Iranian Journal of Fuzzy Systems **Vol. 5, No. 2,** (2008) pp. 93-99 93

t-BEST APPROXIMATION IN FUZZY NORMED SPACES

S. M. VAEZPOUR AND F. KARIMI

Abstract. The main purpose of this paper is to find t-best approximations in fuzzy normed spaces. We introduce the notions of t-proximinal sets and F-approximations and prove some interesting theorems. In particular, we investigate the set of all t-best approximations to an element from a set.

1. Introduction

The theory of fuzzy sets was introduced by L. Zadeh [9] in 1965. since then, many mathematicians have studied fuzzy normed spaces from several angles ([6], [1], [2]) and, in 2001, Veeramani introduced the concept of t-best approximations in fuzzy metric spaces. In this paper we consider the set of all t-best approximations on fuzzy normed spaces and prove several theorems pertaining to this set.

Definition 1.1. A binary operation $* : [0,1] \times [0,1] \longrightarrow [0,1]$ is said to be a continuous t-norm if $([0, 1], *)$ is a topological monoid with unit 1 such that $a * b \leq$ $c * d$ whenever $a \leq c$ and $b \leq d$ $(a, b, c, d \in [0, 1]).$

Definition 1.2. [6] The 3-tuple $(X, N, *)$ is said to be a fuzzy normed space if X is a vector space, * is a continuous t-norm and N is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$ and $t, s > 0$,

(*i*) $N(x, t) > 0$, (ii) $N(x,t) = 1 \Leftrightarrow x = 0$, (iii) $N(\alpha x, t) = N(x, t / \mid \alpha \mid)$, for all $\alpha \neq 0$, (iv) $N(x, t) * N(y, s) \leq N(x + y, t + s),$ (v) $N(x,.) : (0, \infty) \longrightarrow [0, 1]$ is continuous, (vi) lim_{t→∞} $N(x,t) = 1$.

Lemma 1.3. [6] Let N be a fuzzy norm. Then: (i) $N(x,t)$ is nondecreasing with respect to t for each $x \in X$,

(ii) $N(x - y, t) = N(y - x, t)$.

Remark 1.4. As was shown in [6], every fuzzy normed space induces a fuzzy metric space on it and is therefore a topological space.

Definition 1.5. [6] Let $(X, N, *)$ be a fuzzy normed space. The open ball $B(x, r, t)$ and the closed ball B[x,r,t] with the center $x \in X$ and radius $0 < r < 1$, $t > 0$ are

Received: March 2006; Revised: January 2007; Accepted: June 2007

Key words and phrases: Fuzzy normed space, t-best approximation, t-proximinal set.

94 S. M. Vaezpour and F. Karimi

defined as follows:

$$
B(x, r, t) = \{ y \in X : N(x - y, t) > 1 - r \},
$$

\n
$$
B[x, r, t] = \{ y \in X : N(x - y, t) \ge 1 - r \}.
$$

Lemma 1.6. [6] If $(X, N, *)$ is a fuzzy normed space. Then: (i) the function $(x, y) \rightarrow x + y$ is continuous, (ii) the function $(\alpha, x) \longrightarrow \alpha x$ is continuous.

2. t-best Approximation

Definition 2.1. [8] Let A be a nonempty subset of a fuzzy normed space $(X, N, *)$. For $x \in X$, $t > 0$, let

$$
d(A, x, t) = sup{N(y - x, t) : y \in A}.
$$

An element $y_0 \in A$ is said to be a t-best approximation of x from A if

$$
N(y_0 - x, t) = d(A, x, t)
$$

Definition 2.2. Let A be a nonempty set of a fuzzy normed space $(X, N, *)$. For $x \in X$, $t > 0$, we shall denote the set of all elements of t-best approximation of x from A by $P_A^t(x)$; i.e.,

$$
P_A^t(x) = \{ y \in A : d(A, x, t) = N(y - x, t) \}.
$$

If each $x \in X$ has at least (respectively exactly) one t-best approximation in A, then A is called a t-proximinal (respectively t-Chebyshev) set.

Definition 2.3. For $t > 0$, a nonempty closed subset A of a fuzzy normed space $(X, N, *)$ is said to be t-boundedly compact if for each x in X and $0 < r <$ $1, B[x, r, t] \cap A$ is a compact subset of X.

Theorem 2.4. (Invariance by translation and scalar multiplication)

Let A be a nonempty subset of a fuzzy normed space $(X, N, *)$. Then:

(i) $d(A + y, x + y, t) = d(A, x, t)$, for every $x, y \in X$ and $t > 0$,

(ii) $P_A^t(x+y) = P_A^t(x) + y$, for every $x, y \in X$ and $t > 0$,

(iii) $d(\alpha A, \alpha x, t) = d(A, x, t / \mid \alpha \mid)$ for every $x \in X$, $t > 0$ and $\alpha \in \mathbb{R} \setminus \{0\},$

(iv) $P_{\alpha A}^{|\alpha|t}(\alpha x) = \alpha P_A^t(x)$, for every $x \in X$, $t > 0$ and $\alpha \in \mathbb{R} \setminus \{0\}$,

(v) A is t−proximinal (respectively t−chebyshev) if and only if $A+y$ is t−proximinal (respectively t–chebyshev), for any given $y \in X$,

(vi) A is t−proximinal (respectively t−chebyshev) if and only if αA is $| \alpha |$ tproximinal (respectively α |t-chebyshev), for any given $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. (*i*) For any $x, y \in X$ and $t > 0$,

$$
d(A + y, x + y, t) = \sup \{ N((z + y) - (x + y), t) : z \in A \}
$$

=
$$
\sup \{ N(z - x, t) : z \in A \}
$$

=
$$
d(A, x, t).
$$

(*ii*) Using (*i*), $y_0 \in P_{A+y}^t(x+y)$ if and only if $y_0 \in A+y$ and $d(A+y, x+y, t)$ $N(x + y - y_0, t)$ if and only if $y_0 - y \in A$ and $d(A, x, t) = N(x - (y_0 - y), t)$ if and only if $y_0 - y \in P_A^t(x)$; i.e., $y_0 \in P_A^t(x) + y$. (*iii*) We have,

$$
d(\alpha A, \alpha x, t) = \sup \{ N(\alpha x - \alpha z, t) : z \in A \}
$$

=
$$
\sup \{ N(\alpha (x - z), t) : z \in A \}
$$

=
$$
\sup \{ N(x - z, t / | \alpha |) : z \in A \}
$$

=
$$
d(A, x, t / | \alpha |).
$$

(iv) From (iii) it follows that $y_0 \in P_{\alpha A}^{|\alpha| t}(\alpha x)$ if and only if $y_0 \in \alpha A$ and $d(\alpha A, \alpha x, \beta A)$ $\alpha | t$ = N($\alpha x - y_0$, | $\alpha | t$) if and only if $y_0/\alpha \in A$ and $N(x - y_0/\alpha, t) = d(A, x, t)$. However, this is equivalent to $y_0/\alpha \in P_A^t(x)$; i.e., $y_0 \in \alpha P_A^t(x)$. (v) is an immediate consequence of (ii), and (vi) follows from (iv). \Box

Corollary 2.5. Let M be a nonempty subspace of x . Then: (i) $d(M, x + y, t) = d(M, x, t)$, for every $t > 0$, $x \in X$ and $y \in M$, (ii) $P_M^t(x+y) = P_M^t(x) + y$, for every $t > 0$, $x \in X$ and $y \in M$, (iii) $d(M, \alpha x, |\alpha t|) = d(M, x, t)$, for every $t > 0$, $x \in X$ and $\alpha \in \mathbb{R} \setminus \{0\}$, (iv) $P_M^{|\alpha|t}(\alpha x) = \alpha P_M^t(x)$, for every $t > 0$, $x \in X$ and $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. (i) and (ii) follow from theorem $(2.4)(i)$ and $(2.4)(ii)$, and the fact that if M is a subspace and $y \in M$, then $M + y = M$.

(*iii*) and (*iv*) follow from Theorem 2.4 (*(iii*) and *(iv)*), and the fact that if M is a subspace and $\alpha \neq 0$, then $\alpha M = M$.

 \Box

Definition 2.6. For $x \in X$, $0 < r < 1$, $t > 0$,

$$
S[x, r, t] = \{y \in X : N(x - y, t) = 1 - r\},\
$$

$$
e_A^t(x) = 1 - d(A, x, t).
$$

Theorem 2.7. Let $(X, N, *)$ be a fuzzy normed space, A be a subset of $X, x \in X\backslash\overline{A}$ and $t > 0$. Then we have,

$$
P_A^t(x) = A \cap B[x, e_A^t(x), t]
$$

= $A \cap S[x, e_A^t(x), t].$ (1)

Proof. The inclusions

P

$$
P_A^t(x) \subseteq A \cap S[x, e_A^t(x), t] \subseteq A \cap B[x, e_A^t(x), t]
$$
\n⁽²⁾

are obvious by the definitions of $P_A^t(x)$ and $e_A^t(x)$. Conversely, let $y \in A \cap B[x, e^t_A(x), t]$, then we have, $y \in A$ and

$$
N(y - x, t) \ge 1 - e_A^t(x) = d(A, x, t) \ge N(y - x, t).
$$

Therefore $y \in A$ and

$$
N(y - x, t) = d(A, x, t),
$$

which implies that $y \in P_A^t(x)$. So, $A \cap B[x, e_A^t(x), t] \subset P_A^t(x)$, whence, by (2), we have (1) , which completes the proof.

 \Box

96 S. M. Vaezpour and F. Karimi

Remark 2.8. Let $(X, N, *)$ be a fuzzy normed space, A be a subset of $X, x \in X\setminus\overline{A}$ and $t > 0$. Then we have

$$
A \cap B(x, e_A^t(x), t) = \emptyset,
$$
\n⁽³⁾

because, if $y_0 \in A \cap B(x, e_A^t(x), t)$ then $d(A, x, t) \ge N(x - y_0, t) > d(A, x, t)$, which is absurd.

Corollary 2.9. Let $(X, N, *)$ be a fuzzy normed space, A be a subset of $X, x \in X\backslash \overline{A}$ with $P_A^t(x) \neq \emptyset$ and $0 < r < 1$ such that :

$$
\emptyset \neq A \cap B[x, r, t] \subseteq S[x, r, t]. \tag{4}
$$

Then we have

$$
r = e_A^t(x),
$$

and consequently $A \cap B[x, r, t] = P_A^t(x)$.

Proof. If $r < e^t_A(x)$, then by the definition of $e^t_A(x)$ we have $A \cap B[x, r, t] = \emptyset$, which contradicts (4). If $r > e^t_A(x)$, since $P^t_A(x) \neq \emptyset$, then by (1) we have

$$
\emptyset \neq P_A^t(x) = A \cap B[x, e_A^t(x), t] \subseteq A \cap B(x, r, t),
$$

which contradicts (4), and this completes the proof.

 \Box

Definition 2.10. Let $(X, N, *)$ be a fuzzy normed space, $0 < r < 1$ and $t > 0$. We shall say that a set $A \subset X$ supports the cell $B[x, r, t]$, or that A is a support set of the cell $B[x, r, t]$, if we have $d(A, B[x, r, t], t) = 1$ and $A \cap B(x, r, t) = \emptyset$.

Theorem 2.11. Let $(X, N, *)$ be a fuzzy normed space, A a non-void set in X, $x \in X \backslash \overline{A}$, $a_0 \in A$ and $t > 0$. We have $a_0 \in P_A^t(x)$ if and only if the set A supports the cell $B = B[x, 1 - N(a_0 - x, t), t].$

Proof. Assume that $a_0 \in P_A^t(x)$. Hence $N(a_0 - x, t) = d(A, x, t)$. Then by (3), we have $A \cap B(x, 1 - N(a_0 - x, t), t) = \emptyset$, on the other hand, since $a_0 \in A \cap B[x, 1 N(a_0-x, t), t$, we have $d(A, B, t) = 1$. Consequently, the set A supports the cell B. Conversely, suppose $a_0 \notin P_A^t(x)$, hence $N(a_0 - x, t) < d(A, x, t)$, and let $0 < \varepsilon < 1$ be such that $N(a_0 - x, t) < d(A, x, t) - \varepsilon$. Then there exists an $a \in A$ such that $N(a_0 - x, t) < d(A, x, t) - \varepsilon < N(a - x, t)$, hence $a \in B(x, 1 - N(a_0 - x, t), t)$. Consequently, A does not support the cell B, which completes the proof.

 \Box

Remark 2.12. We recall that a set A in a topological space τ is said to be countably compact, if every countable open cover of A has a finite subcover, or, what is equivalent, if for every decreasing sequence $A_1 \supset A_2 \supset \cdots$ of non-void closed subsets of A we have $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Theorem 2.13. Let $(X, N, *)$ be a fuzzy normed space, τ be an arbitrary topology on X and $t > 0$. If A is a non-void set of X such that for $A \cap B[x, r, t]$ is τ -countably compact, then A is t-proximinal.

t-best Approximation in Fuzzy Normed Spaces 97

Proof. For every $n \in \mathbb{N}, 0 < 1 - d(A, x, t) + \frac{d(A, x, t)}{n+1} < 1$. Put

$$
A_n^t = A \cap B[x, 1 - d(A, x, t) + \frac{d(A, x, t)}{n + 1}, t] \quad (n = 1, 2, \ldots).
$$

Since for every $n \in \mathbb{N}$, $d(A, x, t)(1 - \frac{1}{n+1}) < d(A, x, t)$, obviously $A_1^t \supset A_2^t \supset \cdots$ and each A_n^t is non-void. Hence there exists $a_n^t \in A$ such that

$$
d(A, x, t)(1 - \frac{1}{n+1}) < N(a_n^t - x, t)
$$

It follows that $a_n^t \in A_n^t$. Now, since each A_n^t is τ -countably compact and τ -closed, we conclude that there exists an $a_0 \in \bigcap_{n=1}^{\infty} A_n^t$. Then we have

$$
d(A, x, t) \ge N(a_0 - x, t) \ge d(A, x, t)(1 - \frac{1}{n+1})(n = 1, 2, \ldots),
$$

whence $a_0 \in P^t_A(x)$ which completes the proof.

 \Box

Definition 2.14. Let A be a nonempty subset of a fuzzy normed space $(X, N, *)$. An element $y_0 \in A$ is said to be an F−best approximation of $x \in X$ from A if it is a t-best approximation of x from A, for every $t > 0$, i.e.,

$$
y_0 \in \bigcap_{t \in (0,\infty)} P_A^t(x).
$$

The set of all elements of F −best approximations of X from A is denoted by $FP_A(x)$, i.e.,

$$
FP_A(x) = \bigcap_{t \in (0,\infty)} P_A^t(x).
$$

If each $x \in X$ has at least (respectively exactly) one F-best approximation in A, then A is called a F -proximinal (respectively F -chebyshev) set.

Example 2.15. Let $X = \mathbb{R}^2$. For $a, b \in [0, 1]$, let $a * b = ab$. Define $N : \mathbb{R}^2 \times$ $(0,\infty) \rightarrow [0,1]$ by

$$
N((x_1, x_2), t) = (\exp \frac{\sqrt{x_1^2 + x_2^2}}{t})^{-1}.
$$

Then $(X, N, *)$ is a fuzzy normed space. Let $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid -1 \le x_1 \le 1, 0 \le x_2 \le 1\}$ $x_2 \leq x_1^2$ and $x = (0, 2)$. Then for every $t > 0$, √

$$
N((-1,1)-(0,3),t) = N((1,1)-(0,3),t) = (\exp \frac{\sqrt{5}}{t})^{-1}.
$$

On the other hand,

$$
d(A, (0,3), t) = \sup \{ N((x_1, x_2) - (0,3), t) \mid -1 \le x_1 \le 1, 0 \le x_2 \le x_1^2 \}
$$

=
$$
\sup \{ (\exp \frac{\sqrt{x_1^2 + (x_2 - 3)^2}}{t})^{-1} \mid -1 \le x_1 \le 1, 0 \le x_2 \le x_1^2 \}
$$

=
$$
(\exp \frac{\sqrt{5}}{t})^{-1}.
$$

98 S. M. Vaezpour and F. Karimi

So, for every $t > 0$, $y_0 = (-1, 1)$ and $y_1 = (1, -1)$ are t-best approximations of $(0, 3)$ from A. Therefore $y_0 = (-1, 1)$ and $y_1 = (1, -1)$ are F-best approximations of $x = (0, 3)$ from A. Therefore A is not an F-Chebyshev set.

Example 2.16. Let $X = \mathbb{R}$. For $a, b \in [0, 1]$, let $a * b = ab$. Define

 $N : \mathbb{R} \times (0, \infty) \to [0, 1],$

by

$$
N(x,t) = \frac{t}{t+|x|}.
$$

Then $(X, N, *)$ is a fuzzy normed space. Let $A = [0, 1]$. Then, for every $x > 1$, 1 is an F−best approximation of x from A and for every $x < 0$, 0 is an F−best approximation of x from A. So A is an F -proximinal set.

Remark 2.17. For an arbitrary set $A \subset X$ we shall denote by ∂A the boundary of A, by IntA the interior of A (hence $\partial A = \overline{A} \setminus IntA$), and by \mathcal{M}_A the set of all elements of the F−best approximation of the elements $x \in X$ from A, i.e.

$$
\mathcal{M}_A = \bigcup_{x \in X} FP_A(x).
$$

Theorem 2.18. Let $(X, N, *)$ be a fuzzy normed space and A be a F−best proximinal set in X. Then

$$
\partial A \subset \overline{\mathcal{M}}_A.
$$

Proof. If $\partial A = \emptyset$, the statement is obvious. If $\partial A \neq \emptyset$, let $a_0 \in \partial A$, $0 < \varepsilon < 1$ and t > 0 be arbitrary. Then there exists $0 < \varepsilon' < 1$ such that $(1-\varepsilon')*(1-\varepsilon') > 1-\varepsilon$ and the cell $B(a_0, \varepsilon', t/2)$ contains at least one element $x \in X \backslash A$. Let $\pi_A(x) \in FP_A(x)$ (it exists, since by hypothesis, A is F−proximinal). Then we have,

$$
N(a_0 - \pi_A(x), t) \ge N(a_0 - x, t/2) * N(x - \pi_A(x), t/2)
$$

= $N(a_0 - x, t/2) * N(A, x, t/2)$

$$
\ge N(a_0 - x, t/2) * N(a_0 - x, t/2)
$$

$$
\ge (1 - \varepsilon') * (1 - \varepsilon')
$$

$$
> 1 - \varepsilon.
$$

So, $B(a_0, \varepsilon, t) \cap \mathcal{M}_A \neq \emptyset$ and since $\varepsilon > 0$ is arbitrary, we obtain $a_0 \in \overline{\mathcal{M}}_A$ which completes the proof.

 \Box

The authors would like to thank the referees for their helpful comments and a careful reading of the article.

Archive of SID

t-best Approximation in Fuzzy Normed Spaces 99

REFERENCES

- [1] T. Bag and S. K. Samanta, *Finite dimentional fuzzy normed linear spaces*, J. Fuzzy Math., 11(3) (2003), 678-705.
- [2] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
- [3] F. Deutsch, Best approximation in inner product spaces, Springer-Verlag, 2001.
- [4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
- [5] A. George and P. Veeramani, On Some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365-368.
- [6] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. & Computing, 17(1-2) (2005), 475-484.
- [7] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, 1970.
- [8] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzzy Math., $9(1)$ (2001), 75-80.
- [9] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

S. M. Vaezpour∗, Department of Mathematics, Amirkabir University, Tehran, Iran E-mail address: vaez@aut.ac.ir

F. Karimi, Department of Mathematics, University of Yazd, Yazd, Iran E-mail address: fk-karimi@yahoo.com

∗Corresponding author