb-cover of A.

(29) For any a ∈M(L) and any b ∈ β∗(a), each pre-semi-open Qa-cover µ of A
has a finite subfamily which is a Qb-cover of A.

(30) For any a ∈M(L) and any b ∈ β∗(a), each pre-semi-open Qa-cover µ of A
has a finite subfamily which is a βb-cover of A.

(31) For any a ∈M(L) and any b ∈ β∗(a), each pre-semi-open Qa-cover µ of A
has a finite subfamily which is an S-βb-cover of A.

Proof. (1) ⇔ (2) : This follows directly from Theorem 3.6.
(2) ⇒ (3) : This is easy to prove if one notices that every S-a-R-NF of A is an

a-R-NF of A.
(3) ⇒ (4) : Let a ∈ L \ {0} and ψ be a pre-semi-closed S-a-R-NF of A.

Then
∨
x∈X(A(x) ∧

∧
B∈ψ B(x)) 6≥ a. Take c ∈ β(a) such that

∨
x∈X(A(x) ∧∧

B∈ψ B(x)) 6≥ c. Obviously ψ is a pre-semi-closed S-c-R-NF of A. By (3) we know
that ψ has a finite subfamily ϕ which is a c-R-NF of A. Take b ∈ β(a) such that
c ∈ β(b), then ϕ is an S-b-R-NF of A.

(4) ⇒ (5) ⇒ (2) : Obvious.
(2) ⇒ (6) ⇒ (7) ⇒ (8) ⇒ (9) ⇒ (1) : the proof is similar.
(1) ⇔ (10) : This follows directly from Theorem 3.6.
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A New Notion of Fuzzy PS-compactness 85

(10) ⇒ (11) : This is easy to prove if one notices that every S-a-shading of A is
an a-shading of A.

(11) ⇒ (12) : Let a ∈ L \ {1} and µ be a pre-semi-open S-a-shading of A.
Then

∧
x∈X(A′(x) ∨

∨
B∈µB(x)) 6≤ a. Take c ∈ α(a) such that

∧
x∈X(A′(x) ∨∨

B∈µB(x)) 6≤ c. Obviously µ is a pre-semi-open S-c-shading of A. By (11) we
know that µ has a finite subfamily ν which is a c-shading of A. Take b ∈ α(a) such
that c ∈ α(b), then ν is an S-b-shading of A.

(12) ⇒ (13) ⇒ (10) : Obvious.
(10) ⇒ (14) ⇒ (15) ⇒ (16) ⇒ (17) ⇒ (10) : We can prove these in the similar

way.
Similarly we can also prove the other results. �

Lemma 4.2. Let (X,ωL(τ)) be generated topologically by (X, τ). If A is a pre-
semi-open L-set in (X, τ), then χA is a pre-semi-open set in (X,ωL(τ)). If B is a
pre-semi-open L-set in (X,ωL(τ)), then, B(a) is a pre-semi-open set in (X, τ) for
every a ∈ L.

Proof. This is easy to prove if one notices that χD− = (χD)− and χDo
= (χD)o

and applies Lemma 5.4 in [9]. �

Theorem 4.3. Let (X, τ) be a topological space and (X,ωL(τ)) be generated topo-
logically by (X, τ). Then (X,ωL(τ)) is PS-compact iff (X, τ) is PS-compact.

Proof. Necessity: Let µ be a pre-semi-open cover of (X, τ). Then {χA|A ∈ µ} is a
family of pre-semi-open L-sets in (X,ωL(τ)) with

∧
x∈X(

∨
A∈µ χA(x)) = 1. From

PS-compactness of (X,ωL(τ)), we have that
1 =

∧
x∈X

(
∨
A∈µ

χA(x)) ≤
∨

ν∈2(µ)

∧
x∈X

(
∨
A∈ν

χA(x)).

This implies that there exists ν ∈ 2(µ) such that
∧
x∈X(

∨
A∈ν χA(x)) = 1. Hence,

ν is a cover of (X, τ). Therefore (X, τ) is PS-compact.
Sufficiency: Let µ be a family of pre-semi-open L-sets in (X,ωL(τ)) and∧
x∈X(

∨
B∈µB(x)) = a. If a = 0, obviously we have that∧

x∈X
(

∨
B∈µ

B(x)) ≤
∨

ν∈2(µ)

∧
x∈X

(
∨
B∈ν

B(x)).

Now we suppose that a 6= 0. In this case, for any b ∈ β(a) \ {0}, we have that
b ∈ β(

∧
x∈X

(
∨
B∈µ

B(x))) ⊆
⋂
x∈X

β(
∨
B∈µ

B(x)) =
⋂
x∈X

⋃
B∈µ

β(B(x)).

By Lemma 4.2, this implies that {B(b)|B ∈ µ} is a pre-semi-open cover of (X, τ)
and from the PS-compactness of (X, τ), we know that there exists ν ∈ 2(µ) such
that {B(b)|B ∈ ν} is a cover of (X, τ). Hence b ≤

∧
x∈X(

∨
B∈ν B(x)). Moreover,

we have that
b ≤

∧
x∈X

(
∨
B∈ν

B(x)) ≤
∨

ν∈2(µ)

∧
x∈X

(
∨
B∈ν

B(x)).

This implies that∧
x∈X

(
∨
B∈µ

B(x)) = a =
∨
{b|b ∈ β(a)} ≤

∨
ν∈2(µ)

∧
x∈X

(
∨
B∈ν

B(x)).

Therefore, (X,ωL(τ)) is PS-compact. �
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