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A COMMON FIXED POINT THEOREM FOR SIX WEAKLY
COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES

S. SEDGHI, K. P. R. RAO AND N. SHOBE

ABSTRACT. In this paper, we give some new definitions of M-fuzzy metric
spaces and we prove a common fixed point theorem for six mappings under
the condition of weakly compatible mappings in complete M-fuzzy metric
spaces.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [39] in 1965. Since
then, to use this concept in topology and analysis many authors have expansively
developed the theory of fuzzy sets and applications. Especially, Deng [2], Erceg
[10], Kaleva and Seikkala [19] and Kramosil and Michalek [20] have introduced the
concepts of fuzzy metric spaces in different ways. George and Veeramani [14] and
Kramosil and Michalek [20] have introduced the concept of fuzzy topological spaces
induced by fuzzy metric which have very important applications in quantum parti-
cle physics particularly in connections with both string and €(>) theory which were
given and studied by El Naschie [6-9] and Tanaka et.al [36]. Recently Gregori et.al
[15,16 | and Rafi et.al [28] studied some properties in fuzzy and intuitionistic fuzzy
metric spaces. Many authors [1,10-14,17,18,21,22,25-27,29-33,35,37,38] have stud-
ied the fixed point theory in fuzzy (probabilistic) metric spaces. On the other hand,
there have been a number of generalizations of metric spaces.Recently Dhage[5] in-
troduced the concept of D-metric and has studied some fixed point theorems in
[5,3,4]. Unfortunately,almost all theorems of Dhage are not valid(see [23,24]).Sedgi
and Shobe [34] introduced D*-metric space by altering the tetrahedran inequality
in D-metric and using D*-metric analogy,they defined M-fuzzy metric space and
studied some fixed point theorems. In this paper we define M-fuzzy metric space
using triangular norm and prove some results in it. We also prove a common fixed
point theorem for six self maps in a M-fuzzy metric space.

Definition 1.1. A triangular norm (shortly t-norm) is a binary operation T :
[0,1] x [0,1] — [0, 1] = I which is a continuous t-norm if it satisfies the following
conditions

(1) T is associative and commutative,

(2) T is continuous,
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(3) T(a,1) =a for all a € [0,1],
(4) T(a,b) < T(c,d) whenever a < ¢ and b < d, for each a,b,c,d € [0, 1].

Some examples of continuous t-norm are the Lukasiewicz t-norm T, : I x [ —
I,T(a,b) =max(a+b—1,0) Tp(a,b) = ab, and Tys(a,b) = min{a,b}.
t-norms are recursively defined by T (x1,22) = T'(x1,z2) and

Tn(xla”' 7x7L+1) = T(Tnil(‘rla"' 7xn)7xn+1)
forn > 2 and z; € [0,1], for all 4 € {1,2,...,n+ 1}.

Now, we define the concept of M-fuzzy metric spaces with the help of continuous
t-norms as a generalization of fuzzy metric space due to George and Veeramani [14].

Definition 1.2. A 3-tuple (X, M,T) is called a M-fuzzy metric space if X is
an arbitrary (non-empty) set, T is a continuous ¢-norm, and M is a fuzzy set on
X3 x (0, 00) satisfying the following conditions: for all z,y,z,a € X and t,s > 0,

(FM-1) M(z,y,2,t) >0,

(FM-2) M(z,y,z2,t) =1if and only if =y = 2,

(FM-3) M(z,y,z,t) = M(p{z,y,z},t) (symmetry), where p is a permutation
function,

(FM-4) T(M(z,y,a,t), M(a,z,z,5)) < M(z,y,z,t+ s),

(FM-5) M(z,y,z,-) : (0,00) — [0, 1] is continuous.

Lemma 1.3. Let (X, M,T) be a M-fuzzy metric space. For any x,y € X and
t > 0, we have

(1) M(z,z,y,t) = M(z,y,y,t).
(2) M(z,y,z,-) is nondecreasing.

Proof. (1) Let € > 0. Then by (FM-4) we have

(L1) M(z,z,y,e+1) 2 T(M(z,2,2,€), M(2,y,y,1)) = M(z,y,9,1),
(12) M(y,y,z,e+t) > T(M(y,y,y,¢), M(y, z,2,1)) = M(y, z, 2., 1).
By taking limit ¢ — 0 in (1.1) and (1.2), we get M(z,z,y,t) = M(x,y,y,1).
(2) By (FM-4) we have T(M(z,y,a,t), M(a, z,z,5)) < M(x,y,z,t+ s) for any
z,a € X and t,s > 0. Let a = z, then we have T(/\/l(z,y7 t),M(z,2,2,8)) <
(z,y,2,t+ s) so that M(x,y, z,t + s) > M(z,y, 2, t). a

In the following examples, we know that both d-metric and fuzzy metric induce
a M-fuzzy metric.

Example 1.4. Let (X, d) be a metric space. Denote T'(a,b) = a.b for all a,b € [0, 1].
For each t €]0, oo, let

t
t+ D(x,y,2)
where D(z,y, z) = max{d(z,y),d(y, 2),d(z, z)} for all z,y,z € X. Then (X, M,T)
is a M-fuzzy metric space. We call the M-fuzzy metric M, induced by the metric
d, as the standard M-fuzzy metric.

M(z,y, z,t) =
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Example 1.5. Let X = [0,1]. Let T'(a,b) = min{a, b} for all a,b € [0,1] and let
M Dbe the fuzzy set on X x X x X x (0,+00) defined as follows:

t
t+lz—yl+ly—z+|z— x|

M(z,y,z,t) =

for all ¢ > 0. Then (X, M,T) is a fuzzy metric space.

Example 1.6. Let (X, M,T) be a fuzzy metric space. If we define M : X3 x
(0,00) - [Oa 1] by

M(z,y,2,t) = T(T(M(z,y,t), M(y, 2, 1)), M (2, 7,t))
for every z,y,z in X, then (X, M, T) is a M-fuzzy metric space.

Proof. Let x,y,z € X and t > 0.

(FM-1) Tt is easy to see that M(z,y, z,t) > 0.

(FM-2)M(z,y,2,t) = 1 & M(x,y,t) = M(y,2,t) = M(z,xz,t) =1 & =y =
2.

(FM-3) Tt is easy to see that M(z,y, 2z,t) = M(p{x,y, 2},t), where p is a per-
mutation function.

(FM-4) Since M(x,y,-) is nondecreasing, we have

M(z,y,z,t+s) = T(T(M(x,y,t+3),M(y,z,t+3s)), M(z,x,t+s))
TH(M(z,y,t), M(y,a,t), M(a,z,s), M(z,a,s), M(a,z,t))
T M(z,y,a,t), M(a, z,5), M(z,a,s), M(z,z,5))

= TM(z,y,a,t), M(a, z,z2,8))

Y

for any s > 0.
(FM-5) M(x,y,z,-) : (0,00) — [0,1] is continuous.
Hence (X, M, T) is a M-fuzzy metric space. O

Let (X, M,T) be a M-fuzzy metric space. For ¢ > 0, the open ball Ba(x,r,t)
with center x € X and radius 0 < r < 1 is defined by

Bum(z,rt) ={y € X : M(z,y,y,t) > 1 —r}.

A subset A of X is called open set if for each x € A thereexistt >0and 0 <r < 1
such that Ba(z,r,t) C A.

Proposition 1.7. In a M-fuzzy metric space, every open ball is an open set.

Proof. Let Ba(x,r,t) be an open ball and y € Ba(x,r,t). Then M(z,y,y,t) >
1 — r and there exists 0 < tg < t such that M(z,y,y,t0) > 1 —r. Put 7o =
M(z,y,y,to). Since rg > 1 — r, there exists 0 < s < 1 such that g > 1 —s >
1 —r. Now, for a given ry and s with rp > 1 — s, we can find 0 < r; < 1 such
that T(rg,r1) > 1 —s. Now consider the ball Ba(y,1 — r1,t — o). We claim
that Baq(y,1 — ri,t —tg) C Bm(z,7,t). Let 2 € Byp(y,1 — r1,t — tp). Then
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My, z,z,t —tp) > r1 and hence by Lemma 1.3,

Mz, z,2,t) = Mz, z,2,t) > T(M(y,z,z,t9), M(z, z,y,t — tg))
T(M(.’E, Y, Y, t0)7 M(yu Z, Z7t - tO)) 2 T(To, 7’1)
1—5

1—r.

\ARY

Thus z € Bap(z, 7, t) and hence Bag(y, 1 —r1,t — to) C Bpm(zx, r,t).
Thus Bay(z,r,t) is an open set. O

Remark 1.8. Let (X, M,T) be a M-fuzzy metric space. Define
Tm={ACX:Vzxe A It>0and0<r <1such that Byp(z,r,t) C A}.

Then 7,4 is a topology on X.

Theorem 1.9. Fvery M-fuzzy metric space is Hausdorff.

Proof. Let (X, M, T) be the given M-fuzzy metric space. Let z,y be two distinct
points of X. Then 0 < M(x,y,y,t) < 1. Put M(z,y,y,t) = r for some r € (0,1).
For each r with r < ro < 1, there exists 1 such that T'(ry,71) > 9. Now consider
the open balls Ba(z, 1 —r2, %t) and Ba(y, 1 —ra, %t) Clearly, Ba(z,1—r2, %t) N
Bam(y,1—ra, %t) = (). For if there exists z € Ba(z,1 — 1o, %t) N Bam(y, 1 —ro, %t),
then

ro= M(z,y,y,t) = M(z,zy,1)

Z T(M(J},x, 2, %t),M(Z, Y, Y, %t))
T(M(z,z,2,5t), M(y, 2, 2, 51))

> T(ri,m1) > 10
> 7
which is a contradiction. Hence (X, M, T) is Hausdorff. O

Definition 1.10. Let (X, M, T) be a M-fuzzy metric space and {z, } be a sequence
in X.

(1) {x,} is said to be convergent to a point x € X (denoted by lim,, oo 2, = )
if limy,— 0o M(z, 2, 2,,t) = 1 for all ¢ > 0.

(2) {z,} is called a Cauchy sequence if if for each 0 < € < 1 and ¢ > 0, there
exist ng € N such that M(z,,, Zp, Tm,t) > 1 — € for all n,m > ng.

(3) A M-fuzzy metric in which every Cauchy sequence is convergent is said to
be complete.

2. The Main Results

Definition 2.1. Let (X, M,T) be a M-fuzzy metric space. M is said to be
continuous function on X3 x (0, 00) if

lim M(ffmym Zn;tn) = M(x,% Z»t)

n—oo



A Common Fixed Point Theorem for Six Weakly Compatible Mappings in M-fuzzy ... 53

whenever a sequence {(Z,, Yn, Zn,tn)} in X3 x (0,00) converges to a point
(r,9,2,t) € X3 x (0,00), i.e.

lim x, =z, lim y, =y, lim 2, =z and lim M(z,y,z2,t,) = M(z,y, 2, t).

n— oo n— 00 n—00 n—oo

Lemma 2.2. Let (X, M,T) be a M-fuzzy metric space. Then M is continuous
function on X3 x (0, 00).

Proof. Let z,y,z € X and t > 0, and let {(z],y,,2,,t,)} be a sequence in
X3 x (0,00) that converges to (z,y,2,t). Since {M(zl,, vy, 2, )} is a sequence

in (0, 1], there is a subsequence {(zy, Yn, 2n,tn)} of sequence {(z,,y.,, 2, ), )} such

that sequence { M (xy,, yn, 7n,tn)} converges to some point of [0,1]. Fix § > 0 such
that § < £. Then there is ng € N such that |t —t,| < d for all n > ng. Hence we
have

M(xnvyn; vatn)

> M(xruynu Zn,t — 5) > T(M(xnvynv z,t — 4?5)7-/\/1(2’ Zn,y Zn, g))

) )
M(y7ynaynv o M(Z,Zn, Zn, g))

5
ZTQ(M(I'H,,%y,t—— 3)7

>

> TS (M (2, 2,1 — 28), M(2, 2, 0,

)
3)7 M(Z,Zn,zn,§)>

)
M(ya Yns Yn, g)a

and

M(xvyaz7t+ 26)

20 )
Z M(I7yvz7tn + 5) 2 T(M(I7yvznatn + ?)7/\/1(’2”52727 g))
) 5 5 5
Z T (M(.I,Zn,yn,tn + g)vM(yﬂa Y,Y, g)aM(znv'Za Z, g))
1) 1) 1)
2 T?’(M(zn,yn,xn,tn),/\/l(xn,x,x, g)a M(ynvyaya §)7M(Zna 2y %, g))

for all n > ng. By taking limit n — oo, we obtain

lim M(xnvyna Znatn) > TB(M(Z, Y, Zat - 26)a 1’ ]-7 1) = ./\/l(ac,y,z,t - 25)

n—oo
and
M(x,y727t+25) > lim T3(M(xnaynazn7tn)717171) = lim M(xnaynvzvutn))
n—oo n—oo

respectively. So, by continuity of the function ¢t — M(x,y, z,t), we immediately
deduce that

lim M(2n, Yn, 2n, tn) = M(2,y,2,1).

n—oo

Therefore M is continuous on X3 x (0, 00). d

Definition 2.3. Let A and S be mappings from a M-fuzzy metric space (X, M, x)
into itself. Then the mappings A and S are said to be
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(1) weakly compatible if they commute at a coincidence point, that is, Ax = Sz
implies ASx = SAz.
(2) compatible if for all £ > 0,

lim M(ASz,,SAz,,SAz,,t) =1

n—oo

whenever {z,} is a sequence in X such that lim,,_, Az, = lim,_ Sz, = = for
some z € X.

We also mention the following families of t-norms:

Definition 2.4. It is said that the t-norm T is of Hadzic-type (H-type for short)
and T € H if the family {T"},en of its iterates defined, for each x in [0,1], by

Tx) =1, T""(z) = T(T"(x), ), ¥n >0,
is equicontinuous at x = 1, that is,
Vee (0,1) 30 € (0,1) such that x >1 -0 =T"(z) >1—¢, Vn >1,

There is a nice characterization of continuous t-norm T of the class H [27].
(i) If there exists a strictly increasing sequence {b, }nen in [0,1] such that
lim,, o0 by, = 1 and T'(by,, b,,) = by, ¥n € N, then T is of Hadzic-type.
(if) If T is continuous and T' € H, then there exists a sequence {b, }nen as in (i).
The t-norm T}y is an trivial example of a t-norm of H-type, but there are t-norms
T of Hadzic-type with T' # T (see, e.g.,[17]).

Definition 2.5. [17]. If T is a t-norm and (z1, 22, - ,z,) € [0,1]"(n € N), then
T" ,x; is defined recurrently by 1, if n = 0 and T)* ;z; = T(Ti":_llxi,xn) for all
n > 1. If {z;}ien is a sequence of numbers from [0,1], then T, x; is defined as
limy, oo T2y 2; (this limit always exists) and T2, x; as T2 Ty, In fixed point
theory in probablistic metric spaces there are of particular interest t-norms T and
sequences {z,} C [0,1] such that lim, oo x, = 1 and lim,, 00 T2, Xy yi = 1.

Throughout this section, a binary operation 7' : [0,1] x [0,1] — [0,1] is a
continuous t-norm of Hadzic-type with lim; ., M(z,y, z,t) = 1, for every z,y, z €
X.

Lemma 2.6. Let (X, M,T) be a M-fuzzy metric space. If sequence {x,} in X
ezists such that for everyn € NJO <k <1 andt >0,

M(Tp, Tpy Tpnt1, k") > M(zo, x0, 21, 1)
then sequence {x,} is a Cauchy sequence.
Proof. Since t-norm T of Hadzic-type, hence we have
Ve € (0,1) 30 € (0,1) such that t >1 -5 = T"(z) > 1 —¢, ¥n > 1.

Since, lim;_, o M (20, 0, 21,t) = 1, there exists ¢y > 0 such that
M(zg, 2o, x1,t9) > 1 — 0, for some 6 € (0,1). Therefore,

T"(M(zo,x0,21,t0)) > 1 —€, Vn > 1.
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Since ZZO:O k™tg < oo, we have for every ¢t > 0 there exists ng € N such that
Vn > ng we have,

0 .
Z k'ty < t.
i=n

Thus for every n > ng and Vm € N,

o0
M(anaznazn—&-m—&-lat) > M(Inamnaxn+m+l7zkit0)

1=n
n+m

Z M(xn;xnaanrerly Z kitO)

=n
. .
T/ M (g, x4, @441, K'to)

i+
T2 oM(Zign, Tign, Tigny1, B o)

> T M(zo,20,21,10)
> 1 —k,
for each 0 < e < 1 and ¢ > 0. Hence sequence {x,} is Cauchy . O

Now we prove a common fixed point theorem for six self maps.

Theorem 2.7. Let A, B, R,S,C and Q be self-mappings of a fuzzy metric space
(X, M, T) satisfying:

(HQ(X) C CS(X), R(X) C AB(X) and CS(X) or AB(X) is a closed subset
of X,

(ii) The pair (R,CS) and (Q, AB) are weakly compatible and CS = SC' , BQ =
®@B,RS = SR and AB = BA,

(#4i) M(Qz, Ry, Ry, kt)x
T (M(Qz, Ry, Ry, kt), M(ABz, Qx, Qz, kt)) M(CSy, Ry, Ry, kt)
> [p(t)y M(ABz, Qz,Qx,t) + q(t) M(ABz,CSy, CSy, t)|M(ABx, Ry, Ry, 2kt)

for every x,y € X , allt > 0 and some k € (0,1) , where p,q : RT™ — (0, 1]
be two functions such that p(t) + q(t) = 1.
Then, A, B,C,S,Q and R have a unique common fized point in X .

Proof. Let x¢p € X be an arbitrary point . By (i), there exist z1,25 € X such that
Qro = CSx1 = yg and Rry = ABxy = y;.
Inductively, construct sequence {y,} in X such that
Yon = Qran = CSrant1 and Yont1 = ABTonto = Rrongr,

forn=0,1,2,---.
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Now, we prove {y,} is a Cauchy sequence. Let d,,(t) = M(Ym, Ym+1, Ym+1,1t)-
Then, by (iii) we have
M(QSUQn, R$2n+1, R1'2n+1, kt) X
T(M(Qz2n, Rrant1, Rrontt, kt), M(ABxa,, Qran, Qran, kt))
XM(CSTont1, Roony1, Rropy, kt)

p(t)M(ABx%, QxQn; Qx2n7 t)
= ( +g()M(ABzay, CSzan v, CSzanin,t) ) M ABT2m: Ronir, Rvon 1, 2kt)

Thus

T(M(Y2n, Yon+1, Y2nt1, kt), M(Y2n—1, Yon, Yon, kt))
M(yzn, Yan41, Yan41, k) ( XM (Y2ns Y2n+1, Y2n+1, kt)

> p(t)M(yanla Yon,s Y2n, t)
=\ +q(t)M(Y2n—1,Y2n, Y2n, t)

Hence day, (kt) M(y2n—1,Y2n+1; Y2nt1, 2kt)
> [p(t)dan—1(t) + q(t)don—1(t)]M(Y2n—1, Yon+1, Yant1, 2kt).

) M(Yan—1,Y2n+1, Yon+1, 2kt).

Thus
don (kt) > dap—1(t)

Putting ¢ = xap42,y = Tapy1 in (ili) we have

M(Qxoni2, Rron i1, Rrong1, kt)x
T(M(Qz2n+2, Rrant1, Rrany1, kt), M(ABzan 2, QTon+2, QT2n12, kt)) )
M(CngnH, Rx2n+1, Rx2n+17 ]ﬂt)
S ( p(t) M(ABx2y 12, QTony2, QT2ni2,t)
- —I—q(t)/\/l(ABx2n+2, OSl‘Q,H_l, CSZ‘QTH_l, t)
Thus

M(Y2n+2, Yont1; Yon+1, kt) X
T(M(y2n+2:Y2n+1, Yant1, kt), M(Y2nt1, Y2n+2, Yan+2, kt)) )
XM (Y2n, Y2n+1, Y2nt1, kt)
> ( P(t)M(Y2nt1, Y2n+2, Y2nt2, t)
- +q(t)M(Y2n41, Y2n, Yon, t)

> M(AB$2n+2, Rx2n+1, Rx2n+1, th)

M(Yoni1, Yont1, Yant1, 2kt).

Therefore

dont1(kt) > dons1(R)[T(M(Y2n+2: Y2nt1, Y2n+1, k), M(Y2n, Yont1, Yon+1, kt))]
> p(t)dant1(t) + q(t)dan(t)
> p(t)dan+1(kt) + q(t)dan(t).

Thus

(1= p(t))dant1(kt) = q(t)dan(t).
It follows that

q(t)
dant1(kt) > dan(t) = dan(t
2+1( )71—p(t)2() 2()
Hence for every n € N we have d,, (kt) > d,_1(t). Now , we have
t t
M(yn7yn+layn+l)t) Z M(yn—17yn7yn7 %) Z e Z M(y03y17y1? kfn)
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So,by Lemma 2.6, sequence {y,} is Cauchy and the completeness of X, {y,}
converges to y in X. Hence
lim Qzo, = lim CSzo,41 = lim Rzo,i1 = lim ABxg,i10 =y.
Let AB(X) be a closed subset of X , then there exists v € X such that ABv = y.
Putting = = v,y = xa,+1 in (iii) we get
T(M (QU, R$2n+1a Rx2n+17 kt)a M(Ava vi Q'U7 kt))
M(Qo, Rezner, Bozn, k) ( XM(CSw211, Rrani1, Rront1, kt)
N P(t)M(ABu, Qu.Qu,1)
- —|—q(t)M(AB’U,CSI27L+1,CS$2n+1,t)

Letting n — oo , we get

) M(AB’U, R$2n+1, R$2n+1, 2I€t)

M(Qu,y,y, kt) ( Z%;?;:;/:gt,)kt), M(y, Qu, Qu, kt)) )

> (700, Q0 Q)

My, y,y, 2kt).
+q(tO)M(y,y,y,1) ) (4,4, 2K0)

Thus
M(Qu,y,y,kt) > M(Qu,y,y, kt)[T(M(Qu,y,y, kt), M(Qu,y,y, kt))]
> p(t)M(y, Qu,Qu,t) + q(t)
> p(t)M(y,y, Qu, kt) + q(t)
So,
q(t)
M(Q’U7yayakt) Z ?p(t) -

Hence Qu = y. Since the pair (Q, AB) is weakly compatible we have ABQuv =
QABwv, hence ABy = Qy. Now from (iii), we have

T(M (Qy7 R$2n+1, Rm2n+17 kt)) M(ABZ% an va kt))
M(Qy, Rran+1, Reons, kt) XM(CS$2n+1, Rxont1, Rron1, ]ff)

p(t)M(ABy, Qy, Qy,1)
> ( +q(t)./\/l(ABy, C’Sx2n+1, CS$2n+1, t) M(AByv Rm2n+17 R$2n+1a 2kt)'

Letting n — oo , we get

M(Qy.y, y, kt) ( Z%;f?;vyy:gg)kww(@uQy,czy,kt» >

p(t)M(y, Qy, Qy,t)
> < q(OM(y, vy, ) >M(ABy,y,y,2kt).

Thus

M(Qy,y,y, kt)M(Qy,y,y,2kt) > [p(t)M(y, Qy, Qy,t) + q(t)IM(Qy,y,y, 2kt)
It follows that
M(Qy,y,y, kt) > p(t)M(y,y, Qy, kt) + q(t),
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so that ,
q(t)
M(Qy,y,y, kt) > —22— =1,
(Qy,y,y,kt) Ty
Thus Qy = y.Hence ABy = Qy = y.Since y = Qy € Q(X) C CS(X), there exists
w € X such that C'Sw = y. From (iii), we have
(M(Qy, Rw, Rw, kt), M(ABy, Qy, Qy, kt))
M(Qy,Rw,Rw,kt) < xM(C’Sw,Rw,Rw,kt)

p(t)M(ABy, Qy, Qy, t)
2 ( () M(ABy, CSw, CSw,¢) ) MABY, Fw, Rw, 2kt).

T(M(y, Rw, Rw, kt), M(y, y,y, kt))
My, Rw, Rw, , kt < X M(y, Rw, Rw k:t)

)
p(t)M y,y )
< +a(t)M(y, y,y, 1) >M(vaw7Rw,2kt),
(

Thus M(y, Rw, Rw, kt)M(y, Rw, Rw, 2kt)
> (p(t) + q(t))M(y, Rw, Rw, 2kt) = M(y, Rw, Rw, 2kt).

Hence M(y, Rw, Rw, kt) = 1 so that Rw = y.
Since the pair (R, CS) is weakly compatible , we have CSRw = RCSw and hence
CSy = Ry. By (iii), we get
(M(Qy, Ry, Ry, kt), M(ABy, Qy, Qy, kt))
M(Qy, Ry, Ry, kt) < x M(C'Sy, Ry, Ry, k’t)

p(t)M(ABy, Qy, Qy, 1)
- ( +q(t)M(ABy,CSy,y,t) M(ABy, Ry, Ry, 2kt).

Thus

2 T(M(y7 Ryv Rya kt)z M(yv Y, kt))
M(y, Ry, Ry, kt) > M(y7Ry,Ry,kt)< « M(Ry, Ry, Ry, kt)

p(H)M(y,y,y,t)
> . Ry, vy, 2kt
2 <+q<t)M<y,Ry,y,kt> MUy, By,y, 2k1)

> [p(t) + q(t)M(y, Ry, y, kt)| M(y, Ry, y, kt)

\Y

This implies that

p(t)
Hence Ry = y. Since AB = BA and QB = BQ,We have AB(By) = B(ABy) = By,
and QBy = BQy = By. Similarly, since CS = SC and RS = SR we have
CS(Sy) = S(CSy) = Sy and RSy = SRy = Sy. By (iii), we have

T(M(QBy, Ry, Ry, kt), M(AB(By), QBy, QBy, kt))
M(QByuRyaRya 7kt) XM(CSy,Ry,Ry,k‘t)

() M(AB(By), @By, QBy,1)
= (LB % ) ) MABB. Ry Ry 20
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Thus
T(M(By,y,y, kt), M(By, By, By, kt
M(By,yvy,kt)( Xs\/l(;;i,ft) ), M(By, By, By ))>
p(t)M(By, By, By,t) )
> M(By,y,y, 2kt
2 ( +q(t)M(By, y,y,t) (By, 9,9, 2kt)
Hence

M?(By,y,y, kt) > [p(t) + q(t)M(By, y, y, kt)]M(By, y, y. kt).
M(By,y,y, kt) > p(t) + q(t)M(By,y,y, kt).

M(By,y,y, kt) >

It follows that By = y. From (iii), we have

T(M(Qy, RSy, RSy, kt), M(ABy, Qy, Qy, kt))

p(t)M(ABy, Qy, Qy,t)
2 ( +q()M(ABy,CSy, Cy,p) ) MABY RS, RSy, 241).

Thus

2 T(M(y,Sy,Sy,kt),M(y,y,y,kt))
M=(y, Sy, Sy, kt) > M(%Sy,Sy,kt) ( x M(Sy, Sy, Sy, kt)

p(t)M(y,y,y,1)
( JFq(t)M(y, Sy7 Sy7 t) ) M(y> Sy7 Sy, th)

[p(t) + q(t)M(y, Sy, Sy, kt)|M(y, Sy, Sy, kt)

V

Hence
M(y, Sy, Sy, kt) >

so that Sy = y. Therefore,
Sy=By=Qy=Ry=ABy=CSy=Ay=Cy=y.
To prove uniqueness, let  be another common fixed point of Q, A, B,C, R, S.Then
T(M(Qz, Ry, Ry, kt), M(ABz, Qx, Qx, kt))
M(Qx, Ry, Ry, kt) < x M(CSy, Ry, Ry, kt)

p(t)yM(ABz, Qzx,Qx,t)
> < +q(tyM(ABz, CSy, y, 1) M(ABz, Ry, Ry, 2kt).
Thus

M(z,y,y, kt)M(z,y,y, kt) [p(t) + () M(z,y,y, ) M(z,y,y, 2kt)

2
> [p(t) + q(OM(z,y, y, k)| M(z, y,y, kt)

Therefore,
M(z,y,y,kt) = p(t) + q(t)M(z,y,y, kt).
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Hence
M(l‘,y,y,kt) Z _7

Sox=y.

Now we give an Example to illustrate our Theorem.
Example 2.8. Let X = [0,1],7(a,b) = min{a,b} and define A, B,C,Q,R,S :
X — X as

1 if x is rational,
0 if z is irrational.

Qx:Rx:Bac:szl,Ax:Cx:{

for all x € X.
Let p(t) and ¢(t) be any arbitrary functions mapping from R* — (0, 1] such that
p(t) +¢q(t) =1 and

t
t+le—yl+ly—zl+ |z —al
Then all conditions of Theorem 2.7 are satisfied and 1 is the unique common fixed
point of A, B,C,Q, R and S.

M(z,y,2,t) =
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