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A COMMON FIXED POINT THEOREM FOR SIX WEAKLY
COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES

S. SEDGHI, K. P. R. RAO AND N. SHOBE

Abstract. In this paper, we give some new definitions of M-fuzzy metric
spaces and we prove a common fixed point theorem for six mappings under

the condition of weakly compatible mappings in complete M-fuzzy metric

spaces.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [39] in 1965. Since
then, to use this concept in topology and analysis many authors have expansively
developed the theory of fuzzy sets and applications. Especially, Deng [2], Erceg
[10], Kaleva and Seikkala [19] and Kramosil and Michalek [20] have introduced the
concepts of fuzzy metric spaces in different ways. George and Veeramani [14] and
Kramosil and Michalek [20] have introduced the concept of fuzzy topological spaces
induced by fuzzy metric which have very important applications in quantum parti-
cle physics particularly in connections with both string and ε(∞) theory which were
given and studied by El Naschie [6-9] and Tanaka et.al [36]. Recently Gregori et.al
[15,16 ] and Rafi et.al [28] studied some properties in fuzzy and intuitionistic fuzzy
metric spaces. Many authors [1,10-14,17,18,21,22,25-27,29-33,35,37,38] have stud-
ied the fixed point theory in fuzzy (probabilistic) metric spaces. On the other hand,
there have been a number of generalizations of metric spaces.Recently Dhage[5] in-
troduced the concept of D-metric and has studied some fixed point theorems in
[5,3,4]. Unfortunately,almost all theorems of Dhage are not valid(see [23,24]).Sedgi
and Shobe [34] introduced D∗-metric space by altering the tetrahedran inequality
in D-metric and using D∗-metric analogy,they defined M-fuzzy metric space and
studied some fixed point theorems. In this paper we define M-fuzzy metric space
using triangular norm and prove some results in it. We also prove a common fixed
point theorem for six self maps in a M-fuzzy metric space.

Definition 1.1. A triangular norm (shortly t-norm) is a binary operation T :
[0, 1]× [0, 1] −→ [0, 1] = I which is a continuous t-norm if it satisfies the following
conditions

(1) T is associative and commutative,
(2) T is continuous,
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(3) T (a, 1) = a for all a ∈ [0, 1],
(4) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Some examples of continuous t-norm are the Lukasiewicz t-norm TL : I × I −→
I, T (a, b) = max(a + b− 1, 0) ,TP (a, b) = ab, and TM (a, b) = min{a, b}.

t–norms are recursively defined by T 1(x1, x2) = T (x1, x2) and

Tn(x1, · · · , xn+1) = T (Tn−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ [0, 1], for all i ∈ {1, 2, . . . , n + 1}.

Now, we define the concept ofM-fuzzy metric spaces with the help of continuous
t-norms as a generalization of fuzzy metric space due to George and Veeramani [14].

Definition 1.2. A 3-tuple (X,M, T ) is called a M-fuzzy metric space if X is
an arbitrary (non-empty) set, T is a continuous t-norm, and M is a fuzzy set on
X3 × (0,∞) satisfying the following conditions: for all x, y, z, a ∈ X and t, s > 0,

(FM-1) M(x, y, z, t) > 0,
(FM-2) M(x, y, z, t) = 1 if and only if x = y = z,
(FM-3) M(x, y, z, t) = M(p{x, y, z}, t) (symmetry), where p is a permutation

function,
(FM-4) T (M(x, y, a, t),M(a, z, z, s)) ≤M(x, y, z, t + s),
(FM-5) M(x, y, z, ·) : (0,∞) → [0, 1] is continuous.

Lemma 1.3. Let (X,M, T ) be a M-fuzzy metric space. For any x, y ∈ X and
t > 0, we have

(1) M(x, x, y, t) = M(x, y, y, t).
(2) M(x, y, z, ·) is nondecreasing.

Proof. (1) Let ε > 0. Then by (FM-4) we have

M(x, x, y, ε + t) ≥ T (M(x, x, x, ε),M(x, y, y, t)) = M(x, y, y, t),(1.1)
M(y, y, x, ε + t) ≥ T (M(y, y, y, ε),M(y, x, x, t)) = M(y, x, x, t).(1.2)

By taking limit ε → 0 in (1.1) and (1.2), we get M(x, x, y, t) = M(x, y, y, t).
(2) By (FM-4) we have T (M(x, y, a, t),M(a, z, z, s)) ≤M(x, y, z, t + s) for any

z, a ∈ X and t, s > 0. Let a = z, then we have T (M(x, y, z, t),M(z, z, z, s)) ≤
M(x, y, z, t + s) so that M(x, y, z, t + s) ≥M(x, y, z, t). �

In the following examples, we know that both d-metric and fuzzy metric induce
a M-fuzzy metric.

Example 1.4. Let (X, d) be a metric space. Denote T (a, b) = a.b for all a, b ∈ [0, 1].
For each t ∈]0,∞[, let

M(x, y, z, t) =
t

t + D(x, y, z)

where D(x, y, z) = max{d(x, y), d(y, z), d(x, z)} for all x, y, z ∈ X. Then (X,M, T )
is a M-fuzzy metric space. We call the M-fuzzy metric M, induced by the metric
d, as the standard M-fuzzy metric.
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Example 1.5. Let X = [0, 1]. Let T (a, b) = min{a, b} for all a, b ∈ [0, 1] and let
M be the fuzzy set on X ×X ×X × (0,+∞) defined as follows:

M(x, y, z, t) =
t

t + |x− y|+ |y − z|+ |z − x|
,

for all t > 0. Then (X,M, T ) is a fuzzy metric space.

Example 1.6. Let (X, M, T ) be a fuzzy metric space. If we define M : X3 ×
(0,∞) −→ [0, 1] by

M(x, y, z, t) = T (T (M(x, y, t),M(y, z, t)),M(z, x, t))

for every x, y, z in X, then (X,M, T ) is a M-fuzzy metric space.

Proof. Let x, y, z ∈ X and t > 0.
(FM-1) It is easy to see that M(x, y, z, t) > 0.
(FM-2)M(x, y, z, t) = 1 ⇔ M(x, y, t) = M(y, z, t) = M(z, x, t) = 1 ⇔ x = y =

z.
(FM-3) It is easy to see that M(x, y, z, t) = M(p{x, y, z}, t), where p is a per-

mutation function.
(FM-4) Since M(x, y, ·) is nondecreasing, we have

M(x, y, z, t + s) = T (T (M(x, y, t + s),M(y, z, t + s)),M(z, x, t + s))
≥ T 4(M(x, y, t),M(y, a, t),M(a, z, s),M(z, a, s),M(a, x, t))
= T 4(M(x, y, a, t),M(a, z, s),M(z, a, s),M(z, z, s))
= T (M(x, y, a, t),M(a, z, z, s))

for any s > 0.
(FM-5) M(x, y, z, ·) : (0,∞) → [0, 1] is continuous.

Hence (X,M, T ) is a M-fuzzy metric space. �

Let (X,M, T ) be a M-fuzzy metric space. For t > 0, the open ball BM(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

BM(x, r, t) = {y ∈ X : M(x, y, y, t) > 1− r}.

A subset A of X is called open set if for each x ∈ A there exist t > 0 and 0 < r < 1
such that BM(x, r, t) ⊆ A.

Proposition 1.7. In a M-fuzzy metric space, every open ball is an open set.

Proof. Let BM(x, r, t) be an open ball and y ∈ BM(x, r, t). Then M(x, y, y, t) >
1 − r and there exists 0 < t0 < t such that M(x, y, y, t0) > 1 − r. Put r0 =
M(x, y, y, t0). Since r0 > 1 − r, there exists 0 < s < 1 such that r0 > 1 − s >
1 − r. Now, for a given r0 and s with r0 > 1 − s, we can find 0 < r1 < 1 such
that T (r0, r1) ≥ 1 − s. Now consider the ball BM(y, 1 − r1, t − t0). We claim
that BM(y, 1 − r1, t − t0) ⊂ BM(x, r, t). Let z ∈ BM(y, 1 − r1, t − t0). Then
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M(y, z, z, t− t0) > r1 and hence by Lemma 1.3,

M(x, z, z, t) = M(z, z, x, t) ≥ T (M(y, x, x, t0),M(z, z, y, t− t0))
= T (M(x, y, y, t0),M(y, z, z, t− t0)) ≥ T (r0, r1)
≥ 1− s

> 1− r.

Thus z ∈ BM(x, r, t) and hence BM(y, 1− r1, t− t0) ⊂ BM(x, r, t).
Thus BM(x, r, t) is an open set. �

Remark 1.8. Let (X,M, T ) be a M-fuzzy metric space. Define

τM = {A ⊂ X : ∀x ∈ A,∃ t > 0 and 0 < r < 1 such that BM(x, r, t) ⊂ A}.

Then τM is a topology on X.

Theorem 1.9. Every M-fuzzy metric space is Hausdorff.

Proof. Let (X,M, T ) be the given M-fuzzy metric space. Let x, y be two distinct
points of X. Then 0 < M(x, y, y, t) < 1. Put M(x, y, y, t) = r for some r ∈ (0, 1).
For each r with r < r0 < 1, there exists r1 such that T (r1, r1) ≥ r0. Now consider
the open balls BM(x, 1− r2,

1
2 t) and BM(y, 1− r2,

1
2 t). Clearly, BM(x, 1− r2,

1
2 t)∩

BM(y, 1− r2,
1
2 t) = ∅. For if there exists z ∈ BM(x, 1− r2,

1
2 t)∩BM(y, 1− r2,

1
2 t),

then

r = M(x, y, y, t) = M(x, x, y, t) ≥ T (M(x, x, z, 1
2 t),M(z, y, y, 1

2 t))

= T (M(x, z, z, 1
2 t),M(y, z, z, 1

2 t))
≥ T (r1, r1) ≥ r0

> r,

which is a contradiction. Hence (X,M, T ) is Hausdorff. �

Definition 1.10. Let (X,M, T ) be aM-fuzzy metric space and {xn} be a sequence
in X.

(1) {xn} is said to be convergent to a point x ∈ X (denoted by limn→∞ xn = x)
if limn→∞M(x, x, xn, t) = 1 for all t > 0.

(2) {xn} is called a Cauchy sequence if if for each 0 < ε < 1 and t > 0, there
exist n0 ∈ N such that M(xn, xn, xm, t) > 1− ε for all n, m ≥ n0.

(3) A M-fuzzy metric in which every Cauchy sequence is convergent is said to
be complete.

2. The Main Results

Definition 2.1. Let (X,M, T ) be a M-fuzzy metric space. M is said to be
continuous function on X3 × (0,∞) if

lim
n→∞

M(xn, yn, zn, tn) = M(x, y, z, t)
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whenever a sequence {(xn, yn, zn, tn)} in X3 × (0,∞) converges to a point
(x, y, z, t) ∈ X3 × (0,∞), i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z and lim
n→∞

M(x, y, z, tn) = M(x, y, z, t).

Lemma 2.2. Let (X,M, T ) be a M-fuzzy metric space. Then M is continuous
function on X3 × (0,∞).

Proof. Let x, y, z ∈ X and t > 0, and let {(x′n, y′n, z′n, t′n)} be a sequence in
X3 × (0,∞) that converges to (x, y, z, t). Since {M(x′n, y′n, z′n, t′n)} is a sequence
in (0, 1], there is a subsequence {(xn, yn, zn, tn)} of sequence {(x′n, y′n, z′n, t′n)} such
that sequence {M(xn, yn, zn, tn)} converges to some point of [0, 1]. Fix δ > 0 such
that δ < t

2 . Then there is n0 ∈ N such that |t − tn| < δ for all n ≥ n0. Hence we
have

M(xn, yn, zn, tn)

≥M(xn, yn, zn, t− δ) ≥ T (M(xn, yn, z, t− 4δ

3
),M(z, zn, zn,

δ

3
))

≥ T 2(M(xn, z, y, t− 5δ

3
),M(y, yn, yn,

δ

3
),M(z, zn, zn,

δ

3
))

≥ T 3(M(z, y, x, t− 2δ),M(x, xn, xn,
δ

3
),M(y, yn, yn,

δ

3
),M(z, zn, zn,

δ

3
))

and

M(x, y, z, t + 2δ)

≥M(x, y, z, tn + δ) ≥ T (M(x, y, zn, tn +
2δ

3
),M(zn, z, z,

δ

3
))

≥ T 2(M(x, zn, yn, tn +
δ

3
),M(yn, y, y,

δ

3
),M(zn, z, z,

δ

3
))

≥ T 3(M(zn, yn, xn, tn),M(xn, x, x,
δ

3
),M(yn, y, y,

δ

3
),M(zn, z, z,

δ

3
))

for all n ≥ n0. By taking limit n →∞, we obtain

lim
n→∞

M(xn, yn, zn, tn) ≥ T 3(M(x, y, z, t− 2δ), 1, 1, 1) = M(x, y, z, t− 2δ)

and

M(x, y, z, t + 2δ) ≥ lim
n→∞

T 3(M(xn, yn, zn, tn), 1, 1, 1) = lim
n→∞

M(xn, yn, zn, tn),

respectively. So, by continuity of the function t 7→ M(x, y, z, t), we immediately
deduce that

lim
n→∞

M(xn, yn, zn, tn) = M(x, y, z, t).

Therefore M is continuous on X3 × (0,∞). �

Definition 2.3. Let A and S be mappings from a M-fuzzy metric space (X,M, ∗)
into itself. Then the mappings A and S are said to be
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(1) weakly compatible if they commute at a coincidence point, that is, Ax = Sx
implies ASx = SAx.

(2) compatible if for all t > 0,

lim
n→∞

M(ASxn, SAxn, SAxn, t) = 1

whenever {xn} is a sequence in X such that limn→∞Axn = limn→∞ Sxn = x for
some x ∈ X.

We also mention the following families of t-norms:

Definition 2.4. It is said that the t-norm T is of Hadzic-type (H-type for short)
and T ∈ H if the family {Tn}n∈N of its iterates defined, for each x in [0,1], by

T 0(x) = 1, Tn+1(x) = T (Tn(x), x), ∀n ≥ 0,

is equicontinuous at x = 1, that is,

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) such that x > 1− δ =⇒ Tn(x) > 1− ε, ∀n ≥ 1,

There is a nice characterization of continuous t-norm T of the class H [27].
(i) If there exists a strictly increasing sequence {bn}n∈N in [0,1] such that

limn→∞ bn = 1 and T (bn, bn) = bn ∀n ∈ N, then T is of Hadzic-type.
(ii) If T is continuous and T ∈ H, then there exists a sequence {bn}n∈N as in (i).

The t-norm TM is an trivial example of a t-norm of H-type, but there are t-norms
T of Hadzic-type with T 6= TM (see, e.g.,[17]).

Definition 2.5. [17]. If T is a t-norm and (x1, x2, · · · , xn) ∈ [0, 1]n(n ∈ N), then
Tn

i=1xi is defined recurrently by 1, if n = 0 and Tn
i=1xi = T (Tn−1

i=1 xi, xn) for all
n ≥ 1. If {xi}i∈N is a sequence of numbers from [0,1], then T∞i=1xi is defined as
limn→∞ Tn

i=1xi (this limit always exists) and T∞i=nxi as T∞i=1xn+i. In fixed point
theory in probablistic metric spaces there are of particular interest t-norms T and
sequences {xn} ⊂ [0, 1] such that limn→∞ xn = 1 and limn→∞ T∞i=1xn+i = 1.

Throughout this section, a binary operation T : [0, 1] × [0, 1] −→ [0, 1] is a
continuous t-norm of Hadzic-type with limt→∞M(x, y, z, t) = 1, for every x, y, z ∈
X.

Lemma 2.6. Let (X,M, T ) be a M-fuzzy metric space. If sequence {xn} in X
exists such that for every n ∈ N,0 < k < 1 and t > 0,

M(xn, xn, xn+1, k
nt) ≥M(x0, x0, x1, t)

then sequence {xn} is a Cauchy sequence.

Proof. Since t-norm T of Hadzic-type, hence we have

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) such that x > 1− δ =⇒ Tn(x) > 1− ε, ∀n ≥ 1.

Since, limt→∞M(x0, x0, x1, t) = 1, there exists t0 > 0 such that
M(x0, x0, x1, t0) > 1− δ, for some δ ∈ (0, 1). Therefore,

Tn(M(x0, x0, x1, t0)) > 1− ε, ∀n ≥ 1.
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Since
∑∞

n=0 knt0 < ∞, we have for every t > 0 there exists n0 ∈ N such that
∀n ≥ n0 we have,

∞∑
i=n

kit0 < t.

Thus for every n ≥ n0 and ∀m ∈ N,

M(xn, xn, xn+m+1, t) ≥ M(xn, xn, xn+m+1,
∞∑

i=n

kit0)

≥ M(xn, xn, xn+m+1,
n+m∑
i=n

kit0)

≥ Tn+m
i=n M(xi, xi, xi+1, k

it0)

= Tm
i=0M(xi+n, xi+n, xi+n+1, k

i+nt0)
≥ TmM(x0, x0, x1, t0)
> 1− ε,

for each 0 < ε < 1 and t > 0. Hence sequence {xn} is Cauchy . �

Now we prove a common fixed point theorem for six self maps.

Theorem 2.7. Let A,B, R, S, C and Q be self-mappings of a fuzzy metric space
(X,M, T ) satisfying:

(i)Q(X) ⊆ CS(X), R(X) ⊆ AB(X) and CS(X) or AB(X) is a closed subset
of X,

(ii) The pair (R,CS) and (Q,AB) are weakly compatible and CS = SC , BQ =
QB,RS = SR and AB = BA,

(iii) M(Qx,Ry,Ry, kt)×
T (M(Qx,Ry,Ry, kt),M(ABx, Qx,Qx, kt))M(CSy, Ry,Ry, kt)

≥ [p(t)M(ABx, Qx,Qx, t) + q(t)M(ABx, CSy,CSy, t)]M(ABx, Ry,Ry, 2kt)

for every x, y ∈ X , all t > 0 and some k ∈ (0, 1) , where p, q : R+ −→ (0, 1]
be two functions such that p(t) + q(t) = 1.
Then, A,B,C, S,Q and R have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point . By (i), there exist x1, x2 ∈ X such that

Qx0 = CSx1 = y0 and Rx1 = ABx2 = y1.

Inductively, construct sequence {yn} in X such that

y2n = Qx2n = CSx2n+1 and y2n+1 = ABx2n+2 = Rx2n+1,

for n = 0, 1, 2, · · · .
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Now, we prove {yn} is a Cauchy sequence. Let dm(t) = M(ym, ym+1, ym+1, t).
Then, by (iii) we have

M(Qx2n, Rx2n+1, Rx2n+1, kt)×(
T (M(Qx2n, Rx2n+1, Rx2n+1, kt),M(ABx2n, Qx2n, Qx2n, kt))

×M(CSx2n+1, Rx2n+1, Rx2n+1, kt)

)
≥

(
p(t)M(ABx2n, Qx2n, Qx2n, t)

+q(t)M(ABx2n, CSx2n+1, CSx2n+1, t)

)
M(ABx2n, Rx2n+1, Rx2n+1, 2kt)

Thus

M(y2n, y2n+1, y2n+1, kt)
(

T (M(y2n, y2n+1, y2n+1, kt),M(y2n−1, y2n, y2n, kt))
×M(y2n, y2n+1, y2n+1, kt)

)
≥

(
p(t)M(y2n−1, y2n, y2n, t)

+q(t)M(y2n−1, y2n, y2n, t)

)
M(y2n−1, y2n+1, y2n+1, 2kt).

Hence d2n(kt)M(y2n−1, y2n+1, y2n+1, 2kt)

≥ [p(t)d2n−1(t) + q(t)d2n−1(t)]M(y2n−1, y2n+1, y2n+1, 2kt).

Thus
d2n(kt) ≥ d2n−1(t)

Putting x = x2n+2, y = x2n+1 in (iii) we have

M(Qx2n+2, Rx2n+1, Rx2n+1, kt)×(
T (M(Qx2n+2, Rx2n+1, Rx2n+1, kt),M(ABx2n+2, Qx2n+2, Qx2n+2, kt))

M(CSx2n+1, Rx2n+1, Rx2n+1, kt)

)
≥

(
p(t)M(ABx2n+2, Qx2n+2, Qx2n+2, t)

+q(t)M(ABx2n+2, CSx2n+1, CSx2n+1, t)

)
M(ABx2n+2, Rx2n+1, Rx2n+1, 2kt).

Thus
M(y2n+2, y2n+1, y2n+1, kt)×(

T (M(y2n+2, y2n+1, y2n+1, kt),M(y2n+1, y2n+2, y2n+2, kt))
×M(y2n, y2n+1, y2n+1, kt)

)
≥

(
p(t)M(y2n+1, y2n+2, y2n+2, t)
+q(t)M(y2n+1, y2n, y2n, t)

)
M(y2n+1, y2n+1, y2n+1, 2kt).

Therefore

d2n+1(kt) ≥ d2n+1(kt)[T (M(y2n+2, y2n+1, y2n+1, kt),M(y2n, y2n+1, y2n+1, kt))]
≥ p(t)d2n+1(t) + q(t)d2n(t)
≥ p(t)d2n+1(kt) + q(t)d2n(t).

Thus
(1− p(t))d2n+1(kt) ≥ q(t)d2n(t).

It follows that

d2n+1(kt) ≥ q(t)
1− p(t)

d2n(t) = d2n(t)

Hence for every n ∈ N we have dn(kt) ≥ dn−1(t). Now , we have

M(yn, yn+1, yn+1, t) ≥M(yn−1, yn, yn,
t

k
) ≥ · · · ≥ M(y0, y1, y1,

t

kn
)
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So,by Lemma 2.6, sequence {yn} is Cauchy and the completeness of X, {yn}
converges to y in X. Hence

lim
n→∞

Qx2n = lim
n→∞

CSx2n+1 = lim
n→∞

Rx2n+1 = lim
n→∞

ABx2n+2 = y.

Let AB(X) be a closed subset of X , then there exists v ∈ X such that ABv = y.
Putting x = v, y = x2n+1 in (iii) we get

M(Qv, Rx2n+1, Rx2n+1, kt)
(

T (M(Qv, Rx2n+1, Rx2n+1, kt),M(ABv, Qv,Qv, kt))
×M(CSx2n+1, Rx2n+1, Rx2n+1, kt)

)
≥

(
p(t)M(ABv, Qv,Qv, t)

+q(t)M(ABv, CSx2n+1, CSx2n+1, t)

)
M(ABv, Rx2n+1, Rx2n+1, 2kt).

Letting n →∞ , we get

M(Qv, y, y, kt)
(

T (M(Qv, y, y, kt),M(y, Qv,Qv, kt))
×M(y, y, y, kt)

)
≥

(
p(t)M(y, Qv,Qv, t)
+q(t)M(y, y, y, t)

)
M(y, y, y, 2kt).

Thus

M(Qv, y, y, kt) ≥ M(Qv, y, y, kt)[T (M(Qv, y, y, kt),M(Qv, y, y, kt))]
≥ p(t)M(y, Qv,Qv, t) + q(t)
≥ p(t)M(y, y,Qv, kt) + q(t)

So,

M(Qv, y, y, kt) ≥ q(t)
1− p(t)

= 1.

Hence Qv = y. Since the pair (Q, AB) is weakly compatible we have ABQv =
QABv, hence ABy = Qy. Now from (iii), we have

M(Qy,Rx2n+1, Rx2n+1, kt)
(

T (M(Qy,Rx2n+1, Rx2n+1, kt),M(ABy,Qy,Qy, kt))
×M(CSx2n+1, Rx2n+1, Rx2n+1, kt)

)
≥

(
p(t)M(ABy,Qy,Qy, t)

+q(t)M(ABy,CSx2n+1, CSx2n+1, t)

)
M(ABy,Rx2n+1, Rx2n+1, 2kt).

Letting n →∞ , we get

M(Qy, y, y, kt)
(

T (M(Qy, y, y, kt),M(Qy,Qy,Qy, kt))
×M(y, y, y, kt)

)
≥

(
p(t)M(y, Qy, Qy, t)
+q(t)M(y, y, y, t)

)
M(ABy, y, y, 2kt).

Thus

M(Qy, y, y, kt)M(Qy, y, y, 2kt) ≥ [p(t)M(y, Qy, Qy, t) + q(t)]M(Qy, y, y, 2kt)

It follows that
M(Qy, y, y, kt) ≥ p(t)M(y, y,Qy, kt) + q(t),

Archive of SID

www.SID.ir



58 S. Sedghi, K. P. R. Rao and N. Shobe

so that ,

M(Qy, y, y, kt) ≥ q(t)
1− p(t)

= 1.

Thus Qy = y.Hence ABy = Qy = y.Since y = Qy ∈ Q(X) ⊆ CS(X), there exists
w ∈ X such that CSw = y. From (iii), we have

M(Qy,Rw,Rw, kt)
(

T (M(Qy,Rw,Rw, kt),M(ABy,Qy,Qy, kt))
×M(CSw,Rw,Rw, kt)

)
≥

(
p(t)M(ABy,Qy,Qy, t)
+q(t)M(ABy,CSw,CSw, t)

)
M(ABy,Rw,Rw, 2kt).

M(y, Rw, Rw, , kt)
(

T (M(y, Rw, Rw, kt),M(y, y, y, kt))
×M(y, Rw, Rw, kt)

)
≥

(
p(t)M(y, y, y, t)
+q(t)M(y, y, y, t)

)
M(y, Rw, Rw, 2kt).

Thus M(y, Rw, Rw, kt)M(y, Rw, Rw, 2kt)

≥ (p(t) + q(t))M(y, Rw, Rw, 2kt) = M(y, Rw, Rw, 2kt).

Hence M(y, Rw, Rw, kt) = 1 so that Rw = y.
Since the pair (R,CS) is weakly compatible , we have CSRw = RCSw and hence
CSy = Ry. By (iii), we get

M(Qy,Ry, Ry, kt)
(

T (M(Qy,Ry, Ry, kt),M(ABy,Qy,Qy, kt))
×M(CSy, Ry,Ry, kt)

)
≥

(
p(t)M(ABy,Qy,Qy, t)
+q(t)M(ABy,CSy, y, t)

)
M(ABy,Ry, Ry, 2kt).

Thus

M2(y, Ry,Ry, kt) ≥ M(y, Ry,Ry, kt)
(

T (M(y, Ry,Ry, kt),M(y, y, y, kt))
×M(Ry, Ry,Ry, kt)

)
≥

(
p(t)M(y, y, y, t)
+q(t)M(y, Ry, y, kt)

)
M(y, Ry, y, 2kt)

≥ [p(t) + q(t)M(y, Ry, y, kt)]M(y, Ry, y, kt)

This implies that

M(y, Ry, y, kt) ≥ p(t)
1− q(t)

= 1.

Hence Ry = y. Since AB = BA and QB = BQ,we have AB(By) = B(ABy) = By,
and QBy = BQy = By. Similarly, since CS = SC and RS = SR we have
CS(Sy) = S(CSy) = Sy and RSy = SRy = Sy. By (iii), we have

M(QBy, Ry,Ry, , kt)
(

T (M(QBy, Ry,Ry, kt),M(AB(By), QBy,QBy, kt))
×M(CSy, Ry,Ry, kt)

)
≥

(
p(t)M(AB(By), QBy,QBy, t)
+q(t)M(AB(By), CSy,CSy, t)

)
M(AB(By), Ry,Ry, 2kt).
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Thus

M(By, y, y, kt)
(

T (M(By, y, y, kt),M(By,By,By, kt))
×M(y, y, y, kt)

)
≥

(
p(t)M(By,By,By, t)
+q(t)M(By, y, y, t)

)
M(By, y, y, 2kt)

Hence

M2(By, y, y, kt) ≥ [p(t) + q(t)M(By, y, y, kt)]M(By, y, y, kt).

M(By, y, y, kt) ≥ p(t) + q(t)M(By, y, y, kt).

M(By, y, y, kt) ≥ p(t)
1− q(t)

= 1.

It follows that By = y. From (iii), we have

M(Qy,RSy,RSy, , kt)
(

T (M(Qy,RSy,RSy, kt),M(ABy,Qy,Qy, kt))
×M(CSy, RSy,RSy, kt)

)
≥

(
p(t)M(ABy,Qy,Qy, t)
+q(t)M(ABy,CSy, CSy, t)

)
M(ABy,RSy, RSy, 2kt).

Thus

M2(y, Sy, Sy, kt) ≥ M(y, Sy, Sy, kt)
(

T (M(y, Sy, Sy, kt),M(y, y, y, kt))
×M(Sy, Sy, Sy, kt)

)
≥

(
p(t)M(y, y, y, t)
+q(t)M(y, Sy, Sy, t)

)
M(y, Sy, Sy, 2kt)

≥ [p(t) + q(t)M(y, Sy, Sy, kt)]M(y, Sy, Sy, kt)

Hence

M(y, Sy, Sy, kt) ≥ p(t)
1− q(t)

= 1

so that Sy = y. Therefore,

Sy = By = Qy = Ry = ABy = CSy = Ay = Cy = y.

To prove uniqueness, let x be another common fixed point of Q, A,B,C,R, S.Then

M(Qx,Ry,Ry, kt)
(

T (M(Qx,Ry,Ry, kt),M(ABx, Qx,Qx, kt))
×M(CSy, Ry,Ry, kt)

)
≥

(
p(t)M(ABx, Qx,Qx, t)
+q(t)M(ABx, CSy, y, t)

)
M(ABx, Ry,Ry, 2kt).

Thus

M(x, y, y, kt)M(x, y, y, kt) ≥ [p(t)) + q(t)M(x, y, y, t)]M(x, y, y, 2kt)
≥ [p(t) + q(t)M(x, y, y, kt)]M(x, y, y, kt)

Therefore,
M(x, y, y, kt) ≥ p(t) + q(t)M(x, y, y, kt).
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Hence

M(x, y, y, kt) ≥ p(t)
1− q(t)

= 1.

So x = y.
�

Now we give an Example to illustrate our Theorem.

Example 2.8. Let X = [0, 1],T (a, b) = min{a, b} and define A,B,C, Q, R, S :
X −→ X as

Qx = Rx = Bx = Sx = 1, Ax = Cx =
{

1 if x is rational,
0 if x is irrational.

for all x ∈ X.
Let p(t) and q(t) be any arbitrary functions mapping from R+ −→ (0, 1] such that
p(t) + q(t) = 1 and

M(x, y, z, t) =
t

t + |x− y|+ |y − z|+ |z − x|
.

Then all conditions of Theorem 2.7 are satisfied and 1 is the unique common fixed
point of A,B, C, Q, R and S.

Acknowledgement: The authors are thankful to the referees for their valuable
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