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A NEW NOTION OF FUZZY PS-COMPACTNESS

S. Z. BAI

ABSTRACT. In this paper, using pre-semi-open L-sets and their inequality, a
new notion of PS-compactness is introduced in L-topological spaces, where L is
a complete De Morgan algebra. This notion does not depend on the structure
of the basis lattice L and L does not need any distributivity.

1. Introduction

It is known that compactness and its stronger and weaker forms play very im-
portant roles in topology. Based on fuzzy topological spaces introduced by Chang
[4], various kinds of fuzzy compactness [2-4,7,11] have been established. However,
these concepts of fuzzy compactness rely on the structure of L and L is required
to be completely distributive. In [10], for a complete De Morgan algebra L, Shi in-
troduced a new definition of fuzzy compactness in L-topological spaces using open
L-sets and their inequality. This new definition doesn’t depend on the structure of
L.

In this paper, following the lines of [10], we introduce a new notion of PS-
compactness in L-topological spaces by means of pre-semi-open L-sets and their
inequality. This notion can also be characterized by pre-semi-closed L-sets and
their inequality and is a strong form of semi-compactness[9]. This form of PS-
compactness is a good generalization and has many characterizations when L is
completely distributive De Morgan algebra.

2. Preliminaries

Throughout this paper, (L, V, A,” ) is a complete De Morgan algebra, X a nonempty
set and LX the set of all L-fuzzy sets (or L-sets for short) on X. The smallest ele-
ment and the largest element in LX are denoted by 0 and 1. An element a in L is
called a prime element if b A ¢ < a implies that b < a or ¢ < a. a in L is called a
co-prime element if @’ is a prime element [6] The set of nonunit prime elements in
L is denoted by P(L) and the set of nonzero co-prime elements in L by M (L).

The binary relation < in L is defined as follows: for a,b € L,a < b iff for every
subset D C L, the relation b < supD always implies the existence of d € D with
a < d [5]. In a completely distributive De Morgan algebra L, each element b is a
sup of {a € Lja < b}. The set 3(b) = {a € L|a < b} is called the greatest minimal
family of b in the sense of [7,11]. Now, for b € L, we define 5*(b) = 8(b) N M (L),
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a(b) ={a € Lla’ < ¥} and a*(b) = a(b)N P(L). For a € L and A € LX, we write
AW = {2 € X|A(z) £ a} and A,y = {z € X|a € B(A(z))} and for a subfamily
¥ C LX,2(%) will denote the set of all finite subfamilies of ).

An L-topological space (or L-ts for short) is a pair (X, ), where 0 is a subfamily
of L which contains 0,1 and is closed for any suprema and finite infima. ¢ is
called an L-topology on X. Each member of § is called an open L-set and its
quasi-complement is called a closed L-set.

Definition 2.1. [7,11] For a topological space (X, 7), let wy,(7) denote the family of
all the lower semi-continuous maps from (X, 7) to L; i.e. wr (1) = {4 € LX|A@ ¢
7,6 € L}. Then wp(r) is an L-topology on X and (X,wp (7)) is topologically
generated by (X, 7).

Definition 2.2. [7,11] An L-ts (X, ) is weak induced if, for all ¢ € L and for all
A €6, it follows that A® ¢ [§], where [§] denotes the topology formed by all crisp
sets in 0. It is obvious that (X,wr (7)) is weak induced.

Definition 2.3. [9] Let (X,d) be an L-ts, a € L\ {1}, and A € LX. A family
pu C LX is called

(1) an a-shading of A if for any z € X, (A'(z) V V z¢, B(2)) £ a.

(2) a strong a-shading (briefly S-a-shading) of A if A ¢ (A" (2)V Ve, B(z)) £
a.

(3) an a-R-neighborhood family (briefly a-R-NF) of A if for any z € X, (A(x) A
Ape, B@)) # a.

(4) a strong a-R-neighborhood family (briefly S-a-R-NF)of A if \/
A, B@) % a

It is obvious that an S-a-shading of A is an a-shading of A, an S-a-R-NF of A is
an a-R-NF of A, and p is an S-a-R-NF of A iff i/ is an S-a-shading of A.

Definition 2.4. [9] Let (X,6) be an L-ts, a € L\ {0} and A € L¥X. A family
uC L¥ is called
(L)a Bq-cover of A if for any x € X, it follows that a € B(A'(z) V'V g¢, B(2)).
(2) a strong 3,-cover (briefly S-f,-cover) of Aifa € B(A,cx (A (2)VVge, B(2))).
(3) a Qq-cover of A if for any x € X, it follows that A'(z) V  z¢, B(z) = a.

(A(x) A

reX

It is obvious that an S-3,-cover of A must be a §,-cover of A, and a (,-cover of
A must be a Q,-cover of A.

Definition 2.5. [9] Let a € L\ {0} and A € LX. A family u C L¥ is said to have
weak a-nonempty intersection in A if \/ o (A(z) A Age, B(z)) = a. p is said to
have the finite weak a-intersection property in A if every finite subfamily v of u has
weak a-nonempty intersection in A.

Lemma 2.6. [8] Let L be a complete Heyting algebra, f : X — Y a map and
o LX — LY the extension of f. Then for any family v C LY,

V (7 (A)() /\B/e\wB(y)) =V (A=) /\B/E\w fr(B)(x)).

yey zeX
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Definition 2.7. [1] Let (X,6) be an L-ts, A € L*X. Then A is called a pre-semi-
open set if A < (A7),, and A is called a pre-semi-closed set if A > (A4°)_, where
A° A=, A, and A_ are the interior, closure, semi-interior and semi-closure of A,
respectively.

Definition 2.8. [1,2] Let (X, ) and (Y, 7) be two L-ts’s. Amap f: (X,d) — (Y, 7)
is called
(1) pre-semi-continuous if f; (B) is pre-semi-open in (X, d) for every B € 7.
(2) pre-semi-irresolute if f; (B) is pre-semi-open in (X,0) for every pre-semi-
open L-set B in (Y, 7).

3. Definition and Properties of PS-compactness

Definition 3.1. Let (X,6) be an L-ts. A € L is called PS-compact if for every
family p of pre-semi-open L-sets, it follows that

AN A@)VV B)< V A (A’(w)\/B\é B()).

rzeX Bep ve2w) zeX
(X,0) is called PS-compact if 1 is PS-compact.

Example 3.2. Let X = {2} and L = {0,1/3,2/3,1}. For each a € L define
a =1—a. Letd = {0,A X}, where A(x) = 2/3, then ¢ is a topology on X.
Clearly, any L-set in (X, ¢) is PS-compact.

Example 3.3. Let X be an infinite set or a singleton, A and C be two [0, 1]-sets
on X defined as A(z) = 0.5, for all z € X; C(x) = 0.6, for all x € X. Take
d = {0,A, X}, then § is a topology on X. Obviously, any [0,1]-set in (X,§) is
pre-semi-open, and the set of all semi-open [0,1]-sets in (X, §) is . In this case, we
easily obtain that C' is not PS-compact, and any [0,1]-set in (X, d) is semi-compact.

Remark 3.4. Since every semi-open L-set is pre-semi-open[l], every PS-compact
L-set is semi-compact. Example 3.3 shows that a semi-compact L-set needn’t be
PS-compact.

Theorem 3.5. Let (X,0) be an L-ts. A € LX is PS-compact iff for every family
w of pre-semi-closed L-sets, it follows that

\% (A(SE)AB/G\ B(z)) = AV (Al@)n N\ B(z)).

rzeX ve2lm) xeX Bev

Proof. This is immediate from Definition 3.1 and quasi-complements. (I

Theorem 3.6. Let (X,8) be an L-ts and A € LX. Then the following conditions
are equivalent.

(1) A is PS-compact.

(2) For any a € L\ {1}, each pre-semi-open S-a-shading u of A has a finite
subfamily which is an S-a-shading of A.

(3) For any a € L\ {0}, each pre-semi-closed S-a-R-NF v of A has a finite
subfamily which is an S-a-R-NF of A.

(4) For any a € L\ {0}, each family of pre-semi-closed L-sets which has the
finite weak a-intersection property in A has weak a-nonempty intersection in A.

Proof. The theorem follows immediately from Definition 3.1 and Theorem 3.5. O
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Theorem 3.7. Let L be a complete Heyting algebra. If both C' and D are PS-
compact, then C'V D is PS-compact.

Proof. By Theorem 3.5 for any family u of pre-semi-closed L-sets, we have

V (v D)x)n N B(x))

zeX Bep

= é/X(C(fU)AB/G\ B(z))} v { é/X(D(w)AB/G\ B(z))}
>{ AV (C(I)AB/G\ B)ivi A V.(D@E)A A\ B(x))}

ve2(n) zeX ve2(n) zeX Bev

= ANV ((CVD)(I)AB/E\ B(z)).

ve2m) xeX
This shows that C'V D is PS-compact. O

Theorem 3.8. Let (X,0) be an L-ts and C,D € LX. If C is PS-compact and D
is pre-semi-closed, then C' A D is PS-compact.

Proof. By Theorem 3.5, for any family u of pre-semi-closed L-sets, we have

V (@AD)@)n A Blz))

reX cpn
= V(@A A Bl)
reX BepUu{D}

= ANV (C(CEMB/E\ B(z))

ve2mu{D}) xeX

={ AV (C(x)AB/G\ B)yr{ AV (C@)AD@)A N\ B(x))}

ve2w) xeX ve2w) xeX Bev

={ AV (C(x)/\D(w)AB/E\ B(x))}

ve2w) xeX

= AV ((C/\D)(w)/\B/e\ B(z)).

ve2lw) zeX
This shows that C A D is PS-compact. d

Corollary 3.9. Let (X,8) be PS-compact and D € LX be pre-semi-closed. Then
D is PS-compact.

Definition 3.10. Let (X,¢) and (Y, 7) be two L-ts’s. A map f: (X,0) — (Y,7) is
called

(1) strongly pre-semi-continuous if f; (B) is pre-semi-open in (X, ¢) for every
semi-open L-set B in (Y, 7).

(2) strongly pre-semi-irresolute if f; (B) is semi-open in (X,d) for every pre-
semi-open L-set B in (Y, 7).

It is obvious that a strongly pre-semi-continuous map is pre-semi-continuous,
and a strongly pre-semi-irresolute map is pre-semi-irresolute.

From Lemma 2.6 and Definitions 2.7, 2.8, 3.10, we can obtain the following
theorems.

Theorem 3.11. Let L be a complete Heyting algebra and f : (X,6) — (Y, 1) be
an pre-semi-irresolute map. If A is a PS-compact L-set in (X,0), then f;7(A) is a
PS-compact L-set in (Y, T).
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Theorem 3.12. Let L be a complete Heyting algebra and f: (X,8) — (Y, 7) be a
pre-semi-continuous map. If A is a PS-compact L-set in (X,0), then f;7(A) is a
compact L-set in (Y, ).

Theorem 3.13. Let L be a complete Heyting algebra and f : (X,6) — (Y, 1) be
a strongly pre-semi-continuous map. If A is a PS-compact L-set in (X,0), then
fi (A) is a semi-compact L-set in (Y, T).

Theorem 3.14. Let L be a complete Heyting algebra and f : (X,6) — (Y, 1) be
a strongly pre-semi-irresolute map. If A is a semi-compact L-set in (X,0), then
fr(A) is a PS-compact L-set in (Y, 7).

4. Further Properties of PS-compactness and Goodness
In this section, we assume that L is a completely distributive de Morgan algebra.

Theorem 4.1. Let (X,8) be an L-ts and A € LX. Then the following conditions
are equivalent.

(1) A is PS-compact.

(2) For any a € L\ {0}, each pre-semi-closed S-a-R-NF v of A has a finite
subfamily which is an S-a-R-NF of A.

(3) For any a € L\ {0}, each pre-semi-closed S-a-R-NF v of A has a finite
subfamily which is an a-R-NF of A.

(4) For any a € L\ {0} and any pre-semi-closed S-a-R-NF 1) of A, there exist a
finite subfamily ¢ of ¥ and b € 5(a) such that ¢ is an S-b-R-NF of A.

(5) For any a € L\ {0} and any pre-semi-closed S-a-R-NF 1) of A, there ezist a
finite subfamily ¢ of ¥ and b € B(a) such that ¢ is a b-R-NF' of A.

(6) For any a € M(L), each pre-semi-closed S-a-R-NF 1 of A has a finite
subfamily which is an S-a-R-NF of A.

(7) For any a € M(L), each pre-semi-closed S-a-R-NF 1) of A has a finite
subfamily which is an a-R-NF of A.

(8) For any a € M(L) and any pre-semi-closed S-a-R-NF i of A, there exist a
finite subfamily ¢ of ¥ and b € 5*(a) such that ¢ is an S-b-R-NF of A.

(9) For any a € M(L) and any pre-semi-closed S-a-R-NF 1) of A, there exist a
finite subfamily ¢ of ¥ and b € 5*(a) such that ¢ is a b-R-NF of A.

(10) For any a € L\ {1}, each pre-semi-open S-a-shading jn of A has a finite
subfamily which is an S-a-shading of A.

(11) For any a € L\ {1}, each pre-semi-open S-a-shading p of A has a finite
subfamily which is an a-shading of A.

(12) For any a € L\ {1} and any pre-semi-open S-a-shading p of A, there exist
a finite subfamily v of p and b € a(a) such that v is an S-b-shading of A.

(13) For any a € L\ {1} and any pre-semi-open S-a-shading p of A, there exist
a finite subfamily v of p and b € a(a) such that v is a b-shading of A.

(14) For any a € P(L), each pre-semi-open S-a-shading p of A has a finite
subfamily which is an S-a-shading of A.

(15) For any a € P(L), each pre-semi-open S-a-shading pn of A has a finite
subfamily which is an a-shading of A.
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(16) For any a € P(L) and any pre-semi-open S-a-shading p of A, there exist a
finite subfamily v of u and b € a*(a) such that v is an S-b-shading of A.

(17) For any a € P(L) and any pre-semi-open S-a-shading p of A, there exist a
finite subfamily v of p and b € a*(a) such that v is a b-shading of A.

(18) For any a € L\ {0}, each pre-semi-open S-Bq-cover u of A has a finite
subfamily which is an S-B4-cover of A.

(19) For any a € L\ {0}, each pre-semi-open S-B,-cover p of A has a finite
subfamily which is a B,-cover of A.

(20) For any a € L\ {0} and any pre-semi-open S-B4-cover u of A, there exist a
finite subfamily v of n and b € L with a € B(b) such that v is an S-By-cover of A.

(21) For any a € L\ {0} and any pre-semi-open S-f3,-cover u of A, there exist
a finite subfamily v of p and b € L with a € B(b) such that v is a By-cover of A.

(22) For any a € M(L), each pre-semi-open S-f,-cover p of A has a finite
subfamily which is an S-B4-cover of A.

(23) For any a € M(L), each pre-semi-open S-B,-cover p of A has a finite
subfamily which is a B,-cover of A.

(24) For any a € M (L) and any pre-semi-open S-B,-cover u of A, there exist a
finite subfamily v of p and b € M(L) with a € 5*(b) such that v is an S-By-cover
of A.

(25) For any a € M(L) and any pre-semi-open S-B,-cover u of A, there exist a
finite subfamily v of u and b € M (L) with a € 5*(b) such that v is a By-cover of A.

(26) For any a € L\ {0} and any b € B(a) \ {0}, each pre-semi-open Q,-cover
w of A has a finite subfamily which is a Qy-cover of A.

(27) For any a € L\ {0} and any b € B(a) \ {0}, each pre-semi-open Qq-cover
1 of A has a finite subfamily which is a By-cover of A.

(28) For any a € L\ {0} and any b € B(a) \ {0}, each pre-semi-open Qq-cover
u of A has a finite subfamily which is an S-By-cover of A.

(29) For any a € M(L) and any b € 3*(a), each pre-semi-open Q,-cover p of A
has a finite subfamily which is a Qp-cover of A.

(80) For any a € M(L) and any b € 8*(a), each pre-semi-open Q,-cover p of A
has a finite subfamily which is a By-cover of A.

(31) For any a € M(L) and any b € 5*(a), each pre-semi-open Q,-cover p of A
has a finite subfamily which is an S-By-cover of A.

Proof. (1) < (2) : This follows directly from Theorem 3.6.

(2) = (3) : This is easy to prove if one notices that every S-a-R-NF of A is an
a-R-NF of A.

(3) = (4) : Let a € L\ {0} and ¢ be a pre-semi-closed S-a-R-NF of A.
Then \,cx(A(x) A Agey, B(z)) 72 a. Take ¢ € B(a) such that V .y (A(z) A
Apey B(x)) # c. Obviously ¢ is a pre-semi-closed S-c-R-NF of A. By (3) we know
that ¢ has a finite subfamily ¢ which is a ¢-R-NF of A. Take b € ((a) such that
c € (b), then ¢ is an S-b-R-NF of A.

(4) = (5) = (2) : Obvious.

(2) = (6) = (7) = (8) = (9) = (1) : the proof is similar.

(1) < (10) : This follows directly from Theorem 3.6.
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(10) = (11) : This is easy to prove if one notices that every S-a-shading of A is
an a-shading of A.

(11) = (12) : Let a € L\ {1} and p be a pre-semi-open S-a-shading of A.
Then A,cx (A4 (z) V Vge, B(z)) £ a. Take ¢ € afa) such that A, (A'(x) V
Ve, B(@)) £ c. Obviously p is a pre-semi-open S-c-shading of A. By (11) we
know that p has a finite subfamily v which is a c-shading of A. Take b € a(a) such
that ¢ € a(b), then v is an S-b-shading of A.

(12) = (13) = (10) : Obvious.

(10) = (14) = (15) = (16) = (17) = (10) : We can prove these in the similar
way.

Similarly we can also prove the other results. O

Lemma 4.2. Let (X,wr(7)) be generated topologically by (X, 7). If A is a pre-
semi-open L-set in (X, T), then xa is a pre-semi-open set in (X,wr(7)). If B is a
pre-semi-open L-set in (X,wr (7)), then, B(q) is a pre-semi-open set in (X, 1) for
every a € L.

Proof. This is easy to prove if one notices that xp- = (xp)~ and xp, = (xp)o
and applies Lemma 5.4 in [9]. O

Theorem 4.3. Let (X, 7) be a topological space and (X,wr (7)) be generated topo-
logically by (X, 7). Then (X,wr (7)) is PS-compact iff (X, T) is PS-compact.

Proof. Necessity: Let u be a pre-semi-open cover of (X, 7). Then {xa|A4 € u} is a
family of pre-semi-open L-sets in (X, wr (7)) with A, cx(V ac, xa(z)) = 1. From
PS-compactness of (X, wp (7)), we have that

= A(Vxa@)< V AV xal@).

rzeX A€p vealn) zeX Acv

This implies that there exists v € 2 such that A,y (\V 4c, Xa(z)) = 1. Hence,
v is a cover of (X, 7). Therefore (X, 1) is PS-compact.

Sufficiency: Let u be a family of pre-semi-open L-sets in (X,wr, (7)) and
Neex(Vpe, B(x)) = a. If a = 0, obviously we have that

ACV B)< V AV B).

zeX Bep ve2w) xeX Bev
Now we suppose that a # 0. In this case, for any b € 3(a) \ {0}, we have that

be (A (V B@))< N AV Bx)= N U B(Bx)).

z€X Bep zeX Bep zeX Bep

By Lemma 4.2, this implies that {B)|B € u} is a pre-semi-open cover of (X, 7)
and from the PS-compactness of (X, ), we know that there exists v € 2(#) such
that {B)|B € v} is a cover of (X, 7). Hence b < A,y (Vpe, B(z)). Moreover,
we have that

b< ACV B@)< V AV B).

x€X BE€v ve2w) xeX Bev
This implies that
AV B@)=a=V{bbepa)}< V A(V B).
zeX Bep ve2w) xeX Bev
Therefore, (X,wr (7)) is PS-compact. O
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